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ABSTRACT

A calculation based on classical electromagnetic theory is made of the intensity
of the x-rays scattered by an atom in which the electrons are arranged with random
orientation and with arbitrary radial distribution. Conversely an expression is derived

for the radial distribltion of the electrons in an atom, assuming that they have random
orientation. This expression has the form of a Fourier integral, which can be evaluated
from observed intensities of the scattered x-rays for different wave-lengths and angles.

A comparison of this calculation with Ãentzel's quantum theory of x-ray
scattering suggests the introduction of a certain correction factor to express more
nearly the intensity of the modified rays. It is also noted that the interpretation
of pp as a probability of the occurrence of an electron leads to the correct value for the
intensity of total scattered x-rays.

As an example of the application of the new method of calculation, Barrett' s
experimental data for the scattering of x-rays by helium are analyzed to give the

distribution of the electrons in the helilm atom. The resulting distribution is in close
agreement with the value calculated by Pauling on the basis of wave mechanics,
but differs by more than the probable experimental error from the electron orbits
given by Bohr's theory.

1. INTRQDUcTIQN
' 'T IS well known that the intensity of the x-rays scattered at small angles
& ~ may be considerably greater than is anticipated on the assumption that
each electron in the scattering material acts independently of the other elec-
trons. When the scattering of x-rays by solids and liquids is considered, at
least a part of this "excess scattering" may be ascribed to the interference
between the rays scattered by neighboring atoms. In the case of gases, how-
ever, such interference is negligible, since the phases of the rays scattered by
neighboring molecules are random. It has nevertheless long been recognized'
that groupings of the electrons in the atoms themselves should result in some
excess scattering in the forward direction. Calculations of the intensity of the
scattered x-rays for typical electron distributions have in fact been made by
Debye, ' Schott, ' the writer, 4 Glocker' and others. The converse problem of
determining the electron distribution corresponding to an observed angular

' D. L. %ebster, Phil. Mag. 25, 234 (1913);C. G. Darwin, Phil. Mag. 2'7, 325 (1914).
' P. Debye, Ann. d. Physik 45, 809 (1915).
' G. A. Schott, Proc. Roy. Soc. 96, 695 (1920).
4 A. H. Compton, %'ashington University Studies, 8, 98 {1921).
' R. Glocker, Zeits. f. Physik 5, 54 {1921).
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distribution of scattered x-rays has not however been attempted. Ke shall in
the present paper obtain a solution of this problem which applies to certain
important cases, and illustrate its application by determining the electron
distribution in atoms of helium.

Because of the very important information which can thus be obtained
regarding atomic structures, the problem would doubtless have been long ago
pressed to a solution had it not been for an obstinate theoretical difficulty.
Calculations of the effect of interference on the intensity of x-ray scattering
are based upon the classical electron theory and electrodynamics. In the
course of these x-ray diffraction studies, however, it became evident' that these
classical theories are inadequate to supply a complete solution of the problem
of the intensity of scattered rays. The problem was accordingly "laid on the
table" until a new quantum dynamics should be developed which would be
able to supply a more reliable solution. Recently Wentzel' has shown how the
wave mechanics may be applied to this problem, and from his discussion it
appears that the classical electron theory itself should give results which are
not greatly in error.

In the meantime, closely allied problems have been successfully attacked
on the basis of classical electron theory. In our studies of the diffraction of x-
rays by crystals, which is of course only a special case of the general problem
of x-ray scattering, application of the usual wave theory has enabled us to
arrive at satisfactory arrangements of the atoms in the crystals, and has re-
cently been used to determine also electron distributions in the atoms. ' We
have every reason to believe that the information supplied by this work
regarding atomic arrangements is reliable, and even the electron distributions
found by its use are too satisfactory to admit any major error in the method
of analysis. Similarly the classical wave diffraction theory has been success-
fully applied to the x-ray study of molecular shapes and sizes of liquids, ' and
very recently also to the study of interatomic distances in gaseous molecules. "
We are thus encouraged to undertake again a more detailed analysis of the
scattering of x-rays by gases, on the basis of classical theory. The results of
this analysis will then be compared with Kentzel's conclusions, to see what
modifications are necessary in light of quantum mechanics.

2. INTENSITY OF THE X-RAYS SCATTERED BY A GROUP OF ELECTRONS
HAVING A RANDOM ANGULAR DISTRIBUTION

Let us suppose that an atom has Z electrons whose distances from the
nucleus are at any instant r&, r~ r„and whose angular distribution is
random. Ke imagine that this atom is traversed by an x-ray wave propagated

~ A. H. Compton, Bull. Nat. Res. Council No. 20, p. 10 (1922).
7 G. Kentzel, Zeits. f. Physik 43, 1 and 779 (1927).
8 For summaries of the latter work, cf, e.g. , A. H. Compton, "X-rays and Electrons, "

Chapter V, or %. L. Bragg, "Electrons et Photons, " report of the Fifth Solvay Congress,
Paris (1928)~

' For a summary of this work, cf. e.g. , G. %. Stewart, Phys. Rev. Supp. , Jan. , 1930.
~o P. Debye, L. Bewilogua and F. Ehrhardt, Phys. Zeits. 30, 84 (1929); Ber. Sachsischen

Ak. d. Vfiss. zu Leipzig 81, 29 (1929).
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along the X axis, and that the forced oscillations of the electrons give rise to a
scattered wave at an arbitrary distant point P at an angle P. If A, is the am-
plitude of the electric vector and 5 the phase at I' of the wave scattered by an
electron coincident with the nucleus, the electric vector due to the n'" elec-
tron in the group is (Fig. 1),

Fig. 1.

E„=2, cos {8 —(2x/X)2r„cos u„sin (P/2) I, (1)

where 2r„cos n„sin ($/2) is the total difference in path" between the ray
scattered from e„and that scattered from 0, and n„ is the angle between
Oe„and the line OQ which bisects the angle XOP. Equatio—n (1) may be
written

where
E„=3, cos (6 —x„,),

x„= (4xr„/X) cos n„si n(Q/2).

(2)

The total electric vector due to all the electrons in the atomic group is then,

E = gE„= A, P cos(6 —x„). (4)

Let us choose the origin of time such that the phase of the wave scattered
from 0 is 5 =pt, where p = 2~v is the phase frequency of the incident wave.
The electric vector at the instant t is then, from Eq. (4),

Z

E = A, Q cos (pt —x„)

Z
= A .g(cos Pt cos x„ + sin Pt sin x„).

"Cf. e.g. , A. H. Compton, "X-rays and Electrons, "p. 385.



The intensity of the scattered ray at this instant is however proportional to
8', say bB', or,

I; = pA. pic pic sg. + inpi in*„))
1

(6)

When this expression is averaged over a complete cycle, fromm=0 to 1=2s/P,
all the terms in the summation disappear except those of the form

cos x cos x„ + sin x sin x„,

and we find for the intensity averaged over a cycle,

Z Z

I = —bA, ' P„~~„(cosx cos x„+ sin x sin x„). (7)

For a single electron, this becomes

As Thomson has shown, "for unpolarized x-rays

Ie4
I, = (1+ cos'@),2' 2g2g4

where I is the intensity of the primary beam traversing the electron, e, m and
c have their usual significance, and R is the distance from 0 to P. Equation
(7) may thus be written,

Z Z

I = I, g g(cos x cos x„ + sin x sin x„).
1 1

(10)

Since we have assumed that the electrons have random angular distribu-
tion, we must now average this intensity over all angles o.„. The probability
that any n will lie between 0. and 0.+do. is for random orientation —, sin 0. du.
Writing then

Xts = Szs COS 0!rs,

where

z„—= (4rpr„/) ) sin (it /2),

the probable contribution to the intensity due to the orientations n is

(12)

z z
dI = I. g g„~„~s[cos (s cos a ) cos

1 1

+ sin (z„cos a ) sin (z„cos a ) j
Z

+ g~s [cos' (z„cos a„) + sin' (z„

(s„cos a„)

)& sin 0. sin O,„dn de„

'~ J.J.Thomson, Conduction of E1ectricity through Gases, 2nd Ed. , p. 325; or cf. "X-rays
and Electrons, ' p. 60.
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Integrating over all values of n„and o. this takes the simple form,

Z Z

I„=I, Z+
1 1 Zm zn

(13)

Equation (13) represents the scattering by electrons arranged at Axed
distances rj, r2 from the nucleus, but with random orientations.

As an example of the application of this formula, consider the case of an
atom with two electrons, both at a distance r =a from the center, but with
random orientations. We may write equation (13) in the form

I„S-=
ZI,

1 sin z sin z„= 1+—W Z.-.-
Z zmza

(14)

which in the present case becomes,

S = 1+

A graph of this expression is shown in Fig. 2 by the solid line. This may be
compared with scattering by two electrons separated by a fixed distance 2a,
which is given by the expression"

slIl 2Z~
S = 1+

2z.
(16)

and is represented in the figure by the broken line.

l5

05

Fig. 2. Relative scattering per electron for an atom of two electrons. Solid line, both
electrons at radius a and random orientation. Broken line, electrons at opposite ends of
diameter 2a.

"P. Debye, reference 2, or "X-rays and Electrons, " p. 72.



930 A. H. COMPTOS

If the probability that any one electron shall lie between r and r+dr is
u(r)dr, and if this probability is the same for every electron, we have,

sin kr sin kr„
dI, = I, Z+ „,~„"ur u r„dr dr„

k'r r„

k —= s /r„= (4~/)) sin(y/2).

Since u(r„) assumed the same for all electrons, the integral of this expression
may be written,

sin kr'. =).'-+~. ZZ...I )
.(~)— d ~

~0 kr

where a is the maximum radius of the atom.
Since

Z Z

g +..„1 =z2 —z,
1 1

f sin kr
I, = I, Z+ g' —Z jl ur —dr (18)

For the relative scattering per electron we thus have

= (+ (z —() I
Jl'.()"' ' ~ I (19)

Expressions (13) or (18) may be applied to calculate the intensity of
the rays scattered by an electron group, according as the electrons are at
Fixed distances from the center of the atom, or as they have a continuous
radial distribution.

According to equation (18), I, should never fall below ZI„since the term
representing the interference is always positive. In this respect our calcula-
tion differs from that of Debye, ' who considers electrons at fixed distances
from each other, of which equation (16) is the simplest example.

3. COMPARISON WITH RESULTS OF QUANTUM MFCHANICS.

KVentzel's equation (3a) for the intensity of the modified scattered rays"
may be written in the form

sin krI„„=I, 47rr„'p„— dr
kr

(20)

where gp„=Pu, the electrical charge distribution in electronic units, the
subscript indicating the n'" quantum number. Noting that +4~r'p„ is
numerically equal to our Zu(r), this may be written

sin kr
Iunm = IeZ~ ur

kr

'4 G. Kentzel, reference 7, p. 781,

(21)
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His equation (4a) for the intensity of the modified scattered rays (uncorrected
for the change of wave-length) may similarly be written

sjn krI,d = J. Z — 4xr'p„- — dr
kr

(22)

The total intensity of the scattered rays thus becomes,

JUIIIIl + ~I110d

f' sin kr ' (' sin kr= Ie Z — J47rr2p» —dr + Z~ Ji~ r
k. kr

(23)

This expression becomes identical with equation (18) if

4irr'p„= u(r) .

Ke have noted above that

+4irr'p„= Zu(r), (25)

whence relation (24) holds if

z
+4sr'p„= Z 4mr'p„,

1

(26)

i.e. if the charge distribution for every electron is the same. This is precisely
the assumption on which equation (18) is derived. Wentzel, in his numerical
calculation of equation (22) takes

(27)

as the charge density for the nth electron, instead of

p„= (I/Z) Qu ',

which is the equivalent of (26). This introduces a slight diHerence between
the results of his calculation and that of ours. It would seem however that
relation (28) is in better accord with present interpretation of quantum
mechanics than is (27), and if its validity is admitted, our classical equation
(18) becomes identical with Wentzel's quantum equation (23).

This comparison shows that if we interpret Pu„dxdyds as the electric
charge in the volume element, the scattering which we calculate is the un-

modhfied scattering (eq. 21). If, however, we intrepret it as the probability
that a discrete electron will be present in the volume element, as we have done
in deriving equation (18), we calculate the total scattering. Since the total
scattering is experimentally observed, it would seem that the latter interpre-
tation has the better physical justification.

In his derivation of equation (22), Wentzel has assumed the limiting case
of very long wave-lengths, for which the scattering by a free electron is identi-
cal with that calculated on the classical theory. For shorter wave-lengths
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Breit" and Dirac" have shown that the intensity of the modified rays from
free electrons is reduced in the ratio

IG10d = (1+ p vers&)',
Iclass

where) and ) ' are the wave-lengths of the primary and the modified ray re-
spectively, and y=k/mcus. We may accordingly expect to get a closer ap-
proximation to the intensity of the modified scattering if we multiply equa-
tion (22) by equation (29), or using the equivalent part of equation (18),

I~,s = ZI,(1 —I'/Z') (1 + y vers P) s. (30)
Similarly"

where
I„„„,= I+2,

sin kr
P =Z I a(r)

Q kr

(31)

which is identical with the so-called "atomic structure factor. "
A convenient method of comparing the experiments with the theoretical

calculations is thus to multiply the observed intensity of the modified rays by
the factor (1+y vers P)', and add to the observed intensity of the unmodified
rays. The resulting value

Ir = Irnos(1 + r cos Q) + Ig~~ (33)

may then be compared directly with the value of I, derived by the classical
equation (18).

4. ANALYSIS OF SCATTERING DATA TO DETERMINE
RADIAL ELECTRON DISTRIBUTION

If the distribution of the electrons is spherically symmetrical, as we have
assumed, we may represent the probability that an electron will lie between
r and r+dr by a Fourier sine series of the form,

N(r) = Air sin rrr/a + A2r sin 2irr/a + + A„r sin riirr/a + . (34)

Substituting this value of u(r) in equation (19) we get,

t-A„ r 2

5 = 1+ (Z —1) g„' —sin ris sin (kr—)dr
1 0 8

If the scattering I. is evaluated for k =m/a, i.e. , by equation (17) for

sin (4/2)/) = I/4a,

(35)

(36)
'll G. Breit, Phys. Rev. 27, 242 {1926).
'6 P. A. M. Dirac, Proc. Roy. Soc. Ill, 405 (1926). This relation {29) presumably does

not hold for wave-lengths so short that the velocity of the recoil electron approaches c. In
this case the formula of Klein and Nishina presents a closer approximation.

~~ It is interesting that the ratio I oz/I is expressed by equations (30 and (31) in terms
of interference. It was early suggested by the writer (Phil. Mag. 46, 910 (1923) ) that this
ratio might be thus expressed, as an alternative to the more obvious description developed later
by Jauncey, in terms of the ratio of the energy of recoil of the scattering electron to its binding
energy in the atom. KentzeP shows that equivalent expressions of the ratio IJI may be
made in terms of either interference or energy of recoil.
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where a is an assumed maximum radius, all integrals in the sum of equation
(35) vanish except the uth, giving

1 a
5, = 1+ (Z —1) ——A„'

4 k'
(3'I)

ZS S„—r I~2

(38)

Corresponding to each value of 5 we thus determine the nth term of the
Fourier series (34), and thus eventually the value of u(r).

Our series (34) has in it an arbitrary radius a, and in evaluating the series
the data for only certain arbitrarily chosen values of k are employed. If this
arbitrary radius is made large, the values of k which are used come closer
together, and our series approaches the Fourier integral,

u(r) = r)t F sin (xrx)dx, (39)

where
x —= u/a = (4/1 ) sin (4/2),

according to equation (36), and

8=—A a=2mx

(40)

(41)

or by (39),

U(r) = Zr t 8 sin (xrx)dx. (43)
0

It is interesting to compare equation (42) with the similar series express-
ing the radial distribution of electrons in the atoms of a crystal, '

r r
U(r) = 8x—QuF„sin 2xu —. (44)

D2 D

We note that a of equation (42) corresponds to D/2 of (44), since both quanti-
ties represent the assumed outer limit of the atom. The series are accord-
ingly identical if 2m(r/u )uF„= ZrA„. Using the value of A „given by (38),
and noting that D =2a = (uX/2) sin -',P, this means that

Ii„=Z

This expression enables us to compare the "Ii" curves obtained from crystal
reRection with the data given by scattering experiments.

(45)

'8 A. H. Compton, "X-rays and Electrons, " p. 164. An integral identical in form with
(43), but representing the electron distribution in atoms of a crystal, has been given by G. E.
M. Jauncey and%. D. Claus, Phys. Rev. 32, 20 (1928).

If instead of the probable position of a single electron, we wish to And the
probable number of electrons between r and r+dr, we have only to multiply
u(r) by the number of electrons per atom, giving by equation (34)

U(r) = Zu(r) = Zr QA„sin uur/a, (42)
1
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5. TESTS OF THE METHOD OF ANALYSIS

Before applying equation (43) to the interpretation of experimental data,
it will be of interest to study its application to certain cases where the solu-
tion is known.

a. Consider the intensity distribution described by equation (15). From
equations (15) and (41) we have

8 = + (2/a) sin 7rxa. (46)

Substituting this value in (43), since Z = 2,

V = 4(r/a) Jj sin (7rax) sin (7rrx)dx (4&)

This integral is zero, "except when r =a, in which case its value becomes in-
finite, indicating a concentration of the electrons at the distance r =a from
the nucleus, in accord with the original assumption on which (15) was based.

b. An atom of four electrons, each of whose probability of lying between
r and r+dr is n(r) =2r/a' between r =0 and r=a, and is zero beyond r=a.

By equation (19) we find,

From (41) then,

2(1 — * )I'S= 1+3
x' x 8

8 = + (1 —cos 7rxa),
7! XC

(48)

and equation (39) becomes,

r f" sin xrx f" cos 7rax sin mrx
u(r) = 4— I dx —

I dx
8 0 KCX 0 7l Cx

The value of the integrals is" 1/2a for [r & a], and 0 for [r ) a], whence

N(r) =2r/a' (r ( a), (50)
= 0 [r ) a],

(49)

as initially assumed.
These tests check the accuracy of the mathematical analysis. They of

course say nothing, however, regarding the validity of our physical assump-
tions of spherical symmetry and of independence of the positions of the various
electrons in the atomic groups.

6. ELECTRON DISTRIBUTION IN HELIUM

The formulas that have been developed above are directly applicable only
to the scattering of x-rays by gases, in which case the interference effect due
to neighboring molecules is negligible. In the case of the noble gases we are
also free from interference between adjacent atoms, since the gases are mona-

"At any point @&hen r &0, the integral is strictly speaking indeterminate; but its average
value over a finite range of x is zero."B. 0, Peirce, "A Short Table of Integrals" {1910)nos. 484 and 485.
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tomic, and according to current theories the probable electron distributions
should be spherically symmetrical as we have assumed in our calculations.
Fortunately recent experiments by Barrett" supply sufhcient information re-
garding the scattering by helium to yield valuable information.

In Barrett's Fig. 7 he compares the scattering by helium with that by
hydrogen, which he finds identical with that calculated from the Breit-Dirac
quantum formula for the range investigated. With an effective wave-length
of 0.49A, he finds that helium and hydrogen scatter equally, within experi-
mental error, at angles greater than 60', but that at 40', 30' and 20' the scat-
tering by helium is greater by the ratios 1.025, 1.08 and 1.26 respectively.
These values are indicated by the circles in Fig. 3, where S=I,/ZI—, is plotted
against x. At sufFiciently small angles the phase difference between the rays
from the two electrons in helium must be negligible, in which case our theory
demands that the value of S must approach Z. For small values of x the phase

I I

Fig. 3. Solid line, relative scattering by helium, based on Barrett's data (circles). Broken
line, calculated scattering by Bohr type helium atom.

differences are small quantities of the first order; but the amplitudes, being
proportional to the cosines of the phase differences, are affected only in the
second order of small quantities. "Thus the S curve must leave the x =0 axis
parallel to the x axis, and must initially be of a parabolic form. " We can
thus interpolate the S curve between x=0 and x=1.4 with some degree of
assurance as indicated by the solid line.

This S curve can be transformed into a 8 curve by the help of equation
(41), giving the result shown in Fig. 4. Here again the values given by the
experimental data are shown by the circles.

"C.S. Barrett, Phys. Rev. 32, 22 (1928)."This may be seen by finding the maximum value of E from equation (5) for small values
x . This maximum is unaAected to the first power of x, but is reduced by terms containing x

"These conclusions are valid only if the atom is not of infinite extent.
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For values of x greater than 3 the experiments suggest that 8 gradually
approaches zero."The values of the integral U are not much affected by the
exact manner of this approach as long as it is slow and continuous. For con-

-oAx~g= gge
. .. '~=of&'

~&= 0.25

-i -"05

-3

Fig. 4.

t il ( )

In order that at x = xi the values of B and dB/dx shall be continuous, we must
have

venience, therefore, we may assume that beyond some arbitrary value of x,
say x&, 8 may be expressed by

J3=be a' 51

and
b = BIe'*& (53)

In order to evaluate U(r) for a definite value of r we must determine the
integral,

C = t B sin (mrx)dx.
0

This may be separated into two parts,
gg

4 i
—= B sin (rrrx)dx,

0

(54)

(55)

42 —= 8 sin mrx dx.
+1

(56)

~ 8 must approach zero for large values of x unless the e1ectron density at the center of
the atom is infinite.
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The first part C» may be evaluated graphically, by plotting 8 sin (7rrx) for
various values of r, as indicated by the dotted lines of Fig. 4, and integrating
from 0 to x& with a planimeter. 4» may be determined by substituting in
equation (56) the value of 8 given in equation (51) and integrating, which
gives

a sin+rx~+ ~r cos +rxI
C2= BI

g2 + ~2r2

From Fig. 4 we And for helium, if x~=3, 8~=2.36 and a =0.46, whence the
value of 4» may be determined for any desired value of r.

As typical examples, we have the following values (Table I):
TABLE I.

1.125A
0.25
0.5
1.0

5.75
8.16
3.14
0.86

1.64—0.42—0.35—0.70

7.39
7.74

-2.79
0.16

1.85
3.87
2.79
0.32

The resulting values of U plotted against r are shown in Fig. 5 by the solid
line.

.2 .8 /0
p in Angst'4

)l, g - I.W

Fig. 5. Radial electron distribution in helium. Solid line, based on Barrett's x-ray scat-
tering data. Broken line, Pauling's calculation from wave mechanics. a=radius of Bohr
orbits.

It is of great interest to compare the "observed" distribution with that
calculated theoretically. According to the Bohr-Sommerfeld theory, the elec-
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trons in helium should both traverse approximately circular orbits with unit
angular momentum, the radius of the orbits being given by

a = h'/[4w'e'm(Z —s)]. (58)

where k, e, m and Z have their usual significance, and s is the "screening
constant" of each electron on the other, having a value" of approximately
s =0.39. Using the usual values of the constants, we thus 6nd a =0.33A. It
will be seen that this value falls very close to the radius of maximum electron
density as shown in Fig. 5.

If we assume that the two electrons are on a spherical surface of fixed
radius r=0.33A, the intensity of the scattered rays should be given by
equation (15). The values of s thus calculated are shown by the dotted line
Fig. 3. The differences between this dotted curve and the experimental points
are considerably greater than the probable experimental error. Yet it is not
impossible that a combination of heterogeneous x-rays such as Barrett used
and the presence of incoherent rays (Compton scattering) at the large angles
might Aatten out the dotted curve to resemble the experimental one.

The distribution found from this analysis of Barrett's scattering data is
however in striking agreement with that calculated on Schrodinger's wave
mechanics. Thus Pauling" has shown that the radial electron distribution in
helium can be expressed to a close approximation by

U(r) = Zr'X',

where for helium in the normal state he Ands,

z —s
X = Ng, p

= —2 e-&)'
Qp

ao = h'/4s'e'm = 0.532

Z=2
s = screening const = 0.39

&
= 2(Z —s)r/ao.

(60)

Substituting these values in equation (59) we get the U curve shown by the
dotted line of Fig. 5. The striking similarity between this distribution pre-
dicted by the quantum theory and that coming from our interpretation of the
scattering experiments is the more convincing when it is noted that there are
no arbitrary constants available to make the two curves correspond. This
agreement is a strong argument in favor of a continuous electron distribution,
as predicted by the wave-mechanics, as opposed to the Bohr quantum
theory of definite orbits.

'~ Cf. e.L". L. Pauling, Proc. Roy. Soc. A114, 181 (1927).


