
APRIL 15, 1930 PHYSICAL REVIEW VOLUME 35

ON THE WEIGHT OF HEAT AND THERMAL EQUILIBRIUM
IN GENERAL RELATIVITY

BY RIcHARD C, TQLMAN

NORMAN BRIDGE LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY,

PASADENA) CALIFORNIA

(Received December 30, 1929)

ABSTRACT

In accordance with the special theory of relativity all forms of energy, iricluding
heat, have inertia and hence in accordance with the equivalence principle also have
weight. The purpose of the present article is to investigate the thermodynamic
implications of the idea that heat has weight. In particular an investigation is made
to see if a temperature gradient is a necessary accompaniment of thermal equilibrium
in a gravitational field, in order to prevent the flow of heat from regions of higher to
those of lower gravitational potential.

A preliminary non-rigorous treatment of this problem is first given by attempting
to modify the classical thermodynamics only to the extent of associating with each
intrinsic quantity of energy an additional amount of potential gravitational energy.
In this way an expression is obtained for increase in equilibrium temperature with
decrease in gravitational potential which, however, could in any case only be correct
as a first approximation in a weak gravitational field. A discussion of the uncertainties
and lack of rigor of this preliminary treatment is then given and the necessity pointed
out for a rigorous treatment based on the principles of general relativity.

A rigorous relativistic treatment is then undertaken using the extension of ther-
modynamics to general relativity previously presented by the author. The system to
be treated is taken as a static spherical distribution of perfect fluid which has come to
gravitational and thermodynamic equilibrium. The principles of relativistic mechan-
ics are first applied to such a system in order to obtain results needed in the later work.
And it is then shown that these meckanical principles themselves are sufficient to
determine the temperature distribution as a function of potential in the simple case
of black-body radiation. The principles of relativistic thermodynamics are then
applied to this same case of pure black-body radiation and the same expression for
temperature as a function of potential obtained by the thermodynamic as by the
mechanical treatment. This may be regarded as giving some measure of check on the
validity of the proposed relativistic thermodynamics.

Following this, a thermodynamic treatment is given for the temperature distri-
bution in the more general case of matter and radiation and a result found which
harmonizes with that for radiation alone. A treatment is then given to the distribution
of a perfect monatomic gas in a gravitational field both on the assumption that the
total number of atoms must remain constant and on the assumption of the ready
interconvertibility of matter and radiation. In the latter case the same dependence
of concentration on temperature is obtained as was found by Stern and by the author
for the case of flat space-time.

Using a system of coordinates such that the line element for the sphere of fluid
takes the form

ds' = —e "(dr'+r'd8'+r' sin'Hdqrs) +e"dt'
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the general result for the relation between gravitational potential and equilibrium
temperature To as measured by a local observer in proper coordinates can be given

by the equation

d lÃTp 1 dv

dr 2 dr

This equation reduces in the case of a weak field to that obtained by the pre-
liminary non-rigorous treatment, and gives a very small change of temperature with
position in fields of ordinary intensity. The result, however, is one of great theoretical
interest, since constant temperature throughout any system which has come to
thermal equilibrium has hitherto been regarded as an inescapable thermodynamic
conclusion. It is also not out of the question that the effect might sometime be of
experimental or observational importance.

(1. INTRODUCTION
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~
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I
NE of the most important results of the special theory of relativity was
the relation between the total energy of a system U and its inertial

mass m, given by Einstein's equation

where c is the velocity of light. In accordance with this equation we must
ascribe the property of inertia to energy. For ordinary matter, however, we
are in the possession of very exact experimental results showing a propor-
tionality between inertia and weight, and hence the question at once arises
whether we must also ascribe to energy the property of weight.

As early as 1911,in developing those ideas which finally led to the general
theory of relativity„Einstein considered this question, as to the weight of
energy, and showed by a simple application of the equivalence hypothesis that
the propertyof weight must indeed also be ascribed to energyif we are to main-
tain the postulated equivalence between behavior in a homogeneous gravita-
tional field and behavior with reference to a set of uniformly accelerated axes.
The later more complete developments of the general theory of relativity have
shown that the Newtonian concept of the weight of a body as a force acting
on it when placed in a gravitational field, is an idea which is only suitable for
the treatment of slow-moving particles in weak gravitational fields. Never-
theless, these more complete developments of the general theory of relativity
have completely confirmed the fundamental nature of the idea that weight
must be ascribed to energy, since they have shown in any case that all forms
of energy will be subject to the same gravitational action when placed under
the same conditions in a gravitational field. Furthermore, in the case of weak
enough fields and slow enough motions so that the Newtonian concepts may
still be taken as approximately valid, the general theory of relativity has
shown that the gravitational force I' acting on any quantity of energy U
will be given as would be expected by the simple equation

Einstein, Ann. d. Physik 35, 898 (1911).
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F=(Ujc')g

where g is the acceleration due to gravity.
If we accept the conclusion that energy has weight, it is evident that we

must also ascribe weight to energy in the form of heat, and hence must expect
to find thermodynamic consequences of the new idea. Thus considering for
example cases where the Newtonian approximation is valid, we might expect
the flow of heat from a place of higher to a place of lower gravitational po-
tential to be accompanied by a decrease in potential energy, and this in turn
would lead us to suspect that the condition of thermal equilibrium in a
gravitational field might involve higher temperatures at the lower gravita-
tional levels in order to prevent any thermal flow. It is the purpose of the
present article to investigate the thermodynamic consequences of this idea
that heat has weight, making use of principles obtained in an extension of
thermodynamics to general relativity which I have already given. '

In the immediately following section, $2, we shall first consider a preli-
minary treatment of temperature equilibrium in the case of a system in such
a weak gravitational field that we shall feel warranted in trying to apply the
Newtonian concept of gravitation as a first approximation. And in $3, we
sha11 examine the inadequacies of this preliminary treatment and show the
necessity for the more rigorous treatments to follow. In $4, we shall then
prepare for the rigorous general relativity treatment by applying the prin-
ciples of relativistic mechanics to a spherical distribution of perfect fluid to
obtain results which will be needed in the later developments. And in )5,
we shall show that these purely mechanical results are alone suf6cient to
determine the temperature distribution in the simple case of a spherical dis-
tribution of pure radiation. In (6, we shall then briefly restate that result
of the earlier extension of thermodynamics to general relativity which is
necessary for our present considerations and then apply it in $7 to this same
special case of pure radiation, and show that the same results are also ob-
tained from the thermodynamic as from the purely mechanical treatment;
this may be regarded as furnishing a partial confirmation of the correctness
of the new system of relativistic thermodynamics. Following this, in $8, we
shall use our relativistic thermodynamics to obtain a general equation for
the distribution of temperature in any spherica1 mass of gravitating fluid,
which has come to equilibrium. In $9, we shall then consider the equilibrium
distribution of matter in a gravitational sphere of fluid; in particular the cases
of a perfect monatomic gas, both when in equilibrium with radiation and
when the total number of atoms is constant, wi11 be treated. Finally in
$10, we shall make some concluding remarks.

$2. PRELIMINARY TREATMENT OF TEMPERATURE EQUILIBRIUM
IN A |A EAK GRAVITATIONAL FIELD

To obtain a preliminary non-rigorous treatment of the temperature
equilibrium in a weak gravitational field, we shall endeavor to apply the

Tolman, Proc. Nat. head. 14, 268 (1928};ibid. 14, 701 (1928};This Journal, 896, ibid.
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principles of the classical theomodynamics, modified only by assuming that
the force of gravity will act on any quantity of energy U as though it had a
weight, in the Newtonian sense, corresponding to its inertial mass U/c . Un-

der these circumstances a quantity of energy which has the intrinsic magni-
tude U, when measured at the zero of gravitational potential at a great
distance from bodies producing a gravitational field, will be assumed to have
associated with it the potential energy U%'/c' when brought to a point where
the gravitational potential has the value 4'.

Consider now an isolated sphere of material which is held together by its
own gravitational attraction, but has a small enough mass so that the gravi-
tational field is everywhere weak. In accordance with the classical thermody-
namics, this system should be in equilibrium provided it has the maximum
entropy 5 consistent with its total energy U. To determine the temperature
distribution which corresponds to these conditions, let us then consider a
small variation in temperature distribution, leaving unaltered, however, the
amount of substance of each component in each element of volume d V. For
the variation in total entropy we shall write

where T is the temperature at the point where the element of volume d V is
located, 6u is the change in the intrinsic energy density at that point produced
by the variation in temperature, and the integrati'on is to be taken over the
whole volume of the system. On the other hand for the variation in the total
energy of the system, we shall write

(4)

where + is the gravitational potential at the point in question.
Setting equation (3) equal to zero as the condition that the entropy be

a maximum, and equation (4) equal to zero as the subsidiary condition of
constant energy, and combining by the method of Lagrange, we obtain

where ) is a constant undetermined multiplier, and this equation can only be
true for arbitrary variations SN„ if we have

i+—
which is the desired expression giving the distribution of the temperature T
throughout the system as a function of the gravitational potential 4'.

Differentiating this equation with respect to the radius r, to obtain an
expression for the rate of change of the temperature with distance from the
center of the gravitating sphere, we have
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1 dT ) d4'

T' dr c' dr

and substituting the expression for X which can be obtained from (6), we ob-
tain

d ln T (I/i') (d@/dr) d= ——ln 1+—
dr 1+4/c' dr C2

or smce by hypothesis the field is weak enough so that 4/c' is small compared
with unity we have approximately

din T 1 dO

dr c' dr C2

where g is the acceleration due to gravity.
For the case of a field of vanishing gravitational intensity with g negli-

gible, the result degenerates into the usual condition for thermal equilibrium,
T=constant. Furthermore, owing to the magnitude of the velocity of light
the percentage change in temperature with height would be very small in
fields of any ordinary intensity. Thus in a gravitational field having the
strength of that at the surface of the earth we should have approximately

din T= —10 "cm '
df

$3. INADEQUACY OF THE PRELIMINARY TREATMENT

The foregoing treatment contains of course many inadequacies and uncer-
tainties, which can only be removed by a rigorous treatment of the problem
from the point of view of general relativity. In the first place, in accordance
with the classical thermodynamics, we have assumed maximum entropy and
constant energy as the criteria of equilibrium for an isolated system, without
any certain knowledge as to the form or even the validity of such principles
in the presence of a gravitational field. Equation (3) for the entropy assumes
it to depend on what we have called the intrinsic energy but the justification
for this is by no means clear. Equation (4) for the energy, on the other hand,
even if satisfactory for the case of weak gravitational fields, ' can certainly
not be regarded as correct in general when we recall the great modifications
in the nature of the energy principle which have to be introduced in the
theory of general relativity. Furthermore, it should be noted that we have
given no very clear definition of the quantities temperature T and intrinsic
energy density u which occur in the equations, although we might perhaps
guess that we should take the values of these quantities as measured by local
observers using proper coordinates. In addition, even the interpretation of
the quantity d V appears dubious when we recall the differences between pro-

See $8 in the article already referred to, This Journal, 888, for a satisfactory approxi-
mate treatment of the energy of a sphere of perfect Auid in a weak gravitational field.
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per volume and coordinate volume which occur in the general theory of rel-
ativity.

It is hence abundantly evident that we cannot regard the results of the
preceding section as having any certainty of validity, unless indeed we can
show them to be an approximation in weak fields for conclusions which can
be obtained from a more rigorous general relativity treatment. In what fol-
lows we shall now turn our attention to the general relativity treatment of
the distribution of temperature and matter in a sphere of gravitating fluid
which has come to thermodynamic equilibrium.

(4. THE RELATIVITY MECHANICS OF A SPHERICAL

DISTRIBUTION OF PERFECT FLUID

As a preparation for our later work we must first consider the application
of the mechanics of general relativity to a static distribution of perfect fluid
having spherical symmetry. For a sufficiently general line element for such
a system we may evidently write

ds'= —e& (dr'+r'd9'+r' sin'Odp') + e"dt'

where the conditions that the system is to be static and spherically symmet-
rical are $ulfilled if' p and v can be taken as functions of r alone.

The components of the metrical tensor corresponding to this line element
are evidently

g» = —e", g~2 = —et'r,2 g33= —e r' sin'8 g44 = e"

gl1 e
—tt

tt

g'22

r2
g'= ———83—

r' sin'9
g44 (10)

t,""=t,""=0 (I «) Q- g = e'-"—,
" r' sin 8

and the components of the contracted Riemann-Christoffel tensor corres-
ponding to this metrical tensor have already been worked out and are known
to have the values'

II I
P P

G11=P, + +
2 r

I I
p v v+—

4,

r'p"
G22= —rp' +—+ + +

2 2 2 4 4

G33 ——G2~ sin' 0

G44= —e" &

Gp. =0

II I I I I2

+ +" +
2 r 4 4

4 See Eddington, "The Mathematical Theory of Relativity, " Cambridge 1923. The results
in question can be obtained by setting X =p. in Eddington's equations (43.5).
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where the primes indicate differentiation with respect to r. Raising suf6xes
with the help of the values of the metrical tensor (10), and substituting into
the fundamental equation

—87' T; =6,' —2g.'6

which connects the energy-momentum tensor T~~ with the metric we can
then obtain, after a simple calculation, for the separate components of T~

—8m T, =e P, +V@V 1+ +-
r 2 4

+P P+P
80rT', =—80rT,'=c —" ——+

2 2r
I I2-

IJ P—8mT44= e " p + +-
r 4

I2
V

(13)

On the other hand in the case of a perfect Auid the energy tensor is known
to depend on the properties of the fluid in accordance with the equation'

dXp d Xir

Too = (poo+ po) —g"p.
ds ds

(14)

where p00 is the proper macroscopic density of energy in the Quid, p0 its pro-
per pressure and the quantities dx0/ds are macroscopic "velocities. " Since
we assume a static condition in our Quid, these "velocities" will all be zero
except for the case p or o =4, and in accordance with the line element (9)
will then have the value dx0/ds =e "". Hence noting the values for g0' given
by equations (10) we obtain for the separate components of T0'

Tll e—
pp

e f'

T22 —
pr2

e ~
T"—

pr' sin'0
T44 e

—
v~

or lowering suffixes with the help of the metrical tensor (10) we have

P00 ' (16)

Comparing these results with those given by equations (13) we can now
write

e " p, +v pp
PO +

8m r 2

~2+— (17)

1I+ 1f @+V V
I i f /2-

PO + +8' 2 2r 4
(18)

Poo =—e " 2p p2
+ +

8x r 4
(19)

5 See Eddington, reference 4, equations (54.81) and (54.82).
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as expressions connecting the proper pressure po and proper macroscopic
density poo with the metric. The reason that we obtain two separate expres-
sions (17) and (18) connecting the pressure with the metric lies in the fact
that the line element (9) with which we have started is suSciently general
to apply to any static distribution having spherical symmetry, while our
later assumption of a perfect fluid involves at each point of the Auid an equal-
ity between the stresses in the radial and tangential directions.

Adding equations (17), (19), and (18) taken twice we obtain

e ~ 2v pv v2
(p +3po)= r" + + +-

8m r 2 2

and this can be rewritten in a form which will later prove useful

»+" — 2v p v v d ~+"
8s'(p„+ 3P,)e 2 r =e 2 v" + — + + —r' = —(e 2 r'r'). (20)

2 2 df

Ke are now ready to apply the principles of mechanics to our system, in

accordance with the fundamental equation of relativity mechanics which can
be written in the form. '

aP (}
1 Ogq

2 Oxg
(21)

Considering first the case 0 = 1, substituting values for the tensor densities
of energy and momentum obtained from (15) and (16) through multiplica-
tion by g —g, and substituting for g e from (10), we can write

1 O 1 e"
( pV' g)——(e "—p. V' —g—) ( e") —————poV' g

—( —e""—)
Of 2

'
Or 2 r2 Of

1 e" O 1 O

p, ~—
g

—( —e"r' i sn8) ——(e 'p„Q —g)—(e") =0
2 r' sin'0 Or 2 Of

3p, +v

and substituting the value Q —g=r' sin 8 e given in (10), this is easily
found to reduce to the form

Opo goo+ po»
Of 2 Or

(22)

which furnishes us with a very simple and useful expression for the change in
pressure with radius. The equation may be regarded as the general relativity
analogue of the Newtonian equation

dp d%'

P
dr dr

where p is now expressed in terms of mass per unit volume, and indeed can
be shown to reduce to this in case the gravitational field is weak and the sys-

~ See Eddington, reference 4, equation (55.6).
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tern consists of ordinary matter with the pressure po negligible compared
with the density ppp.

It is also of interest to note that equation (22) can alternatively be derived
by combining equations (17), (18) and (19), without the use of the mechani-
cal principle given by equation (21). The mechanical principle and the equal-
ity of the two different expressions for pressure thus imply the same restric-
tions on the pressure distribution within the sphere.

Returning now to the mechanical equation (21) and considering the cases
0 =2 and 0 =3, it is easy to show by a similar method to the one just used
that we obtain the results

~Po ~Po

88 8$
(23)

as was to be expected.
Finally, considering the case 0 =4, we obtain by substitution into (21)

and since by our hypothesis of a static system the g z are independent of the
time t, we have the result

~Pop =0
Bt

(24)

the proper density remaining constant with time at each point in the distri-
bution, in complete agreement with our original assumption of a static sys-
tem

$5. MECHANICAL TREATMENT OF TEMPERATURE DISTRIBUTION

IN THE CASE OF RADIATION

In the case of a spherical distribution of pure black-body radiation such as
might surround a gravitating sphere of denser matter, relativistic mechanics
without a resort to relativistic thermodynamics wi11 be sufhcient to deter-
mine the temperature distribution. This arises because of the simple rela-
tions in the case of black-body radiation directly connecting the thermody-
namic quantity temperature with the mechanical quantities energy density
and pressure.

For the energy density and pressure of black-body radiation we can
evidently write in accordance with well known equations

ppo = GTo (25)

Po= g~~o (26)

where u is the Stefan-Boltzmann constant and rp is the proper temperature,
as measured by a local observer, located at a point where ppp and po are the
proper macroscopic energy density and proper pressure of the radiation.
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Substituting these expressions into our mechanical equation (22), we at
once obtain as exact relativistic expressions for the temperature distribution
within a field of radiation

d ln To 1 dv

df 2 dr
(27)

(28)

where C is a constant of integration. Furthermore, in the case of weak enough
fields so that the Newtonian theory of gravitation is a su%cient approxima-
tion, equation (27) can be shown to reduce to

d ln To j. d%'

dr c' dr c2

in agreement with equation (8) obtained by our preliminary treatment. The
qualitative nature of this result is entirely reasonable since it is evident that
the pressure of radiation must increase as we go to lower gravitational levels
in order to support the increasing amount of the radiation above, and in the
case of pure radiation such an increase in pressure can only be the result of
an increase in temperature.

It is a matter of great interest that we have thus been able to determine,
by a straightforward application of relativity mechanics without any resort
to the new relativistic thermodynamics, the eHect of gravity on temperature
distribution in the particular case of a field of pure radiation. We have thus
obtained in a rather unimpeachable manner a justification in at least one
case for our original general idea, as expressed in )1, that the condition of
thermodynamic equilibrium under the action of gravitation would involve
higher temperatures at lower gravitational levels in order to prevent the
downward Row of heat, and shall be ready to expect similar effects of gravi-
tational action on temperature in more complicated cases whose solution
will involve our new system of relativistic thermodynamics.

f6. THE THERMGDYNAMIc CoNDITIoNs FoR EQUILIBRIUM

To prepare for our thermodynamic treatment, we may now restate the
conditions for equilibrium in a static system obtained in the previous de-
velopment of relativistic thermodynamics. ' Using the polar coordinates
adopted in $4 of this article, these conditions took the form that the general
relativity expression for the entropy of the system lying within the spherical
shell between the constant radii rj. to r2 should be a maximum in accordance
with the variational equation

(30)

under the subsidiary condition coming from consideration of the energy-
momentum principle

' See in particular $5 in the article in This Journal.
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8p=8p'=b v=8v'=0 (at rI and r2) (31)

where p, and v are the exponents occurring in our expression for the line
element, and the quantity Po occurring in equation (30) is the proper density
of entropy.

$7. THERMODYNAMIC TREATMENT OF TEMPERATURE DISTRIBUTION IN THE

CASE OF RADIATION

Let us now make use of the thermodynamic method to obtain a treatment
of temperature distribution in the case of radiation. To do this we can re-
express the entropy density $0 occurring in equation (30) in terms of energy
density poo, and by means of our previous relation connecting energy density
with the metric can obtain the condition for maximum entropy in a form in
which it depends explicitly on the metrical variable p, and its differential
coefficients. The variation indicated in equation (30) can then be performed
and the subsidiary conditions imposed by equation (31) on the variable p
easily introduced.

For the proper density of entropy Po in terms of the proper temperature
To we can evidently write in accordance with the well known properties of
black-body radiation

4
Qo =—+~o (32)

3
where a is the Stefan-Boltzmann constant. Combining this with equation
(25), connecting the energy density with temperature, we obtain

g1/4p 3/4 (33)
3

and using equation (19) which connects the energy density with the metric
we can write

4a'/4 2p,
'—.-"" ~" +

24m r

p
&2 3/4+—

4
(34)

Substituting this into equation (30) and dividing out the constant factors,
we Anally obtain as the condition of maximum entropy in terms of the
metrical variable p,

under the condition

r2 2~~ p~2 3/4
e»/4 r2dr =0

r 4
(35)

6p=8p'=0 (at r& and r~).

Performing the variation indicated in equation (35) we obtain
~2 —l/4 2

Jl
—(w" + +—

) (&s
"+—0'+—&s') '""

3 2 f 12 3/4

+—p"+ — +— e31"/4 bp r' dr =0
4 r 4

(36)

(37)
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and resubstituting the expression for energy density given by equation (19)
this can be rewritten in the simpler form

f "2 e(P/2)r2 2 p

j —6p,"+—6p'+—6p,
' —8m ppp3/4 e3&/2 r' 8p dr = 0

rl — Pop r 2

Noting, however, in accordance with equation (36) that 6p' and 8p are equal
to zero at the limits rl and r2 this can evidently be transformed in the usual
manner with the help of partial integrations, dropping terms that become
zero at the limits, to the following form containing 6p alone.

r2 d2 &p, /2r2 d ep, /2r d ep/2r2—2— —— ——8xpoo ~ e» r gpdr~0. (38)J,, dr' p
4 dr pw'~ dr p ~ 2

This equation, however, can be true for arbitrary variations 8p only if
the quantity in the square brackets is equal to zero, and this can evidently
be rewritten to give us

d d 1
&p/2 r2 8~p 3/4 &3'�/2

dr dr poo'"
(39)

And substituting the relation betwen energy density ppp and temperature Tp

given by equation (25), this becomes

d ( d 1 pppJ ep/2 r2 8~ e3y/2 r2
dr). dr T, T,

(40)

To solve this equation for Tp as a function of r, we note that in the case
of radiation we have 87rpoo

——4x(poo+3PO) and substituting equation (20) we
can then rewrite (40) in the form

fpp/2 r2 — gp/2 r2 gp/2

OI

ep/2 r2 ~p/2 —1 ep/2 r2 gv/2 (41)

Postponing a more general discussion of the solution of this equation until
the next section, fl8, where the equation again occurs, we note at once that
a particular solution of the equation is given by

rp = t."~ '/2

where C is a constant of integration and this equation for the temperature
distribution in a field of radiation which has come to equilibrium under the
action of gravity is exactly the same as equation (28) which we obtained in

$5. Hence in this simple case of radiation, where a mechanical treatment can
be given, the thermodynamic and the mechanical treatment of temperature
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distribution under the action of gravity lead to the same result. This can be
regarded as some conhrmation of the validity of the system of relativistic
thermodynamics which I have proposed.

II8. TEMPERATURE DISTRIBUTION IN THE GENERAL CASE OF

ANY PERFECT FLUID

Let us now consider the application of our condition for a maximum of
the relativistic expression for entropy

to a determination of the temperature distribution in the general case of any
perfect Quid. To apply this equation it will be convenient to note that
4ge»l' r'dr js evidently the proper spatial volume lying in the spherical shell
between r and r+dr. This can be seen from the general relation for the
element of proper spatial volume

d Vo d $ = Q—gd SId Red sgd $4

which, in the case of our system and line element (9), gives

dt
dVo=e r sill Hdrdedy —= e l" r siaedrdedy.

ds

And if we integrate this over all values of 8 and P, we obtain

V, = 4~e»» "dr

for the proper spatial volume lying between r and r+dr, where Vo is of course
an in6nitesimal quantity.

Under these circumstances, since $0 is the proper density of entropy, we
may evidently write

as an expression for the entropy, as measured in proper coordinates, associ-
ated with the material lying between r and r+dr. As this quantity of entropy
is measured in proper coordinates, it wi11 evidently obey the classical laws
of thermodynamics and may be taken as a function of temperature Tp, vol-
ume Vo and number of molecules X~, ~2 . N of the n diferent components
which are necessary to specify the composition, in the way ordinarily em-
ployed in thermodynamics.

We are now ready to investigate the temperature distribution in our
Ruid. To do this let us consider the effect of a variation in the temperature
To and volume Vo associated with the shell r to r+dr, keeping the composition
of the material in this shell unaltered, that is holding N~ N„constant.
Under these conditions, we shall have in accordance with the principles of
ordinary thermodynamics



THERMAL EQ UILIBM UM IN RELATIVITY 917

8UQ Pp
65Q = +—bVQ

Tp TQ
(46)

and in accordance with equations (44) and (45) this can evidently be written
in the form

&(4or poo e'"" r' dr) po
6(4or @o e"I' r' dr) = +—b(4or e'""r' dr) .

To Tp
(4&)

Substituting this in equation (43) for the maximum of the relativistic
expression for entropy we now obtain

S(poo e "~ ) po
4x + 8(—eo&") r'dr =0

To To
(48)

which gives the condition for a maximum of the relativistic entropy in a
form which can be made to depend solely on the variation of the metrical
variable p and its derivatives, by substituting for the energy density pop its
values as given by equation (19). Doing so we obtain

1 4~PQ

J
e"" p"+ +— + 8(e'»') r'dr=0

2TQ r 4 Tp

Performing the indicated variations, we have

f —
(&s

"+ +—4 ') —
(r

"+ +—
)4

12mPQ
+ e"~2', r'dr=a.

2 TQ

Noting, however, that the variations are to be carried out in accordance
with equation (31) which gives 5p' =5@=0 at ri and ro, the first term in the
integrand can evidently be transformed in the usual manner with the help
of partial integrations, dropping terms that become zero at the limits, to
a form depending on Sp alone; and the second term in the integrand can be
simplified by resubstituting equation (19) for the energy density poo. We
thus obtain

This equation can be true, however, for arbitrary variations 5p, only if the
term in square brackets is equal to zero, and this can evidently be rewritten
to give us

d d 1 4or(poo+3po)
eiu/2 r2 ~3p/2 r2

dr dr To Tp
(50)
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and substituting equation (20), we finally obtain as an expression connecting
T~ with the coordinate r and the metrical variables p, and v

el'" r' —— = —ef"'- r' —e"f' (51)

This differential equation for T, is the same as equation (41) which we

got when we applied the thermodynamic method to pure radiation. A first
integral for this equation can be written in the form

p+p
dfn To 1 dv Be= ———+

2 dr r
TQ (52)

where 8 is a constant of integration, and substituting equation (22) this can
be written as

din To

dr

jk +V

1 dPQ Be 2

poo+Po

If, however, we now assume on physical grounds that at the center of
the sphere r =0, we have dTo/dr and dpo/dr equal to zero, To not equal to
zero and the other functions of r finite, it is evident that the constant of
integration 8 must be equal to zero. ' Under these circumstances the second
integral of our equation is then easily seen to be

where C is a second constant of integration.
This result is exactly of the same form as that obtained for radiation alone

and that is a satisfactory outcome since our method of derivation did not
involve the assumption that any matter at all was necessarily present. The
equation gives a definite relation connecting the equilibrium temperature in a
gravitational field with the variable v which is itself determined in a known

way by the gravitational field. The general nature of the result can perhaps be
more easily appreciated by redi8erentiating equation (53) with respect to r
and substituting equation (22). We then obtain

lg TQ 1 dv 1 dPQ

2 dr poo+po dr
(54)

and can at once see that temperature and pressure will increase together as
we go towards the center of the sphere. It is also of interest to note once more
the approximation

din To 1 d4 g

dr c' dr c'

s It would be interesting to investigate the possibility of solutions of physical interest
with 8 go.
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valid in weak enough fields so that the Newtonian method is applicable, and
this is the same equation as was obtained in our preliminary non-rigorous
treatment. '

$9. THE DISTRIBUTION OF MATTER IN A SPHERE OF PERFECT FLUID

The principles of relativistic thermodynamics which we have used in the
preceding section should be sufficient to give us information not only as to the
temperature distribution in a sphere of Huid but also as to the equilibrium
distribution of matter. To obtain such information let us return once more to
our condition for a maximum of the relativistic expression for entropy

(55)

In using this equation to determine the distribution of temperature, we
considered the result of varying the temperature as a function of r, holding
constant the number of molecules

¹
X„of each of the diferent com-

ponents of the system in each spherical shell lying between r and r+dr.
To determine the distribution of matter, on the other hand, we may hold the
temperature constant and consider the result of varying the composition of
the layers. As simple illustrations, we shall apply this method to a system
consisting of a mixture of a perfect monatomic gas and radiation, both on the
assumption that radiation and matter are interconvertible, and on the as-
sumption that the total number of molecules in the system cannot be varied.

For the proper density of entropy of a mixture of perfect monatomic gas
and radiation, we may evidently write in accordance with well known
equations

Cr, 3~2

QO=Sok ln +—aTo'
Ep 3

(56)

where No is the number of molecules in unit volume as measured in proper
coordinates by a local observer, To is the proper temperature, k and a are
respectively the Boltzmann constant and Stefan constant, and C is a constant
so chosen that the starting points for the measurement of the entropy of
matter and radiation will be in agreement.

If now we vary the proper concentration of molecules No holding the
temperature To constant, we obtain

On the other hand for the proper density of energy we evidently have

p()0= Vgtec + $$0kTp + GTp

As a justi6cation for the results of this section, my colleague Dr. J. Robert Oppen-
heimer has kindly pointed out to me that the relation which I have obtained between tem-
perature and gravitational potential is a necessary one if the Planck radiation law is to hold

at different gravitational levels.
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where m is the rest mass of one molecule and c the velocity of light, —mc'

thus being the internal energy and (3/2)%To the average kinetic energy per
molecule. Hence, holding the temperature constant as before, and varying
No we obtain

8poo= (mr'+ ,'&To)6-No

and by combining equations (57) and (59) we can express the variation in the
density of entropy in terms of the variation in density of energy in the form

0 ln CToo"/Eo —0~go=, ~poomc'+ 3/2kTo
ol

~Co = f(¹To) ~poo
(60)

where for simplification we have written f(¹,To) as an abbreviation for the
coeScient of Spoo.

Since Spoo, however, can be expressed as a function of the metrical variable

p, we can now return to our equation (55) for maximum entropy and write
as a condition for equilibrium

4or J [bgo e'"" + g$o e'»' 8p] r'dr = 0
&1

or substituting equation (60)

4or I [ff(Eo, To)e'»'8poo + $4o e'»' bp] r'dr =0
~l

(61)

and substituting in turn the value of poo in terms of the metrical variable
give by equation (19) we obtain

1 2 pf(¹,T,) —"" By"+—o'+—o')
tl r 2

1 2p, p, 3
+—f(1Vo, To)e" p"+ +—8p + 4or—go e ~ $p r dr=0.

2 r 4 2
'

Noting as in previous sections, however, that the variations are to be car-
ried out in accordance with equation (31) which gives 8p'=5@, =0 at ri and
r2, the first term in the integrand can evidently be transformed in the usual
manner with the help of partial integrations, dropping terms that become
zero at the limits, to a form depending on 5p alone; and the second term in
the integrand can be simplified by resubstituting equation (19) for the energy
density poo. We thus obtain

d2

j , [f(-Vo, To)e""r' I
—2 [f(Ão, To)—e&i' r ]df dr

|'

f(Eo, To)e"io r —+ 4or [2f(Eo, To)poo 3&oI e &io r bpdr =—0
dr 2
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and combining the 6rst three terms this can be rewritten in the form

r2 d d

j r"I r f—(¹,To) + 4s I 2f(XO, To) poo 34oI e "I r 8ijdr=0. (62)
d» dr

This equation has resulted from an application of the condition for maxi-
mum relativistic entropy under the subsidi&. ry condition, given by equation
(31), which satisfies the requirements of the energy-momentum principle.
In case we assume the ready interconvertibility of matter and radiation no
further subsidiary conditions need be introduced. On the other hand, if we
are interested in what might be only a temporary condition of equilibrium
reached in a length of time such that the total number of molecules could not
change, we must evidently add as a further subsidiary condition

r2

Xo.»/2r2dr =0
r1

(63)

where Xo is the proper concentration of molecules and as we saw above
4m e'&" r'dr is the proper volume in the spherical shell lying between r and
r+dr.

Performing the indicated variation, keeping of course the temperature
constant as in the previous variation, and substituting the value for SXo
given by equation (58), we obtain

r2 g»/2 3
~p«+ —Xo.»/2 ~& .2dr =0.

mc'+ (3/2) kTO 2

This equation, however, is of the same general form as (61) above, and can
be treated by the same methods which led from (61) to (62), and will then
evidently reduce to

d ( d ( '+(3/2)k )Ir
2 poo+ 4m ——3.VO e'"I' r' hydr =0. (64)

mc'+ (3/2) k Tp

Equations (64) and (62) may now be combined by the method of Lagrange
to give us a single condition

Jf —Id'" ' (f(((,,
1',)+ — )I

+4~ 2 Vo, To + — poo —34o—3XXo &'"/' r' ~pd» 0
mc' +(3/2) k T,

where ) is a constant undetermined multiplier, whose value will be zero in

case equilibrium between matter and radiation is established, since the
additional condition (63) will then not be needed. This equation, however,
can only be true for arbitrary variations Sltj, , if the quantity in square brackets
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is equal to zero. Hence, resubstituting the value of f(No, To) given by equa-
tion (60) we have as our final differential equation

d o k l cr,"rx, k+x I—ep/2 r2
d r d r mc'+(3/2) k To

=4~ 34'o+3) No —2
k fn CToo "/No k+—X—

poo eo"" r' (65)
mc +o(3/2) kTo

gT, 3/2 mc 3
kin —k+) = + —k

No Tp 2

where ) =0 in case the equilibrium between matter and radiation is estab-
lished.

Ke have thus obtained a second order differential equation connecting
the thermodynamic quantities concentration Xp and temperature Tp with the
coordinate r. We have already found in the previous section, (8, however,
equations for Tp as a function of r, and hence the present equation requires
that Xp be such a function of Tp as not to disagree with the previous results.
We shall then suggest as an expression for the dependence of Xp on Tp and
hence implicitly on r

or

C~X/k-5/2T 3/2 ~
—mc2/kT0

and test the suggestion by substituting into (65). Doing so, we obtain

2Ppp
ep/2 r2 4& 3$o + 3$Np p3p/2 r2

dr dr Tp Tp

Comparing the First form of equation (66), however, with the expression for
Po given by (56), and introducing the expression for poo given by (58), we obtain

3Nomc2 15
e"/2 r' —— =4& +—Nok —3~$o+4a To'

dr dr To To 2

NomC2
+3~No —2 —3%ok —2a Tp' es&/ r

Tp

Nome'+ (3/2) Nok To+a To'+3(Nok To+ (a/3) To')
=4n. e3p/2 r2

Tp

(poo+3po)
=4m eel /2 r2 (67)

Tp

since the gas pressure is evidently %ok Tp and the radiation pressure
&aTo'. And this equation is exactly the same as our general equation (50)
for the dependence of temperature on the coordinate and metric as obtained
in the previous section $8. Hence our suggested expression equation (66}
for the dependence of the concentration on temperate, rg can be accepted as
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satisfying the information previously obtained as to the dependence of tem-

perature on the metric, and thus as a satisfactory solution of the problem of
the distribution of a perfect monatomic gas in a gravitational field.

It is also significant to point out that equation (66) can be subjected to
another test, since this expression for the proper concentration of the gas
makes it possible to calculate the partial pressure of the gas and by combining
with the partial pressure of radiation, then examine the dependence of total
pressure on the radius r to see if it agrees with the purely mechanical equation
dpp/dr = —(ppp+pp)I /2, obtained in $4. And as a matter of fact equation

(66) does lead to this result. "
Finally, it is interesting to compare the dependence of proper concentra-

tion on proper temperature given by equation (66) with the result obtained
for the equilibrium concentration in flat space-time by Stern" and myself. "
Taking the case where equilibrium between matter and radiation has been

established, we have X=0 and equation (66) can be written

(cgp/2) T 3/2 p rncp/prp—

which agrees with my previous result as it stands, and agrees with the Stern
result if we assign to the constant term (CeP/') the not necessarily correct
value which Stern obtained for it. Hence the conclusion can again be stated,
owing to the great magnitude of the negative exponent for reasonable values
of m and T, that the equilibrium concentration would be extremely small

unless the constant term could be shown to have an enormous magnitude.

$10. CONCLUSION

In accordance with the special theory of relativity and the equivalence
principle all forms of energy, including heat, must be regarded as having both
inertia and weight, and the purpose of the present article has been to investi-

gate, in as consequent a manner as may be, the thermodynamic implications
of the notion that heat has weight. The most striking result of the investiga-
tion has been the discovery of a definite relation connecting gravitational
potential with the distribution of temperature throughout a system which
has come to thermodynamic equilibrium.

Qualitatively, the increase in equilibrium temperature which was found

to accompany decrease in gravitational potential, may be regarded as due
to the necessity of having a temperature gradient to prevent the flow of heat
from places of higher to those of lower potential energy; and quantitatively,
a first approximation to the magnitude of this temperature gradient was

'0 It may seem strange that this purely mechanical equation holding within the interior
of the system should be derivable from the application of thermodynamics to the system as a
whole. The result, however, is the relativity analogue to the equation for change in pressure
with height obtained by Gibbs ("Scientific Papers, " Longmans, Green 1906, equation 230,
p. 145) in his thermodynamic treatment of the conditions of equilibrium under the influence

of gravity. Indeed the whole treatment of this article may be regarded as the relativistic ex-

tension of this part of Gibbs' work."Stern, Zeits. f. Elektrochem. 31, 448 (1925); Trans, Farad. Soc. 21, 477 (1925—26).
~ Tolman, Proc, Nat. Acad. 12, 670 (1926),
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obtained by modifying the classical thermodynamics merely by ascribing to
each given intrinsic quantity of energy the right additional quantity of po-
tential gravitational energy. For a rigorous treatment, however, it was
obviously necessary to investigate the whole problem from the standpoint of
general relativity, and this was done using the extension of thermodynamics
to general relativity which I have previously given. In this way it was
possible to obtain what appears to be a rigorous equation connecting
equilibrium temperature with gravitational potential. In addition in the case
of black-body radiation it was possible to test the thermodynamic method,
since the same temperature distribution in the case of this simple system
was also obtained by the use of relativistic mechanics, without the necessity
for the use of the new relativistic thermodynamics.

This discovery of a dependence of equilibrium temperature on gravita-
tional potential must be regarded as something essentially new in thermo-
dynamics, since uniform temperature throughout any system which has
come to equilibrium has hitherto been taken as an inescapable part of
thermodynamic theory. The new result hence has a very considerable the-
oretical interest, and even though the effect of gravitational potential on
temperature may usually be extremely small the result may sometime be of
experimental or observational interest.


