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ABsTRAcT

The main purpose of this article is to use the extension of thermodynamics to
general relativity, previously proposed by the author, to obtain expressions which
will give the criteria for the thermodynamic equilibrium of a static gravitating system
in a readily applicable mathematical form. After restating the principle chosen by
the author as the general relativity analogue of the second law of thermodynamics, and
showing once more that it is a natural covariant generalization of the ordinary second
law of thermodynamics, the principle is then applied to finite systems in general and
to adiabatic systems having no flux of matter or heat at the boundary. The mathe-
matical conditions for thermodynamic equilibrium are then obtained for the case of
any finite static system, and a specially useful form for these conditions is obtained
for the case that the system has spherical symmetry.

$1. INTRODUCTION
' 'N SEVERAL previous articles, I have attempted an extension of thermo-'. dynamics to general relativity' and have tried to make certain applica-
tions of this extension. ' The main purpose of the present article is to prepare
for certain further applications which I propose to make.

The postulate, which must be taken in work of this kind as the general
relativity analogue of the ordinary first law of thermodynamics, is evidently
Einstein s generalized energy-momentum principle, which reduces in Bat
space-time to the ordinary laws of the conservation of energy and momen-
tum, and is a principle which certainly must not be violated by any thermo-
dynamic changes which may take place. The use of this principle has
already been discussed in some detail in the preceding article in this journal, '
and, those conclusions drawn from it, which will be necessary for the present
considerations.

The postulate which was chosen as the general relativity analogue of the
second law of thermodynamics was a new one, which was justified, so far as
may be, hy showing it to be a natural covariant generalization of the ordinary
second law of thermodynamics in Rat space-time. In the present article we
shall be especially interested in the method of applying this principle to
determine the equilibrium conditions for a finite system in a static state.

' Tolman, Proc. Nat. Acad. 14, 268 (1928); ibid. 14, 701 (1928).
' Tolman, Proc. Nat. Acad. 14, 348 (1928); ibid. 14, 353 (1928).' Tolman, Phys, Rev. 35, 875 (1930).
4 See reference (3) last paragraph of $10.
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In the immediately following section, f2, we shall again state the postu-
late chosen as the general relativity analogue of the second law of thermo-
dynamics in the form which it assumes for an infinitesimal region, and show
again by way of review that it is a natural covariant generalization of the
ordinary second law of thermodynamics valid in flat space-time. In f3, we
shall obtain by integration the form taken by the principle in the case of a
finite system in general, and then more especially in the case of an adiabatic
system having no Aux of matter or heat at the boundary. Following this we
shall consider, in f4, the conditions for thermodynamic equilibrium in the
case of a finite static system, and finally, in )5, we shall consider a specific
form in which these conditions for equilibrium can be put in case the system
under consideration has spherical symmetry.

$2. THE GENERALIZED SECOND LAW OF' THERMODYNAMICS

To state the postulate which was taken as the general relativity analogue
of the second law of thermodynamics, we shall first define the entropy vector
at a given point in space-time, by the equation

d Sent

ds

where $0 is the proper density of entropy at the point in question as measured
by a local observer, and dx„/ds is the macroscopic velocity of matter at that
point. Corresponding to this vector, we also have the entropy vector density
given by the equation

(2)

The second law postulate can then be stated in the form

dQO
dxydx2dx3dx4

Xtt Tp

where dQO is the heat measured in proper coordinates flowing through the
boundary into the infinitesimal region and during the infinitesimal time de-
noted by dx&dx:dx3dx4, and Tp is the proper temperature at the boundary.

To show that expression (3) is covariant, we rewrite it by a well-known
transformation in the form

oP'")„V—gdxgdx2dxgdx4 &
Tp

(4)

The quantity (S")„,however, is the contracted covariant derivative of S"and
is known to be an invariant, while g —gdx, dx.dx3dx4 and dQO/Te are also
obviously invariants so that both sides of expression (4) are tensors of rank
zero, and the requirement of covariance is met in the simplest possible way.
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To show that expression (3) reduces to the ordinary requirements of the
second law in the 1imiting case of flat space-time, we first rewrite it with the
help of (2) in the form

dx„

Bxf, ds

dQo
fog g dxidxodxodx4 ~

TO

In flat space-time, however, using Galilean coordinates x, y, 2 and t, we shall
have 4—g=1, and writing out the indicated summation in full, we obtain
with some rearrangement in the order of terms

Qp
—dxdydsdt
ds

—40—+—40—+ —40 — dxdydsdt +

and this can evidently be rewritten as

dt—&0—d xdyd. dt
Bt ds

dt dx B dt dy B dt ds dQo—Po ——+—Po ——+—Po —— dxdydzdt + . (6)
Bx ds dt By ds dt Bs ds dt T0

In accordance, however, with the special theory of relativity, valid in flat
space-time, entropy is an invariant for the Lorentz transformation, so that
entropy density will be affected by the Lorentz-Fitzgerald factor of contrac-
tion ds/dt in such a way that we can make the substitution

dt
4 =do-

ds

where& is the density of entropy in the particular set of Galilean coordinates
that are being used. Furthermore, since heat and temperature have the same
transformation factors on the basis of the special theory, we may also sub-
stitute

dQ dQo

T TO

Hence, using u, v, w to denote the components of ordinary velocity dx/dt etc.
we can finally rewrite expression (6) in the form

Bqb B B B dQ
dxdydzdt ~ ———(4u)+—(Pz)+—(gw) dxdydzdt +

Bt Bx By Bs T

This expression, however, evidently states the essence of the ordinary second
law of thermodynamics, since it requires that the actual increase of entropy
occurring in the time dt in the infinitesimal volume dx dy ds cannot be less
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than the total entropy brought in from the outside by the flux of matter and
the flow of heat.

Our postulate as to the general relativity analogue of the second law has
thus been justified both by the fact of its expression in covariant form and
by its reduction in the limiting case of flat space-time to the ordinary second
law of thermodynamics. The justification, thus presented, is of course in no
sense a complete proof of the validity of the postulate taken. Covariance and
agreement with the form of the second law valid in the special theory of rel-
ativity are necessary but not sufFicient requirements for determining the new
form of the second law. The new postulate must be regarded as a real gener-
alization containing an element not present in the special theory of relativity,
and the ultimate complete justification of the postulate must be dependent
on the agreement between the conclusions that can be drawn from it and
actual experimental or observational facts.

$3. APPLICATION OF THE ENTROPY PRINCIPLE TO FINITE SYSTEMS

To apply the new principle to the changes taking place in a finite system,
let us start with the principle in the form given by expression (5), and taking
xi, x~ and x3 as being the space-like coordinates, integrate over the spatial
region of interest. If we carry out such an integration, using coordinates such
that the limits of integration necessary to include the whole system fall on
the actual boundary which separates the system from its surroundings, it is
evident that the summation of dQO/To over the interior of the system will
cancel out, since any heat entering a given element of volume is abstracted
from neighboring elements, so that we sha11 only have to consider the heat
entering the system from its surroundings. Hence dividing equation (5)
through by dx4, writing out the indicated summation, and performing the sug-
gested integration, we obtain with some rearrangement in the order of terms

(f 0 Q g
— d—x&dx2dx3

Bx4 ~ ~ ds

8 Qx3 d 0+ yog —
g
—dx&dxgdx3+ Q—

gx3 ds To d x4 Boundary

The last term on the right hand side of this expression is the total value taken
over the boundary of the system of the quantity (1/To) (dQp/dx4), and by per-
forming the indicated integrations the other terms on this side of the expres-
sion can also be seen to depend solely on quantities whose values are deter-
mined by conditions at the boundary, provided we continue to use, as
suggested above, a set of coordinates so chosen that the limits of integration
necessary to include the whole of the system actually lie on the boundary.
We obtain
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d xz
pod —

g dxgdxgdxoh II go~—
g dxodxo

Qg4J 0 8 ds dg

dx2 dx3
4oV —g dx&dxo —

l ~l 4oV —
g dx,dxo

ds

1 dgo+p ——.. ..,)......„
(10)

where the limits of integration at the boundary of the system are denoted by
xy, xy etc.

This expression (10) may be regarded as a general statement of the second
law of thermodynamics as applied to finite systems, and defining the entropy
of the system by the equation

the expression can be interpreted as giving the relation which must hold be-
tween the rate at which the entropy of a finite system is changing with the
"time" x4, and those conditions existing at the boundary which determine the
flux of matter and the flow of heat.

For the case of an adiabatic system with no flow of heat through the
boundary, and in addition with the quantities dx, /ds, dx, /ds and dxo/ds
equal to zero at the boundary, so that there is no flux of matter between the
system and its surroundings, expression (10) reduces to

ff (y
v':g )z'dz *'o,. , *,

In accordance with this expression, the entropy of an adiabatic system of the
kind described can only increase or remain constant with increases in the
time x4.

)4. THERMoDYNAMIC EqUILIBRIUM IN A STATIU SYsTEM

We shall now investigate the conditions for thermodynamic equilibrium
in a static system. To do this we must examine the changes which could take
place from one static state to another without violating either the energy-
momentum principle or the entropy principle as applied to the system as a
whole.

Consider a system which together with its surroundings is originally in
some given static state, such that none of the components g„„of the metrical
tensor are changing with the time, and furthermore such that there is no flow
of heat nor macroscopic flux of matter or radiation at any point. Without
alteration in the metric or the distribution of matter and radiation outside of
the system we then assume some change to take place in the distribution of
matter and radiation inside the boundary in such a way that the system ul-
timately arrives in some new possible static state. Assuming no detailed
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knowledge of the exact nature of the internal process which occurs, we now
inquire into the restrictions which the energy-momentum principle and the
entropy principle applied to the system as a whole would impose on the
change in state.

In accordance with a conclusion obtained in my previous article on the
energy-momentum principle, the restrictions imposed by this principle on
the possible changes in line element within the system are to be met by the
condition that the components g„, of the metrical tensor and their first differ-
ential coeScients Bg„„/Bx are to retain their values unaltered at the bound-
ary. These restrictions, coming from considerations of the energy-momentum
principle, must be applied as part of the thermodynamic criteria for deter-
mining the possible changes in state.

Turning now to the entropy principle, we note that the process under
consideration has been so chosen that the change is an adiabatic one of the
kind described in the preceding section, since by hypothesis the flow of heat
and macroscopic flux of matter are everywhere zero at the start and remain
so at the boundary while the process is under way; hence we can at once apply
expression (12) to the process. We thus obtain as the restriction imposed by
the entropy principle the requirement that the entropy as defined by equa-
tion (11) shall not be decreased by the process. This restriction must be ap-
plied as giving the remaining thermodynamic criteria for determining the
possible changes in state.

The considerations of the last two paragraphs immediately make it evi-
dent that the condition for the thermodynamic equilibrium of a static sys-
tem, with no flow of heat or flux of matter at any point, is that the entropy
of the system as given by equation (11) shall be the maximum that can be
obtained without violating the boundary conditions furnished from consid-
erations of the energy-momentum principle. Stating this conclusion more
specifically by the use of the calculus of variations, we may now give as the
condition of thermodynamic equilibrium in a static system of the kind de-
scribed above

ding
8 JI I" t gpQ gdx, dxp—dxp =0

ds

under the subsidiary condition holding at the boundary Of the system

(13)

5g„„=5 = 0 14)

where it is to be remembered that the conclusions have been derived using
a system of coordinates such that the limits of integration necessary to
include the whole of the system of interest fall on the actual boundary
which separates the system from its surroundings.

$5. EqUILIBRIUM IN A STATIc SYSTEM HAVING SPHERIcAL SYMMETRY

As just mentioned the conditions given by equations (13) and (14) have
been derived using a system of coordinates such that the limits of integration
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necessary to include the whole of the system fall on the actual boundary
separating it from its surroundings. In the case of a system having spherical
symmetry, it is possible, however, to translate these results into a system of
polar coordinates, and thus put them into a more convenient form for use.

Let us take a static system of the kind discussed above, with. no flow of
heat nor macroscopic flux of matter or radiation at any point, and having
spherical spatial symmetry, and let us initially make use of a set of coordi-
nates x, y, z, t with the center of symmetry at the origin of the three equiva-
lent spatial axes x, y and z. Such a set of coordinates is of the kind used in
deriving the restrictions given by equations (13) and (14).

The line element for our system in these coordinates can evidently be
written in the form

ds' = —e" (dx'+dy'+de') + e"dP

where the exponents p, and v are independent of the time t, and on account of
the spherical symmetry depend on the coordinates x, y and z in such a way
that they are expressible as functions of (xs+y'+s')'".

In accordance with this line element we have

gl1 g22 g 33

&a+&

yi —g=e '

g44= e"

(16)

and since there is no macroscopic flux of matter or radiation, we have the
value zero for all the macroscopic velocities dx„/ds except for the case p =4,
and then have

dx4 dt
e
—0/2

ds ds
(17)

Substituting the values given by equations (16) and (17) into equations
(13) and (14) we then have as the requirement for thermodynamic equihb-
rium in our present coordinates

4t oe'~ "dxdydz =0

under the subsidiary condition holding at the boundary of the system

8p 5 = 8v =6 =0.

These requirements, however, can now easily be translated into polar
coordinates r, 8 and P by setting

x=r sin 8 cos Q

y = r sin 8 sin Q

z=r cos 8

(20)



ENTROPY PRINCIPLE IN RELA TIVI TY 903

and noting that the condition of spherical symmetry makes it possible to
take p, and v as functions of r alone

(21)

The requirements for thermodynamic equilibrium then evidently become

5 J~JI jl goe'»'r' sin 8drd9d&=0

under the subsidiary condition

6p, =by'=8v=5v'=0 (23)

where the primes indicate differentiation with respect to r, and the limitation
given by (23) is to be applied at the actual boundary separating the system
from its surroundings rather than at the limits of integration which must be
given to the new variables in order to include the region of interest.

Finally if we take the region of interest as being a spherical shell contained
between the constant radii r, and r2, we can evidently rewrite equations (22)
and (23) in the form

4e J' gee'"" r'dr =0 (24)

under the subsidiary condition

bp=8y'=8m=6m'=0 (at r, and r,). (23)

It is believed that this form of the conditions of equilibrium will be found
an easy and useful one to employ.


