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ABsTRAcT

The electrostatic potential of a general space lattice is developed. The space
lattice is characterized by a base cell containing a finite set of positive point charges
arbitrary in strength and position, and a negative space charge of arbitrary density,
subject to the condition that the total charge in the cell is zero.

Next the expression for the lattice energy is obtained in the form of a triply in-
finite series. It is shown that the coefficients in this series representing the distribution
of the negative space charge can be identified with the structure factors of the lattice or
crystal provided we replace the negative space charge by a corresponding electron dis-
tribution.

An application of this theory is made to the three halides NaCl, NaF, and LiF.
The lattice energy of each crystal is calculated for different grating spaces. In all three
cases it is shown that the lattice energy has a minimum in the neighborhood of the
accepted grating space for the crystal under consideration. The agreement is better for
NaCl than for NaF or LiF.

THE ELEcTRosTATIc PQTENTIAL

~

&HE electrostatic potential of an infinite space lattice with an arbitrary
distribution of pointcharges in the base cell can be determined by a

method due to Ewald. This method consists in considering a continuous
periodic distribution of charges the density of which can be represented by
a triple Fourier series without a constant term. ' The potential of such a
system can be represented by a similar Fourier series whose coeScients can
be determined by the use of Poisson's equation. Finally one arrives at the
required result by taking the limiting case in which the continuous space
charge shrinks into a discrete set of point charges. If, in this process, we allow
the positive space charge to shrink into point charges but keep the negative
charge as a continuous distribution of electricity, we obtain a space lattice
with cells consisting of a set of positive point charges (nuclei) surrounded by
an atmosphere of negative electricity which may be identified with the elec-
tron distribution under certain conditions. It is the potential and potential
energy of such a space lattice which we wish to determine.

Let us consider the base cell of our lattice to be defined by the three
vectors u', a', a'. Our lattice can be built up by a simple translation of this
base cell in three space directions defined by a', a', c'. The lattice shall be
referred to the rectangular axes xI, xm, x3 whose origin shall be at a vertex

' P. P. Ewald, Ann. d. Physik 64, 253 (1921).
M. Born, Problems of Atomic Dynamics, 158—162 (1926).' The lack of a constant term in the series means that the total charge in any cell of the

lattice is zero.
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of the base cell. The rectangular components of the three base vectors shall
be designated by u;"; m, ~=1, 2, 3. a;" is the x;th component of the a th
vector. The volume of the base cell shall be 5= ~n; ~. We introduce the
three vectors of the reciprocal lattice b', b', b with their components b;"
defined by the equations

Let there be p positive point charges in the base cell, the kth charge
having a strength el, and coordinates x;~. The negative space charge shall
have a density distribution of p(x&, x2, x3) in the base cell. We impose the
condition that

ge(, + ~t~I ~t pdx, dx,dx, = 0
1

where the integral is taken throughout the entire base cell. This condition
is equivalent to the statement that the total charge in the base cell, and there-
fore in any cell, is zero.

With this brief description of the lattice under consideration, we write
down at once the potential of this lattice as given by Ewald's method.

where the coefficients A &, &, &, and Bl, l, l, are given by the equations

3

peg exp —f2x Q l„b;"x;"
k=1 j,n=1

P$

J~ i

' v((', (, h) e p — '2 g ( (; (;)((,&&&(, („"
j.n=1

the integration to be taken throughout the base cell. The coefFicients Al, l, l,

are functions of the positions and the strengths of the positive point charges,
and the coeScients Bl,l, l, are functions of the distribution of the negative
space charge. The total potential V is obviously the sum of the separate
potentials of the positive and the negative charges, but the above series
written with all of the Bl,l, l, coefFicients omitted does not represent the po-
tential of the positive charges alone. Rather it gives the potential of the
positive charges imbedded in a negative space charge of uniform density
such that the total charge in any cell is zero. It is seen by Eqs. (2) that for
p=constant, Bl, l, l, =o except for li=l~=l3=0, and this term is omitted in
the series in Eq. (1) as indicated by the prime on the summation sign.

THE POTENTIAL ENERGY

Having calculated the potential of the space lattice under consideration
we thorn to the problem of determining the potential energy of the lattice,
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or rather the potential energy of a single cell of the lattice. For this calcula-
tion we make use of Green's theorem which may be written ien the form

V V('2Vd xd)xd2x 2

+ jf)fjf [(BV/Bx))'+ (BV/Bx2)'+ (BV/Bx3) ]dxldxodx3

+ Q j[jf V(BV/Bn)dS = 0

where the symbols have their customary significance.
The potential energy of the base cell will be given by the expression

(1/82V) jf f f [(BV/Bx))'+ (BV/Bx2)2 + (BV/Bx2)']dx)dx2dx2

where the integration is taken throughout the base cell ~ However this ex-
pression will give an infinite energy because of the presence of positive point
charges in the cell of infinite self-energy. Ke can overcome this difficulty by
deleting each of the positive charges with a small sphere of radius 5 and sub-
tracting oA the self-energy of these positive charges. The resultant potential
energy of the cell which we shall designate by 4 will then be given by the
equation

C = Iirn (1/82r) '
( [(BV/Bx,)' + (BV/Bx2)'

fff
j—+Q

+ (dV/2 )'jd d,d* —Q( )'/22I (3)
ls 1

where the integration now extends through-out the base cell excluding the
p small spheres of radii 5.

By the use of Green's theorem 4 can be written in the form

C' = lim —(1/82v) ~

~
VV Vdx)dx2dxa

b—+Q J~d
f f p

—(1/() ) P Jl J V(BV/2 )dd —g(e, )'/22I.
k 1

(4)

Now |2)'V= —42rp and ffV(BV/Bn)dS vanishes over the external surface of
the cell because of the periodicity of Vand BV/Be. 2 Thus the surface inte-
gral of VBV/Bn reduces to that over the small spheres alone. Eq. (4) may
now be written

' If some of the point charges lie on the bounding surface of the cell, they may be deleted
by small hemispherical indentations precisely as is done in the theory of elliptic functions.
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4 = lim (1/2) ~~~I JtpVdx&dx&dx&
b~0

—(1/8 ) Q ~ ~U(aV/a )dS —Q (.)'/28I.
k-S k=1

But lim, ()(1/2)fffpVdx(dx2dxs is equal to (1/2)fffpVdx(dxzdx(), the integral
being taken through-out the entire base ce11, since the integral of p V through-
out any of the small spheres goes to zero as 5 goes to zero. Also it is not diS.-
cult to show that

P p p

lim —(1/8x) g ~ V(BV/Bn)dS — g(e~)'/2 () = (~~) Pe~V), '
8-+0 k=1 k=1

where Vk' is the potential at the point charge ek with that charge removed.
Making these substitutions in Eq. (5) we obtain

C = (-,') t t pVdx, dx,dxa+ (-', ) Qe(, V), '.' Jd~ k=1

Substituting in Eq. (6) the value of V as given in Eq. (1) we get

C = (1/2)rh)
(A, (,(, + &(,(,(,)& (, (, (, —-—

3 3 2
l 1,l 2, l ll =—(o k=1

Z l„b;"
7=1 n=1

Let us consider the quantity (1/2)Ze), Va' appearing in Eq. (7). V&'
k=1

is the potential at the k th positive charge with that charge removed. It
is made up of two parts, that due to all the other positive charges, and
that due to the negative space charge. Calling the former Vk'+ and the latter
Vq' weseebytheuseof Eq. (1) that

(-,') Qe, V,.' = (-', ) Qe„(V,'~ + V,' )

(-', ) Qe), Vp'+ + (1/2xh)
l 1, l2, l g

—oo

~l, lzl~~ —l1—lz—ll
(8)

Substituting in Eq. (7) the results expressed in Eq. (8) and collecting terms
we obtain C in its Anal form

e = (1/2xa)

Eq. (9) gives in compact form the potential energy of the base cell of the
lattice under consideration. Given the quantities a;", ek, x;, and the func-
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tion p(x&, xm, x&), the value of C may be calculated by Eq. (9). A method

devised by Ewald enables us to calculate the quantity (1/2) Z ea Vp'+ with-

out too much difficulty. 4

An examination of Eq. (9) shows that the potential energy of the cell
consists of three parts. The first part is the energy of the negative space
charge and involves the coefficients Bi,~, ~, 8 E, ~, ~,. The second part is
the mutual energy of the negative space charge and the positive point charges.
It involves the coefficients Af ~, ~, 8 ~, ~, ~„. The third part as given by

(1/2)Z el.„V&'+ is the energy of the positive point charges. The

first

an third
k=1

parts are essentially positive while the second part is negative.
The expression for 4 as given in Eq. (9) has some advantages over the

expressions usually given for the potential energy of a lattice cell. It is usu-
ally assumed that the ions making up an ionic crystal can be treated as
point charges. No attempt is made to take into account the actual distri-
bution of electrons around the nuclei. As a result it is necessary, for the sake
of achieving equilibrium, to introduce an additive term in the energy expres-
sion representing the eRect of certain repulsive forces existing between the
sions. In the expression here developed we have taken into consideration the
distribution of the electrons in the crystal in so far as it is possible to replace
a negative space charge by a corresponding electron atmosphere. This ob-
viates the necessity of introducing extra terms representing repulsion since
the sheath of electrons around each nuclei will automtically bring into play
repulsive forces of considerable magnitude when the ions are close together.

Furthermore the coefficients 8&,&,,&, which play an important part in
this theory can, with only a few minor assumptions, be identified with the
structure factors of the crystal in question. ' The structure factors for some
crystals have been determined experimentally. For these crystals 4 may
be calculated not only for the accepted crystal parameters but also for arbi-
trary parameters. This enables us to determine parameter values which give
minimum values of 4 and therefore states of stable equilibrium. In the fol-
lowing section we give the results of some determinations of 4 for the halides
NaC1, NaF, and LiF.

APPLICATIQNs

The halides NaC1, NaF, and LiF are simple cubic crystals. The expres-
sion for 4' as given in Eq. (9) becomes considerably simpler for this type of
a crystal. We carry through the computation of C for NaC1 as illustrating
the general method. In order to use the experimentally determined values
of the structure factors it is necessary to take the origin at the heaviest ion
in the crystal. ' This is at the Cl ion for NaC1.

There are two kinds of ions in the NaC1 crystal so that

4 e. g. M. Born, 159—162.
' A. H. Compton, X-Rays and Electrons, Chap. 5 (1926).
' R. J, Havighurst, Phys. Rev. 29, 4 (1927).
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e~ = e3 = e& = ev = 17e, and e~ = e4 = e6 = es = 1ie

where e is numerically equa1 to the charge on the electron. Since Nacl is
a cubic crystal we have

0 if n/j 0 if n/j

Evidently a=1/b and A=a"'. There are eight ions in each cell so that k

runs from 1 to 8. The coordinates of the nuclei of these ions are
x'= ~'= x'= x'= ~2= x'= x'= x4= x'= x'= x'= x'=0,1 2 3 2 3 2 1 3 1 1 2 3 )

xr' ——xr' ——x3' ——xg' ——x2' ——xr' ——x3' ——xr' ——xr' ——x, ' = x2' ——x, ' = a/2 .

We consider p($r, $~, (rr) as an even function of its arguments so that

g rigrrJ ' p exp [ r2rrb(11(1 + 1252 + 13(3)]dfldfmd(3

t p cos [2rrb(lr&r + 12b + ls&r) ]d&rd&~d&3 = Bar,zr, zr, .JJv
So far we have considered p to be the negative space charge density in the
crystal. %'e assume that it may be set equal to —eo where 0 is the electron
density in the crystal. But

fff
JI J' Jl rr cos [2rrb(lr)r + lq)2 + la)3) ]d(rd)2d)3 = 4Fr, r, r,

where I' ~, ~, ~, is the ~„~„~,structure factor for the NaC1 molecule in the
crystal. ' The factor 4 enters because there are four molecules in each cell
of' the crystal. Thus we have

&y i,g t,g &,
= —4eJ'i, i, t, ~

The expression for 4 with the above modifications now takes the form

8«r, r,—r,Fr, r , r, +,
1«'.(Fr, r, r,)'

C' = (-', ) per, Vr!+ + (1/2rra) Q' &r.r,.r. ——' ' ' ' ' ' '—''—(10)
k=1 l), la, la 0 112 + ~22 + l32

where

and where

,

'
8 if none of the subscripts are zero,

4 if only one of the subscripts is zero,

2 if only two of the subscripts are zero

' A. H. Compton, p. 160.

f 112e for the subscripts all even
'

24e for the subscripts all odd

0 otherwise
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We are now in a position to calculate 4 for NaCl by the use of Eq. (10).
8

The calculation of the term (1/2)Z eaVe'+ is a rather long and laborious
k=1

process. The standard method due to Ewald' is used for this calculation and
need not be repeated here. The result for NaCl is 555e'/a. This amounts to
less than three percent of the total value of 4 and thus contributes little to
the energy of the cell.

The values of the structure factors for NaCl, and also for NaF and LiF,
have been taken from a table of structure factors given by R. J. Havig-
hurst. ' These values as given by Havighurst include the Debye tempera-
ture factor. Using forty of these values and substituting in Eq. 10 we obtain
for 4 of NaCl the value

4 (NaCl) —= —15590 e'/ao

whereap=5. 628&(10 'cm. This valueof 4 cannot be compared with Born's
value of the potential energy of a NaCl cell since this value includes the
energy of the ions and takes into account the electron distribution in the
crystal.

It is possible to compute C (NaCl) for various arbitrary values of the
grating space since the structure factors for various values of a can be de-
termined. The same can be done for NaF and LiF. The results are shown
in tabulated form. ap represents the accepted grating space for the crystals
under consideration and has the values ae(NaCI) =5.628 X 10 ' cm. , ae(NaF)
=4.620X10 ' cm, and ae(LiF) =4.014&(10 cm. Values of w=(ae/e')4'
are shown for the grating spaces 0.75ap, ap, 1.25ap, 1.50ap, and 2.00ap.

TABLE I

m(Nac1)
m(NB, F)
m(LiF)'

0.75ap

—11860—4350
—1710

ap

—13590—5360
—1950

1.25a0

—12850—5470

1.50ap

—4850—1980

2.00a0

—1800

An examination of Table I yields the interesting fact that a minimum value
of m, and therefore of 4, occurs for each of the three crystals in the neigh-
borhood of the accepted grating space for that crystal. For NaC1 a minimum
occurs in the interval defined by 0.75ap&a&1.25ap. It is quite likely that
zv = —13590 at a, =ap is an actual minimum for NaCl, as it should be from
theoretical consideration s.

For NaF a minimum value of m lies in the interval 0.75ap&a &1.50ap

but it appears to be closer to a =1.25ap than to a =ap. For LiF a minimum
lies in the interval 0.'75ap &a &2ap but it appears to be closer to 1.5ap than
to ap. The reason for this shifting of the minimum value of zv toward values
of a greater than ap in the case of NaF and LiF is not clear. It may be that

' M. Born, 158—162 (1926).
8

~ The term 1/2P e„V„+'has been omitted for LiF.
k~1



m has not been determined accurately enough to make the diR'eI'ence be-
tween the values of m at ao and at 1.25@0 or 1.5ao signi6cant. Or it may be
that we are not justified in assuming that a negative space charge can be
replaced by an electron distribution in the case of NaF and LiF, since the
total number of electrons per ce11 diminishes rapidly as we go from NaC1
to LiF. NaC1 has 112 electrons per cell, NaF has 80, and LiF has only 48.

Although we have determined approximately the position of a single
minimum value of 4 for each of the three crystals, there remains the ques-
tion as to whether or not this is the only minimum value of 4. From the
form of Eq. 10 and from the general relation between the structure factors
and the grating space we hazard the guess that it is, although this conjecture
has not been proved.

By the general method outlined in this paper one ought to be able to
determine other crystal parameters besides grating spaces. Also it may be
possible to relate 4, the lattice energy which is not a directly measurable
quantity, to other quantities which are measurable by some kind of a cyclical
process as has been done by Born and others.


