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ABSTRACT

Extending the paper of Slater (Phys. Rev. 34, 1293, 1929) on complex spectra,
it is pointed out that assignment of definite electron configurations to spectral terms
is an approximate procedure and only has meaning when the multiplet systems of the
several configurations are widely separated. The effect of including spin terms is
sketched. Non-diagonal matrix elements for the N-electron problem are reduced to
corresponding elements for the 2-electron problem, as Slater did for the diagonal
elements. Two-electron jumps occur because of the fact that spectral terms may
not be precisely labelled by means of electron configurations.

N A paper of this same name, Slater! has given a direct treatment of the
application of the first order perturbation theory to the central field ap-
proximation to the atom model. He neglects spin forces in the Hamiltonian
and so his results correspond to pure Russell-Saunders coupling of the angu-
lar momentum vectors, all intervals inside of the multiplets being zero. The
electrostatic interaction gives the classification into multiplet levels and the
calculations provide definite predictions concerning the intervals between
the several multiplets which belong to the same electron configuration.
These intervals are found to be expressible in terms of certain double
integrals over the radial factors of the eigen-functions of an electron moving
in the central field which is made the starting-point of the perturbation
calculation. For a configuration which gives » multiplets, there are thus
(n—1) intervals. Slater’s first-order calculation expresses these (n—1) inter-
vals in terms of a fewer number (say, m) of integrals, usually, so even if one
regards all of the integrals as independently adjustable, the theory predicts
certain relations between the intervals. One may choose values for the m
integrals as if they were independent so as to get the best fit possible in order
to obtain a kind of test of Slater’s results. Such a test of the results can be
made comparatively simply without going into the more difficult question
of determination of the best central field and the radial eigen-functions asso-
ciated withit. If a good representation of the data is obtained on treating the
m integrals as independent, the question still remains whether the m values
assigned are compatible with the central field eigen-functions in view of the
factthat they are not really independent. However, if a good representation
cannot be obtained even by treating the integrals as independent, it certainly
will not be improved when allowance is made for the fact that they are not
independent

1 Slater, Phys. Rev. 34, 1293 (1929).
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With such considerations in mind an attempt was made to apply Slater’s
results to a larger number of cases than he has treated in the examples at
the end of his paper. It quickly became apparent that the intervals between
the multiplets usually disagree badly with the first-order calculations. It
is therefore necessary for an adequate theory of complex spectra to extend
the calculations to a higher degree of approximation. Some results in that
direction are the subject of this paper.

1. Definitions and Notation. The starting point, as with Slater, is a
model of the atom in which N electrons each move, without influencing
each other, in the same central field which has the potential energy, — U(r).
Only eigen-functions that are anti-symmetric in all pairs of electrons are
used and so an eigen-function is specified by giving a complete set of 4N
quantum numbers. A complete set consists of N individual sets which are
called (n, I, m, k) these being the (n, I, m;, m,) of Slater. Each electron has
four coordinates (x, v, 2, s). The first three give its position and the fourth
the z-component of spin angular momentum. For short the Greek letters,
a, B, v, 6 - - - are written for separate individual sets. Also the capitals
A, B, C, D - - - are written as abbreviations for different complete sets.

By Pauli’s exclusion principle all individual sets in a complete set must
be different, and two complete sets are not considered as different if they differ
merely in regard to the order of listing of the same N individual sets. Never-
theless for definiteness a definite order of writing the individual sets in a
complete set is adopted and adhered to during the calculations.

Since anti-symmetric eigen-functions are used there is no one-to-one
correspondence between individual electrons and individual sets of quantum
numbers. This means that an expression commonly used in spectroscopy
such as “the excited electron is in a 4f state” refers to the presence of a 4f
individual set in the complete set of quantum numbers. The electron con-
figuration of a given complete set means the list of #, / values of the individual
sets. Thus there are generally a number of different complete sets belonging
to each configuration. Since the energy of a particle in a central field de-
pends only on 7z and I/, all of the complete sets belonging to a certain con-
figuration have the same energy in the zero* approximation from which the
start is made.

For the one-electron eigen-function having the individual set «<, written
as a function of the first electron’s coordinates, the notation u,(1) is used,
replacing Slater’s u(n;/x1). ¢ is defined as

¥ = sa(1)-up(2) -4y (3) - - - ug(N)
so that the normalized eigen-function for the complete set 4 is

Va = (N)™12 3 (— 1)*Py

in which P stands for a permutation of the indices 1, 2, 3 - - - N in ¢ rela-
tive to the @, B8, v - - - £&. The summation extends over all N! such permuta-
tions and p has the parity of P.
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For the matrix component of any quantity as H which connects the states
having the complete sets 4 and B, the Dirac notation (4 |H[B) is used, so
that

(4| H| B) =f\irAH\IrB

where [ means integration over the 3N position coordinates and summation
over the N spin coordinates.

2. Formulation of the energy level problem. The starting point is an
exact solution of the quantum mechanical problem for a fictitious atom
whose Hamiltonian is E where

1
E = Z[E;(Pnz + p® + pa?) — U(h)] (2.1)

where Z; means that the same functional form is to be written down suc-
cessively as depending on the coordinates of all N electrons and the results
added together.

A form of the Hamiltonian for real atoms that is much nearer to the
truth is

1 ze? e? 1
H = Z[’“(?;ﬂ? + P+ pa?) —— + V(’I)Ml'sl] +— 2= (2.2
1 L2u 71 2 127

In this the terms V(r)) M;-s: represent the energy of interaction of each
electron’s spin with its own orbital angular momentum. V(r,) is to be chosen
in some way along lines of the semi-empirical discussions of the “screening
for the spin doublets” of other workers. The question will not be discussed
further in this paper. M s is the scalar product of orbital and spin angular
momentum for an electron. X, means a summation over all pairs of elec-
trons, the two indices varying independently so that each pair is counted
twice. Since the operators for E and H do not commute with each other,
the matrix for H will not be diagonal in terms of the representation that is
based on the eigen-functions of E. The problem of finding the energy levels
for H is that of finding a transformation to the diagonal form for the matrix
for H.

How the function U(r) is to be chosen will not be discussed here. An
approximate theoretical treatment, such as that of Thomas and Fermi, or
a semi-empirical method of the sort studied especially by Hartree may be
used. Slater studied the Hamiltonian (2.2) with omission of the spin term.
Houston,? Bartlett,®> and Gaunt,* have considered special cases of (2.1)
counting the spin term and Goudsmit® has recently extended their results
by a clever device.

2 Houston, Phys. Rev. 33, 297 (1929).

3 Bartlett, Phys. Rev. 35, 229 (1930).

4 Gaunt, Proc. Roy. Soc. A122, 513 (1929).
‘Goudsmit, Phys. Rev. 35, 1325 (1930).
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When the spin term is omitted the Hamiltonian H commutes with both
the sum of the z-components of orbital angular momentum, and the sum of
the z-components of spin angular momentum. Therefore H has no matrix
components connecting states of E for which either of these sums is dif-
ferent. In terms of the quantum numbers introduced in §1 the quantities
are Zm and Zk, the sums being over all the individual sets belonging to a
complete set. Slater makes very good use of these results to calculate the
energies of all the multiplets arising from a configuration (except for those
configurations in which more than one multiplet of the same kind appears)
without having to calculate any non-diagonal matrix components.

If the spin term is not omitted one still has the result that H commutes
with the total sum of the z-components of both orbital and spin angular mo-
mentum although it no longer commutes with each sum separately. There-
fore, even with spin counted there will be no matrix components of H con-
necting states for which the values of Z(m+k) differ.

There is another important property of the Hamiltonian which arises
from its isotropy with regard to different orientations of the coordinate axes.
The isotropy means that there is still a degeneracy, that of space quantiza-
tion, associated with the Hamiltonian, so that the degeneracy of E is not
completely removed by the inclusion of the spin and electrostatic repulsion
terms which are the essence of the transformation from E a diagonal matrix
to H a diagonal matrix. With each eigen-value of H can be associated a
maximum value of Z(m4k) which is represented among the eigen-functions
belonging to that eigen-value. This number is the quantum number J of
that energy level. The isotropy then brings with it the result that there are
other eigen-functions for which Z(m-+k) has the values J—1, J—2 ...,
— J all of which have the same eigen-value. The proof of this is best obtained
by appeal to group theory.

If one uses the perturbation theory to find approximately the transforma-
tion from E diagonal to H diagonal, by treating (H —E) as a perturbation,
the success of the calculation in the first-order requires that the eigen-
values of H which “grow out of” a particular eigen-value of E remain close
together compared with the distance of the particular eigen-values of E
from its nearest neighbor in the spectrum of E. This is a well known property
of the perturbation theory and shows itself in many particular instances.
Perhaps the Paschen-Back effect in the anomalous Zeeman effect is the best
known of these. In it the effect of a uniform magnetic field on an atomic
energy level is required. The first-order calculation is correct only if the
spread of the energy levels growing out of the unperturbed level is small
compared to the distance from the unperturbed level to its nearest neighbor
in the unperturbed scheme. If this condition is not fulfilled then the second
order perturbation becomes important. An important second-order correc-
tion implies that an important alteration of the eigen-function has taken
place so that, when it is expanded in terms of the eigen-functions of E, it
begins to have an important component of the eigen-function of the neigh-
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boring level of E in addition to the eigen-function of the level from which it
grew.

Therefore as the second-order correction becomes more important the
quantum numbers which were appropriate to labelling the different eigen-
values of E become less and less appropriate for the labelling of the eigen-
values of H. They cease to be “good quantum numbers” to use a curiously
apt expression introduced by Mulliken® in a discussion of the correlation of
atomic energy levels with those of diatomic molecules.

3. Validity of configuration assignments. All discussions of complex
spectra have hitherto been based on the idea that an electron configuration
could be assigned uniquely to each energy level. That this procedure is only
of approximate validity is seen at once from the foregoing discussion. The

25 | 1
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Fig. 1. Thetwo lowest configurations in Ti¢ II. Theory predicts another 2D for (3d)3
which has not been found; the arrow shows the center of gravity of the known terms, which is
therefore not the exact center of gravity of the whole configuration. The center scale is in
thousands of cm™,

criterion can be so formulated: The assignment of a definite electron configura-
tion to a group of multiplets is only exact insofar as the spread of the levels be-
longing to one configuration is small compared to the distance (on the energy
level diagram) of the spread of levels belonging to the neighboring configurations.
It is evident that this criterion for the case of the electron configuration
quantum numbers is of the same form as the well known criterion for deciding
between “weak” and “strong” magnetic fields in the Paschen-Back effect.
The importance of raising this point lies in the fact that complex spectra
have already been analyzed in which the criterion for definite assignments

& Mulliken, Reviews of Mod. Phys. 2, 60 (1930).
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of electron configurations is not fulfilled. A noteworthy instance’ is that of
Ti Il as analyzed by Russell.?

In Fig. 1 are plotted the levels corresponding to the two lowest configura-
tions in Ti I as assigned by Russell. The arrows in each column give the cen-
ters of gravity of all the terms in the column, weights being assigned accord-
ing to their values of (2J+1).

It is evident that here, if anywhere, one may expect an appreciable effect
of what may be suitably called interaction of neighboring electron configura-
tions. Except for the overlapping of d® 2H and 2D and of d3 2P and *P the dis-
tance between multiplets is large compared to intervals inside the multiplets,
so that the criterion for Russell-Saunders coupling is fulfilled. The 2H and
2D can show no interaction, though, since they have no common value of
J, whereas it is expected that the nearness of 2P to P will disturb the inter-
vals. This is in fact the case, the ratio of the observed intervals being 3.82
against a theoretical (Landé) value of 1.67.

Perhaps the best way to present the situation is by reference to Slater’s
diagrams (loc. cit. p. 1301) of the energy matrix. Referring to his Fig. 2,
one may suppose that the upper double-shaded square is the matrix for the
different complete sets belonging to (3d)%4s and the next double-shaded
square is the similar matrix for complete sets belonging to (3d)?. Slater says
that the terms in the singly-shaded rectangles (these are the matrix com-
ponents connecting the complete sets in (3d)2?4s with those in (3d)?) are negli-
gible. This is often the case but the point that is made here is that they are
not negligible in a case where the distance between the centers of gravity of
the terms coming from the same configuration is small or comparable with
the spread of the multiplets arising from the two configurations separately.
In case the configurations overlap, as they do in the special instance of Ti
IT one needs to consider the larger square which includes the two doubly-
shaded squares and the two singly-shaded rectangles that border them.

If one next makes use of the exact theorem that there are no matrix
components connecting complete sets for which Z(m-+k%) differs the large
square is considerably simplified. It can be rearranged so that complete
sets belonging to either configuration but having the same Z(m-+k) are in
adjacent rows and columns and then the large square corresponding to the
two configurations taken together will break up into a series of smaller
squares. If one wishes further to neglect the spin terms, as Slater does, then
these smaller squares may be broken up into still smaller ones since then both
Zm and 2k separately have to be equal in the quantum numbers labelling
rows and columns.

The actual procedure in applying the diagonal sum method will be illus-
trated in terms of d% and d? although the numerical application of the formu-
las to (3d)*4s and (3d)® in Ti Il will be reserved to a later paper. One has first
to set up the scheme of complete sets of quantum numbers for each config-

71 am indebted to my friend, Prof. J. E. Mack, for directing my attention to this case
8 Russell, Astrophys. J. 66, 283 (1927).
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uration, just as Slater does. For example, Table I gives the quantum numbers
for the (dds) configuration.

TaBLE 1. Sets of quantum numbers for (dds) configuration.

k= 3/2 (+++) 1/2 (+—+) (++-)
Sm=4 (220)
3 (210) (210) (120) (210)
2 (200) (200) (020) (110) (200)
1 (2-10) (100) (2-10) (~120) (010) (100) (2-10) (100)
0 (2-20) (1-10) (2-20) (-220) (1-10) (2-20) (1-10)
(~110) (000)

In this table are listed the m values that may be associated with the sets of
spin (k) values that head the columns. The corresponding table for d? is
Table II.

TaBLE II. Sets of quantum numbers for (ddd) configuration.

Zk= 3/2(+++) 172 (++-)
Zm=06
5 (212)
4 (211) (202)
3 (210) (210) (201) (2-12) (102)
2 (21-1) (21-1) (200) (2-11) (2-22) (101) (1-12)
1 (21-2) (20-1) (21-2) (20-1) (2-10) (2-21) (100) (1-11) (1-22) (0-12)
0 (20-2) (10-1) (20-2) (2-1-1) (2-20) (10-1) (1-10) (1-21) (0-11) (0-22)

In these tables it is not necessary to list the quantum numbers for negative
values of Zm and Zk as these do not give additional information.

The multiplet schemes corresponding to the two configurations are given
superposed in the Table III, the first line in each cell being the contribution
from d% and the second that from d*.

TasBLE III.  Multiplets for d2s and d3.

k= 3/2 1/2
Zm=06
5 tH
G
4 2H G
4F G 2F ‘F
3 4F tH G :F ¢F
iF G 2F 2D ‘F
2 iF 2 G 2F 2D 2D ‘R
1y ap 2G 2R 2D 2p [y ap
1 1y 4p )24 °G 2 2D 2D 2p 1y ap
4F P G 2F 2D 2p 2S iF P
0 iF 4P tH G 2F 2D 2D 2P ‘F 4P

Now if the interaction between configurations can be neglected the diag-
onal sum method gives a value for the sum of the energies of all the multiplets
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lying on each line separately in each cell. But if the interaction is important
then the diagonal sums must be taken simply cell by cell, this gives only
half as many equations and so the power of the diagonal sum method is
greatly diminished (just as it is greatly diminished when spin is not neg-
lected). Neglecting the interaction the diagonal sum method in this case is
capable of giving the energy of each multiplet except that it can only give the
arithmetic mean of the two 2D’s which arise from d®. Allowing for the inter-
action it gives much less: now the 2H and the 2S are the only ones given di-
rectly, also given are the arithmetic means of the two *P’s the two *F’s, the
three 2D’s, the two 2P’s, the two 2F’s and the two 2G’s.

In order to get the actual separation of the terms of similar multiplet
character whose sums only are given one needs to have the non-diagonal
elements of the energy matrix.

With these at hand one can set up the secular determinants for each
cell and get the roots of the secular equations. This looks formidable at
first sight because the determinants are of the order equal to the number of
multiplets in each cell. But the diagonal sum method can be used to depress
the order of the secular equations so that one needs only to solve a quadratic
where there are two multiplets of the same kind, a cubic if there are three,
and so on.

Perhaps it is helpful here to point out how the diagonal sum method works
when spin is not neglected. In that case one can not write an equation that
the sum of the terms in each cell of the Zm, 2k diagram is equal to the sum
of the corresponding diagonal elements of the energy matrix. Also one needs
a complete table covering the negative values of 2% as well as the positive.
For simplicity the argument will be presented in terms of the sp configura-
tion, which has already been fully treated by Houston.® One has for Zm,Zk:

sp

k= 1(++) 0 (+-) (=) —1(--)
Zm=1 (01) (01) (01) (01)
0 (00) (00) (00) (00)
-1 (0-1) (0-1) (0-1) (0-1)

Arranging by values of Z(m-+k) one sees that the values of Z(m +£%) and
the number of complete sets by which each value is realized is

Z(m+k) Realizations Terms represented
2 1 3P,y
1 3 3P, 3Py 1Py
0 4 3P, 3Py 3P 1Py
-1 3 3Py 3P 1Py
-2 1 3P,

% Houston, Phys. Rev. 33, 297 (1929).
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The third column gives the energy levels whose sum is given by applying the
diagonal sum method to all complete sets which have the same value of
Z(m+k). Just as the diagonal sums, without spin, fails to give the separa-
tion between two multiplets of the same kind, so here with spin it fails
to give the separation between two levels having the same J value. To get
the separation one would need to solve a quadratic equation, which is what
Houston did. And generally, the diagonal sums alone will give simply the
arithmetic mean of all the terms in the configuration that have the same
J value. To get them separately one has to use the non-diagonal elements
and solve an algebraic equation whose degree is equal to the number of times
the particular J value occurs. This statement is the starting point of Goud-
smit’s recent work on the transition from Russell-Saunders to jj-coupling.

Of course it is evident that if perturbations by an external magnetic
field are included the method of diagonal sums gives the derivation of the
g-sum rules that play such an important role in the theory of the anomalous
Zeeman effect. But similarly if one wants to find the individual g’'s for n
terms of the same J value then an algebraic equation of the »n** degree has
to be solved, and this is true whether the #» terms come from the same con-
figuration or not.

4. Non-diagonal matrix elements. The diagonal sum method works
only with the diagonal matrix elements of the energy and is quite powerful.
It gives the energies of each multiplet belonging to a configuration if the in-
teraction between configurations is neglected and if all multiplets are of a
different kind. To go beyond this and find the separations between two mul-
tiplets of the same kind, or to allow for interaction of configurations and
for other questions it is necessary to know the non-diagonal elements.

Two types of symmetrical function of the electron coordinates are of
especial importance. One is of the form F=Z,f(1), that is, the sum of the
same function of each one of the electron’s coordinates occurring one at a
time. The other is G=2¢(1,2), that is, the sum over all possible pairs of
electrons, of a symmetrical function of the coordinates of both of them.
Slater has carried out the calculation for the diagonal elements, the exten-
sion to the non-diagonal elements is very easy and almost exactly like
Slater’s work so only the results will be stated.

For a quantity of the type F, the matrix components, (4 IF]B), connect-
ing states with the complete sets 4 and B are as follows:

(a) They vanish if B differs from 4 in regard to more than one individual
set.

(b) If B differs from 4 solely in regard to one individual set then

4|F|B) = f (1) f(Dar (1)

where « and o' are the only individual sets of 4 and B respectively which
are not equal.
(c) The diagonal element (4 |F IA) is worked out by Slater. Its valueis
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“lF|4) = T [ adsmun)

where the sum extends over all the individual sets in the complete set 4.

An immediate corollary of the results (a) and (b) is that if f(1) is a
quantity which is a diagonal matrix in the one-electron problem, then F is
a diagonal matrix in the N-electron problem. This is perhaps the simplest
way of proving that the total z-component of spin and the total z-component
of orbital angular momentum are diagonal matrices in the representation
used for this approach to the theory of complex spectra.

Similarly the matrix components, (4 IG !B), for a quantity of the type
G can be reduced as follows:

(d) They vanish if B differs from 4 in regard to more than two individual
sets.

(e) If B differs from 4 only in that two of its individual sets which one
may call a’, B’ differ from the individual sets of 4, called «, 8, then

(41G| B) = [Zf ta(1)15(2)g(1, 2)ttar (1) ug:(2)

—2 [ amuean, 2>ua:<1>ua,<z>].

(f) If B differs from 4 only in that its individual set, &', differs from the
individual set, a, in 4 then

il m = 2 5[ [ a®ns, e nne

~ [ ana@s, 2>u5<1>u.,,<2>]

where 25 means a summation in which B runs over the N —1 individual sets
that are common to 4 and B.
(g) The diagonal element (4 IG [A) is given by Slater. Itis

4|Gla)y =2 [ f (1) 5(2)g(1, 2)1a(1)15(2)

«,B8 .2
- [ m(lmfz(z)g(l,z)uﬂu)ua(z)]

the summation running over all pairs of individual sets.
These results show further simplifications for quantities that are inde-
pendent of spin. For #,(1) one has

e (1) = 14 (1) 8 (51, ka)

where 2,(1) is a function of the position coordinates only. In the preceding
formulas [, means integration over the position coordinates and summa-
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tion over the spin coordinate. If f(1) or g(1,2) do not depend on spin the
summation over s can be carried out at once. The results are:

(b) (4|F| B) = 8(ka, ko) f (D (Dre(1)
© @]F| 4= T [amun

(©) |G| B) =2 [am, k)5 (ks, k3

[ 50601, 20 (002) = 5k RadoChs, k)
f B(Da(2g(1, 2>vp'(1>va'<2>]
(1) (4]G|B) = 25(ke, ke Z[ [ w0n@s, s
B 1,2
- ﬁa(1>aﬁ<2>g<1,2>vs<1>va,<z>]
© UGl =Y [ [ nm@s, Dumue)
a,B 1,2

~ (ke ) [ 20B@R0, 2>vﬁ<1>va<z>].

1

A consequence of the limitation (d) is that there is no first-order inteac-
tion between two neighboring configurations that differ in regard to more
than two electrons. This result is hardly likely to be of much importance
for two configurations that differ in regard to as many as three electrons
will, in general, lie in widely separated parts of the energy level diagram so
the interaction would be negligible anyway.

This completes the reduction of the non-diagonal elements to integra-
tions over the coordinates of only one or two electrons. If in particular
g(1,2) is of the form 1/r additional developments may be made in which
1/ is expanded in a series of spherical harmonics and so all the integrals
can be expressed, as Slater does for the ones occurring in the diagonal ele-
ments, as a sum of certain integrals over the radial eigen-functions multiplied
by coefficients that are certain integrals of spherical harmonics. The calcula-
tions involve some more general coefficients than Slater’'sae’s and d’s. Detailed
developments of this part of the reduction will be reserved for a later paper.

5. Two-electron jumps. An immediate application of the results of the
preceding section is to the question of “two-electron jumps.” These are
transitions between energy levels whose configurations differ in regard to
two of the sets of #nl values. Such transitions are usually weak compared
to the more usual one-electron jumps. One may also have “zero-electron
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jumps,” that is, transitions between terms arising from the same configura-
tion. This is the usual way of stating the case, in which one speaks as though
each term is uniquely associated with a single configuration of the central
field approximation.

The interaction between a light wave whose vector potential is given by
A (x, y, 2) and an atom consisting of N electrons is measured by a term in the
Hamiltonian of the form

2 Az, 91, 21) P

where p; is the momentum of the first electron. This form embraces quad-
rupole and all multipole radiations. The dipole radiation which is the first
approximation is obtained by replacing A4 (x, v, 2) by its value at the center
of the atom and writing

4(0,0,0)- 2 p

which is valid if the wave-length is great compared to the size of the atom so
that 4 does not vary much over the size of the atom. Now even the exact
interaction is of the form of the sum of the same operator function of the
coordinates of each electron summed over each of the electrons. Therefore
one sees that its matrix components connecting complete sets which differ
in regard to more than one individual set vanish.

In other words, if assignment of electron configurations to energy levels
were an exact procedure there would be no two-electron jumps. Thus the
existence of two electron jumps is an indication of a break-down of exact
configuration assignments.

This point is similar to the one that the existence of inter-system combina-
tions, i.e. transitions between states of different multiplicities, is an indication
of the break down of exact assignment of L and S values of the terms, i.e.
break-down in the Russell-Saunders coupling scheme.

There is an interesting question of language involved here. If the expres-
sion “electron jump” is to be translated into quantum mechanics as meaning
a change in an (nl) individual set in going from an initial state to a final state,
then, strictly, only one-electron jumps occur. But the exact eigen-function
of each energy level has in its make-up components belonging to several
different configurations of the central field model, whereas it has been the
custom to assign to the energy level one configuration which is presumed
to be the one that has the largest component in the expansion of the exact
eigen-function. One-electron jumps are the only ones really occurring but
since the exact eigen-function has other configurations in it than the prin-
cipal one from which it derives its configuration name, there will appear to
be two-electron jumps when the transitions are described solely by reference
to the single configuration name that is assigned to each level by the cus-
tomary procedure. It is the same with inter-system combinations: the selec-
tion rule AS=0 is exact, but the actual energy levels have components in
their eigen-functions corresponding to more than one value of S; then when
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one persists in labelling the terms simply with the value of .S most strongly
represented in the eigen-function he is confronted with apparent violations
of this selection rule.

The break-down of exact configuration assignments also has important
implications for the theory of relative intensity of spectral lines. Ornstein
and Burger!’ have already shown that when inter-system combinations have
appreciable intensity that they must be appropriately reckoned in the appli-
cation of the intensity sum rules. This point is brought out clearly also in
recent work by Harrison.!' That is, the sum rules have to be applied to all
the lines arising from transitions between all the terms of the initial and
final configurations. Evidently all this has to be extended one step further
for cases in which the interaction between two configurations is important.
For simplicity suppose the initial state levels can be all given a fairly exact
configuration assignment but that for the final state there are two configura-
tions in interaction. Then the sum rules for intensities will have to be ex-
tended to summations over all lines terminating on any of the levels belong-
ing to both of the interacting configurations. Detailed consideration of the
intensity relations will be postponed to a later paper.

This paper was written at Stanford University during the summer
quarter. The writer takes pleasure in this opportunity to thank the Stanford
physicists for their cordiality and especially Professor G. R. Harrison for
stimulating discussions on spectroscopy. He is also indebted to Professor J.
E. Mack for discussions last winter at the University of Minnesota.

10 Ornstein and Burger, Zeits. f. Physik 40, 403 (1926).
1 Harrison, J. Opt. Soc. Amer. 19, 109 (1929).



