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ABSTRACT

The primary purpose of this article is to obtain from the general relativity form
of the energy-momentum principle certain new consequences which are needed for
later work that the author has in mind. In addition, it is the intention to give at the
same time a somewhat comprehensive and coherent treatment of the principle and its
consequences, which it is hoped will increase the confidence and facility of physicists
in the use of this important part of the general theory of relativity. In carrying out
the investigation, it has seemed desirable for English readers, to take Eddington’s
“Mathematical Theory of Relativity” as a starting point, and this has incidentally
led to a new form of deduction for certain consequences of the energy-momentum
principle that were already known.

After presenting the energy-momentum principle in the form discovered by
Einstein and showing its application to the case of the conservation of energy in an
isolated system, an important expression is derived which gives the total densities of
energy and momentum in the form of a divergence. This expression is equivalent to
one previously obtained by Einstein but on account of the starting point adopted is
derived and expressed in terms of the quantities g** and g%’ instead of the g’ and
g4’ Following this, the limiting values at large distances from an isolated material
system are obtained for the quantities g*9%/0g5% and g*%/8g5'. These values,
which have considerable use, have not previously received explicit expression. This is
followed by a deduction from our present starting point of Einstein’s famous relation
U=m between the energy and gravitational producing mass of an isolated system.
An important expression is then obtained which gives the energy of a quasi-static
isolated system in the form of an integral which has to be extended only over the
portion of space actually occupied by matter or radiation. This expression has not
previously received a satisfactory derivation. The result is used to obtain an expres-
sion for the energy of a spherical distribution of a perfect fluid, and it is then shown
that this expression, in the case of a sphere of ordinary material, approaches in a
sufficiently weak field to the classical expression for energy including the potential
gravitational energy. This result is not only intrinsically useful, but also shows for a
particular case that a higher order of approximation to the general relativity value
for total energy is obtained by including the classical gravitational energy than by
going at once to flat space-time as is often done. Finally, a general consideration is
given to the problem of determining the conditions imposed on those changes from
one static state to another which could occur in a non-isolated system forming part
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876 RICHARD C. TOLMAN

of a larger static system, without changing the distribution of matter and radiation
outside the boundary and without contravening the energy-momentum principle as
applied to the system as a whole.

§1. INTRODUCTION

N ACCORDANCE with Einstein’s development of the general theory of

relativity, the relativity analogues of the classical principles of the con-
servation of energy and momentum are to be obtained with the help of
integration from the well-known differential equation!

d
(@ 4t) =0 (1)
dox,

where I, is the tensor density of material energy and momentum and t,
is the psuedo-tensor density of potential gravitational energy and momen-
tum. Considering x4 to be the time-like coordinate, equation (1) leads to the
three equations for the conservation of momentum with u=1, 2, 3, and leads
to the equation for the conservation of energy with u=4.

Taking for illustration the latter case, multiplying the equation by
dx1 dx. dx;, and integrating over the system of interest, we obtain with some
rearrangement of terms

f f f (Tt dxidwad s
ax4

T fff [_(I‘H_t}i)+—M(IZ+ti)+—(zi+t2):ldx1dx2dx3
axl ax? 6.1'3

and by performing the indicated integrations on the right hand side this can
be rewritten in the form

amfff (Tt dwdx,dxs
dxzdxa f f zdxldx;; f f

where the limits of integration are denoted by x1, x’; etc. The result states
that the rate of change with the time (x4) in the value of the integral on the
left hand sideof theequation can be calculated from the conditions prevailing
at the boundary of the system of interest as given by the right hand side of the
equation. The equation can thus be regarded as a statement of the energy
principle provided we define the energy of the system by the expression

= f f f (T} +t)dxidxeds. 3

And a similar treatment for the components of momentum can be obtained
by taking u=1, 2, 3.

T+t

4+t I3+t

dT]dlz (2)

1 See for example Eddington, “The Mathematical Theory of Relativity.” Cambridge
1923, equations (59.2) and (59.3).
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Owing to the fact that equations (1) and (2) are not tensor equations
and that the quantity t} is not a true tensor density, considerable doubt as
to the validity of the above formulation of the energy principle was at one
time expressed? and perhaps to some extent still exists.? It can be shown,
nevertheless, that the equations have the necessary fundamental property
of being true in all sets of coordinates, and a completely satisfactory justi-
fication of the formulation was finally given by Einstein in 1918.4

Since that time, however, the interest of mathematical physicists has
been largely turned to other matters, and the methods and results of apply-
ing the energy-momentum principle have not been particularly investigated.
It is the purpose of the present article to consider some of these methods and
results not only because of their intrinsic importance, but also because of
certain further applications which the writer has in mind.

In carrying out the investigation we shall use, as far as may be, the nota-
tion adopted by Eddington in his “Mathematical Theory of Relativity”,
and shall base our deductions on equations given by him. This choice of
starting point necessitates some duplication of results which have previously
been obtained by other methods, but seems desirable owing to the familiarity
of English readers with Eddington’s treatise and owing to the excellence of
the detailed and coherent treatment which he has given.

In the immediately following section, §2, we shall first give Einstein’s
method of applying the above energy principle to an isolated material
system. In §3 we shall then obtain a very useful formula which expresses
the total density of energy and momentum as an ordinary divergence; the
formula is equivalent in import to one already obtained by Einstein but
because of our choice of starting point differs in method of derivation and
form of expression. Following this, in §4, we shall deduce the limiting values
at large distances from such anisolated system of certainfunctions of the gravi-
tational field; these values are necessary for our further work and have not
previously received explicit expression. In §5 we shall then be able to give a
deduction from our present basis of Einstein’s relation between the total
energy and gravitational mass of an isolated material system. In §6 we shall
deduce an extremely important equation expressing the total energy of an
isolated system by an integral which has to be extended only over that por-
tion of space which is actually occupied by matter or radiation; this equation

? Schroedinger, Phys. Zeits. 19, 4 (1918); Bauer, ibid. 19, 163 (1918).

8 Thus, for example, Eddington (reference 1, pp. 135-136) objects to the fundamental
significance of the equation 9/0x,(T%+t;) =0 on the ground that t';, is not a true tensor
density, and appears to regard the introduction of the equation as an unfortunate pandering
to an immoral desire to obtain by hook or crook some kind of conservation laws in the mechan-
ics of general relativity. It should be remarked, however, that the appropriate criterion for the
fundamental significance of equations should not be that they are written in tensorial form but
that they are written in covariant form so as to be true in all sets of coordinates. All tensor
equations are indeed covariant equations, but this does not exclude the possibility of covariant
equations, such as the one above, which are not tensorial. To assume the contrary would be
the fallacy of the Dormouse in Alice in Wonderland, who said:—*“I breathe when I sleep” is
the same thing as “I sleep when I breathe.”

4 Einstein, Berl. Ber. 1918, p. 448.
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has not previously received a satisfactory derivation. In the following
section, §7, we shall use this equation to obtain an expression for the total en-
ergy of a distribution of perfect fluid having spherical symmetry. And in
§8 we shall show that, on making the gravitational field weaker, the above
expression approaches the classical expression for the energy of such a sphere
including the classical value for its potential gravitational energy; the result
is an intrinsically useful one and also shows for a particular case that a
higher order of approximation to the general relativity value for total
energy is obtained by including the classical gravitational energy than by
neglecting the gravitational energy entirely as has hitherto often been done.
Finally in §§9, 10 we shall consider the application of the general energy-
momentum principle to changes occurring within a region which forms part
of a larger system, and in §11 shall make some concluding remarks.

§2. THE CONSERVATION OF ENERGY IN AN [SOLATED SYSTEM

Let us now first consider the application of the energy principle to those
changes which can take place within a limited system without producing any
changes in the gravitational field outside of a sufficiently distant boundary
located in the free space surrounding the system. Such a system will be
called an isolated one. In this case, we can easily show that the general
energy principle, as given by equation (2), can be interpreted as leading to
the conservation of energy within the boundary taken.

For the tensor density of matter and energy £, occurring in equation
(2), we can write from the equation of definition®

R dx, dx,
3::= \/———g BT =7/—¢ gaypo —

ds ds
where po is the proper density of matter. And since we take the boundary
which encloses the system as located in free space the density p, will there be
zero, so that it is evident that the quantities T}, 7 and I3, occurring on
the right hand side of equation (2), will themselves have the value zero at the

boundary.

Furthermore, the pseudo-tensor density of potential energy is defined in
terms of the Lagrangian function & and the cosmological constant A by the
equation®

(4)

1 s 0% AL
tr=—-A{ge—g" —} +—g"v/—3. (5
A U ) ag:,ﬁ}+8wg,.«/ g )

The quantity g, however, is equal to zero with u», and the symbol g
is a short hand for d(g*#\/—g)/0x, and hence is equal to zero at the boun-
dary enclosing our system, if the gravitational field at that boundary is not
changing with the time as postulated. Hence the quantities t}, t3, and t3,

% See Eddington, reference 1, equation (53.1).

¢ See Eddington, reference 1, equation (59.4). The additional term in A, when the cosmo-
logical term is not neglected, can easily be shown necessary. Compare Einstein, reference 4,
equation (18).
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occurring on the right hand side of equation (2), will also be zero at the
boundary with which we have enclosed the system.

Hence using a system of coordinates such that the limits of integration
coincide with the boundary enclosing the system,” it is evident that the
terms on the right hand side of equation (2) will all of them become zero
and the energy principle for this particular case will reduce to the conserva-

tion of energy
d
— f f f (T4t} dxrdxada; =0
6x4

U= fff (I:+t:)dx1dx2dx3=const.

§3. THE DENSITIES OF MOMENTUM AND ENERGY EXPRESSED AS
DIVERGENCES

or

(6)

In order to make use of this interesting result, it will now be necessary to
make a rather lengthy digression by deducing certain useful lemmas in this
and in the following section. In the present section we shall show the possi-
bility of expressing the total density of momentum or energy as an ordinary
divergence in accordance with the equation?®

8r(T+t) i ( x + Ly é x ) (N
T = —{ — Qe J— a .
BOR day g agre 2 88 agf
k4 v
To prove this equation willbea very tiresome business, justified only by the
importance of the result. To carry out the demonstration we shall have to
make use of a large number of well established results which we shall now
give.
For the density of material energy and momentum we shall use the
fundamental equation connecting it with the metrical properties of the field®

— 87T, = O — 3¢ O+Ag, ®

where @), is the tensor density corresponding to the contracted Riemann-
Christoffel tensor and A the cosomological constant. For the density of
potential energy and momentum we shall use the equation of definition
already given above

v L4 68 v
16mg) =g'%— g:p—afﬁ_l_ 24g, 9)

7 With a system of coordinates chosen so that some of the limits of integration do not fall
on the boundary, the quantities ]I: +t: ]x,' etc. will not necessarily be zero. Compare §9.

8 This equation is equivalent in import to equation (18) given by Einstein, Berl. Ber. 1916,
p. 1115. It differs in form since we are regarding { as a function of the g*” and g% instead of
as a function of the g*” and gb".

? See Eddington, reference 1, equation (54.71).
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where the Lagrangian function € is defined in terms of the Christoffel sym-
bols by the equation!®

8=«f§gﬂﬂ({av,e}{ﬁe,v}~{aﬁ,v}{ve,e}>. (10)

In accordance with this definition it is possible to show that € can also be
expressed as a function of the quantities

]

g#=gw\/—g and ng =—(g*\/—g) (11)

0%y

and will then have the differential coefficients!!

92
C = (tave} (e} = (e} e (12)
dg*f
and!?
9% 1 1 y
agjﬁ:—{aﬂ,—y} +7ga{ﬁe,e}+?gﬂ{ae,e}. (13)

Further important properties of the Lagrangian function, relating it to the
metrical properties of the field, are given by the equation!?

a a2 ag

y = - 14
" 9x, dg dgm 19
Y
and!*
oL (1) - s
“oe\Y ages '
Y

Finally, the quantity g% may be expressed in terms of the Christoffel
symbols by the equation?®

y

0= —g<— {oy,a}g¥— {67,B}g‘“+{75,5}g"">- (16)

We are now ready to proceed to the derivation of equation (7). Combining
equations (8) and (9) we have
1 a8

1 1
>V N (WY I S0 saB
ST+ == O]+ 560 + g - e o

10 See Eddington, reference 1, equation (58.1).

11 See Eddington, reference 1, equation (58.51).

12 See Eddington, reference 1, equation (58.52). We have written the expression in a sym-
metrical form which is equivalent to Eddington’s unsymmetrical form.

13 See Eddington, reference 1, equation (58.6).

14 See Eddington, reference 1, equation (58.8).

15 See Eddington, reference 1, the equation immediately following (58.72).
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Substituting (14) and (15) we obtain

(T +1") = —g d 9% g g +_1_g"i<gap 9% )——l—g"“‘" ag
BB LEN ag:" gk 2 “ox, ()g:f’ 2 “ag:"*"
and this can evidently be rewritten in the form
R e 1 L
8r (T +t) = 5;:(— 8 pyom +7g,.”g“5;&;ﬁ>
’ ’ w 0% o 1 ¢
+o, e ———4 (17)

’ag““ agr= 2 * a9

Comparing this result with equation (7), we see that our deduction will
be completed if we can now show that the sum of the last three terms is
equal to zero. To accomplish this we must substitute for the quantities
occurring in these three terms their explicit values in terms of the Christoffel
symbols as given by equations (12), (13) and (16). Doing so we obtain

¥ o¢ 1 a%

av. 1 qav. __g af

"o P age 2N age

=\/:g_[—{5%a}g‘"—{év,v}g‘“ﬂva,é}gwll—{namH%g {ae, el +3e7 e e} |
+V =g g [—{av,e} {ue, v} +{an, v} {ve, e} ]
=3V =g[—{ou,a} g {ou,8} gho+ (8,5} g0] [~ {aB,v} +3g {Be e}
+§g3{ae e}]
V=gl ov,a} e
}3{ e} g

ad,d {ue e}g‘”

a,vig %iéu,a(}{ e} g —}1{sa, a(}
—3{ou, }} vefgia—3{oa
1{/“117} %{"‘675}{ } *+3 {

—3{ou,a) {aB, v} g®+1{ou,v} {Be,e] g+ 1 {on,a} {ae, el g
(4) (2) (5)
—3{ou,8} {aB,v}gie+i1ou,8) {Be,ef g +1{ou,v] {ae,e} g
(6) (8) (8)
+3{u,6) {aB,v} g —1{uo,0} {Be,ef g —1{us,0} {ae, e} g]

-0

where the value zero arises, after some changes in dummy suffixes, from the
mutual cancellation of all terms, as can easily be verified by noting that the
terms have been labelled in such a way that those which destroy each other
are given the same number.

Combining this result with equation (17), we now complete the deriva-
tion of the original equation (7), which it was the purpose of this section to
prove.
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§4. TuE LiMiTING VALUES OoF CERTAIN QUANTITIES AT LARGE
DISTANCES FROM AN ISOLATED MATERIAL SYSTEM

As a further preparation for our later considerations we shall now obtain
the limiting values at large distances from an isolated material system for
the quantities g*8(9%/9¢%) and ¢=4(8%/dg3") which occur on the right hand
side of equation (7). To do this we recall that we have defined an isolated
system in §2, in such a way that the changes taking place within the system
do not produce changes in the gravitational field outside of a sufficiently
distant boundary. Therefore, at a sufficient distance from an isolated system
the gravitational field will be static and spherically symmetrical, and we can
use for it the well known Schwarzschild solution. Hence placing the system
in the neighborhood of the origin of a set of coordinates «x, y, 2, ¢, which
approach Galilean coordinates at large distances we can write for the line
element the approximate Schwarzschild expression!®

ds*= — (142m/r)(dx*+dy2+dz2) + (1 —2m/7)dt?

where the constant m is the mass of the system and 7 is an abbreciation for
(234 y2422)L2,

Since the above expression gives the form taken by the Schwarzschild
solution in a particular kind of quasi-Galilean coordinates, it is evident that
later results, which are dependent on the present section, will also be origin-
ally derived in the form which they assume in these particular coordinates,
and their translation into the language of other systems of coordinates
must be undertaken with due cognizance of their method of derivation.
Furthermore, the above expression is an approximate one, valid at distances
large enough so that terms of the order (m/7)? can be neglected, and yet at
the same time small enough so that the curvature of the universe as a whole,
as given by the cosmological term, can be neglected. Hence those later
considerations which are dependent on this section will primarily apply only
to systems which are small compared to the total dimensions of the universe,
even though of course still very large compared with ordinary terrestrial
dimensions.

Returning to our approximate expression for the Schwarzschild line
element we may now write for the components of the fundamental metrical
tensor, the values

gu=gun=gsu=—[1+2m/r] gu=[1—2m/7]
1 1
11— 422 — ;33— _ 44—
e [1+42m/r] § [1—2m/7] (18)
gw=g"=0 (uv) V =g=[14+2m/r]32[1—2m/r]1/?

To calculate the desired quantities from these expressions for the metrical
tensor, we shall first need the values of the Christoffel symbols. These are
defined by the equation 7

16 See Eddington, reference 1, equation (46.15).
17 See Eddington, reference 1, equation (27.2).
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1 (')gyx ag..x aguv>
tursod = g’(ax, 9% dm

which evidently reduces under our circimstances to

(6g,.., agva agpv
dx, Odx, Odx,

1
{w,o}=—g ) (not summed)

2

and taking u, v, and ¢ as different indices we obtain the four cases

(i = g 22
’ 2 dx,
() = = g
’ 2 ax, (19)
{Vu,u} = {uv,#} = ig"“agw
2 ax,
{/.w,a} =0.

We are now ready to proceed to our calculations. Under our circumstances
we may evidently write

gab o =\/—_—g g\ 0% g2 ot g3 ot Fgt ot
L gl 9822 ' 993 3 a8t/

Substituting the values given by equation (13), this becomes

s 9%
s E)g“ﬁ

1 1
_\/ g( 1{11,1}+7g11{le,6}+—2—g11{15,e}
—g”{22,1}—g33{33,1}—g44{44,1})

and introducing the values of the Christoffel symbols given by equations(19)
it reduces to

L 1 0844
goB =_\/__ ( 11 22__+ 11 33__,+ Lgdt —
ag;ﬂ 2 88 &8 dx dx

+g22g11__+g33 11 +g44 11 >
ax

Finally, substituting the values for the components of the metrical tensor
given by equations (18), and, because of the large distances under considera-
tion, neglecting quantities of the order m/r in comparison with unity, we

easily obtain
o8 a <2m a 2m 2m Or
09,8 ax\ 7 dx r r: dx
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From considerations of symmetry it is evident that we shall also have similar
expressions in y and z, and introducing the direction cosines for the radius
vector we may evidently write

¢ 2m 08 2m

(nx), 008 (n3), 35 22 s () (20)
=—-cos (nx), 8« =——cos (ny), 8« =——Cos (nz
69{"9 r? ag;ﬂ r? ) 69;"5 r?

gab

while the value of the fourth quantity g*#(9%/dg5®) will not be needed for our
later work.

Turning now to the second of the quantities of interest mentioned at the
beginning of this section, we may evidently write with the help of equations
(18), (13) and (19)

o o 0g44

gat—— = s 44_____=__\/__ 44 44 1 =_\/ 44,11_°"
Y T getiad 1 =—v/ g gy

or, to the same order of approx1mation as before, we obtain

a¢ m (ns) , 9¢ m (n3) a m (n3). (21)
= ——cos (nx), 8¢ = ——2Ccos (n gaL-——_— cos (nz
szt et o =t

ga4

§5. RELATION BETWEEN THE ENERGY AND MASS OF AN [SOLATED SYSTEM

We are now ready to return to our discussion of the energy principle by
giving a deduction from our present basis of Einstein’s relation between the
energy and mass of an isolated material system. Using the quasi-Galilean
coordinates described in the last section, we may write for the energy of the
system, in accordance with equation (6),

= fff (Ti+t)dxdydz

and this quantity will be constant independent of the time ¢ as shown in §2,
provided the boundary of the region of integration is taken sufficiently
distant from the system. Substituting the value for total energy density
given by equation (7), we can now rewrite our expression for the energy

in the form
fff (g46£’+1 ﬁag>ddd
a —Q* X Z.
0xy agxt 2g 08f Y
Y Y

Taking the boundary of the region of integration as a sphere with its center at
the origin of coordinates, using Gauss’s theorem to transform to a surface
integral, and substituting at the distant boundary the three values for the
term in parenthesis found in the previous section as given by equations (20)
and (21), this can evidently be rewritten in the form

1 2
=§— j‘j‘—rf[cos2 (nx)+cos? (ny)+cos? (nz) |dS
T 7

fff( 4—-—+1“ﬂag>ddd
g% — jJax 2.
81r6t gat g&ﬂ" 4
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Since, however, both U and the surface integral on the right hand side of the
equation are constants independent of the time,!8 it is evident that the second
term on the right hand side of the equation must be zero, as the volume inte-
gral in the second term could not continue to change permanently at a
constant rate with the time. Hence evaluating the surface integral, we easily
obtain for an isolated system the simple relation

U=m (22)

where U is Einstein’s expression for the energy of the system, and m is the
mass which must be substituted into the Schwarzschild solution to give the
gravitational field at large distances. This appropriate result is itself no mean
justification for Einstein’s formulation of the energy principle.

§6. THE ENERGY OF A QUASI-STATIC ISOLATED SYSTEM
EXPRESSED BY AN INTEGRAL EXTENDING ONLY
OVER THE OCCUPIED SPACE

For certain purposes both of the expressions for the energy of an isolated
system, [[[(Ti+1t})dxdydz and m, are somtimes unsatisfactory, the first be-
cause the integration has to be extended over a region large compared with
the actual system, owing to the fact that tj is in general not zero in free space,
and the second because it gives no method of computing the energy from the
actual distribution of matter or radiation within the system. For a particu-
lar class of systems, which we shall call quasistatic, a more usable expres-
sion can be obtained.

Starting once more with our fundamental equation (6) for the energy of
an isolated system, we write

=fff(‘l:+t:)dxdydz

where we again use the quasi-Galilean coordinates defined in §4. Substituting
the expression for the density of potential energy t; given by equation (9)
this can be rewritten in the form!?

Gy
= — xdydz
16w 167 69";‘3 ey

and introducing the expression for € given by equation (15) this becomes
1 9 ¥ 1 g0
U= - — 4+ — —| ok — —07—— |dxdydz.
167r 167 dux, 09*? 167 * Q"‘ﬂ
v

18 The quantity m must be a constant, since it determines the gravitational field at the
distante boundary, and by our definition an isolated system produces a constant gravitational
field at the distant boundary.

19 We omit the cosmological term in the expressions for t: and T since our present con-
siderations already contain the assumption that the system is small compared with the total
dimensions of the universe.
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Substituting now for ® the well-known expression!?
O=8rT=8r(T,+T,+T;+T)

writing the third term of the integrand out in full, and combining with the
last term, we then easily obtain

1
=7fff (T -2 - T, —T)dxdyds
T 2o ) 2 o 2 Y i
ox\ " 9wt/ " 9y 8 098) ' 92\ 99 wdyds  (23)

N cy

The second integral on the right hand side of this equation can be evaluated,
however, by taking the boundary of the region of integration as a sphere,
transforming to a surface integral and substituting at the distant boundary
the values given by equations (20). We thus easily obtain m/2 as the value
of the second integral and since for an isolated system this is itself equal by
equation (22) to U/2 as shown in the preceding section, we can rewrite equa-
tion (23) in the form

fff(i‘ T, -, —Ti)dxdyds + -—fffg ﬁ—( )dxdydz (24)

Finally, let us now define a quasi-static system as one in which changes with
the time are taking place sufficiently slowly so that the last term in this
equation can be neglected in comparison with the others, as will of course be
exactly true in case we are only interested in the energy of the system at
times when it is in a quiescent state of temporary or permanent equilibrium.
We can then write as the desired expression?? for the energy of an isolated
quasi-static system

U= f f f (T - T — T —T)dadydz (25)

20 This expression for energy was first given by Nordstrém, Proc. Amster. Acad. 202, 1080
(1918). The derivation given for the expression, however, was unsatisfactory since it was made
to depend on an equation which the author ascribed to von Laue without any citation of the
place of publication nor statement as to its range of validity. I have myself not been able to
find the source of this expression and Professor von Laue has informed me by letter that he has
been unable to find such an expression in the second volume of his book on relativity, does not
know how he could have arrived at such an equation, now where else he might have set it forth,
and is inclined to believe that Nordstrom must have been in error concerning the reference.
Attention should also be called in this connection to the limited range as to the nature of the
system and the choice of coordinates which will make equation (25) valid.
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where it is evident from the equation of definition

that the integration has to be extended only over the region actually occupied
by matter or radiation.

§7. ENERGY OF A SPHERE OF PERFECT FLUID.

We may now use equation (25) to calculate the energy of a spherical dis-
tribution of perfect fluid in a static state of stable or metastable equilibrium.

Continuing to use our quasi-Galilean coordinates x, y, 2, {, we may evi-
dently write the line element for our spherically symmetrical and static sy-
stem in the form

ds?= —e* (dx?+dy*+dz?) + erds? (26)
where u and » are functions of 7 =(x?+4y2+2?%)!/? and independent of ¢&. In

accordance with this line element we have for the components of the funda-
mental metrical tensor

g11=goe=gs3= —e! gu=¢e
gl=g2=gB= —gn gi=¢ (27)
3u+»

gpa=g”=0 (P7£0’) \/——g=8 2

For the tensor of energy and momentum for a perfect fluid we have the
well known equation®

dx, dx,

—E; ds

T* = (poo+ o) — 8P (28)

where pg and pg are the proper macroscopic density and proper pressure of the
fluid as measured by local observers, and the quantities (dx,/ds) are macro-
scopic velocities. For our case the macroscopic velocities will all be zero ex-
cept for the case p =0 =4 and we shall then have

(dt)2 "
—_ — = ¢?
ds 8

so that the surviving components of the energy tensor will be
TU = T22 = T38 = e—;npo T4 = e—vpoo
or lowering suffixes

Ti=TZ=T:= —po Ty = poo (29)

4

Multiplying these results by v/ —g to change to tensor densities and sub-
stituting in equation (25), we now obtain for the energy of a steady spherical
distribution of perfect fluid

2 See Eddington, reference 1, equations (54.81) and (54.82).
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U= f f f (paot3po)e™ s dxdyds. (30)

We also have, moreover, the general relation
dVids = \/— gdxdxsdxsdas

where d Vj is the element of proper three dimensional volume, and in our case

this reduces to
3ptv

Sutv dt
aVy=r¢? dxdydz—;i— = e¥/2 dxdydz
s

so that equation (30) can be rewritten in the extremely simple form

U= ﬁpoo+3po) e2dVy= ﬁpoo+3170)v ga4dVy. (31)

§8. APPROXIMATE EXPRESSION FOR THE ENERGY OF A SPHERE
oF FLUID IN A WEAK GRAVITATIONAL FIELD

We shall now investigate the value of this expression, for the energy of a
sphere of perfect fluid, under circumstances where the gravitational field is
weak enough so that the Newtonian theory of gravitation is approximately
valid. Such a condition can of course be achieved by taking the quantity of
matter in the sphere sufficiently small.

Under these circumstances the line element will approach that for flat
space-time and we may write the components of the metrical tensor in the
form

Buw = O + hw' (32)

where the quantities 8,, are the Galilean values for the components of the
metrical tensor, +1 or 0, and the quantities k,, are small deviations there-
from. With these values for the components of the metrical tensor, however,
we may easily obtain a well-known relation between k4 and the Newtonian
gravitational potential ¥.

To do this let us consider the behavior of a test particle placed at the point
of interest and then allowed to move freely under the action of the gravita-
tional field. In accordance with the theory of relativity the motion of this
free particle must correspond to a geodesic in space-time and hence be gov-
erned by the equation®
dxp du,

d%x, + { } 0 (33)
ds? ke ds ds

Since the particle starts from rest, however, the initial “velocities” dx,/ds and
dx,/ds will all be zero except with u or » =4, and taking first the case of « =1,
the above equation will reduce at the beginning of the motion to

22 See Eddington, reference 1, equation (49.42).
23 See Eddington, reference 1, equation (28.5).
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d?x N {44 1}<dt>2 0 (34)
ds? ’ d o

N

Furthermore, we have for a particle at rest

ds? = g44dt2=(1 + h44)dt2

35
— (35)
and in general
(44,1} = _lgu (ai‘“+ %an _ %)
2 EN GEN dxx
which for our case reduces with sufficient approximation to
19 o/h
{441 =——5ff=—(—“—‘>. (36)
2 dx dx\ 2

So that substituting (35) and (36) in (34) and writing the analogous equations
with « =2 and 3, we easily obtain for the initial acceleration of the test parti-
cle the equations

dx 6<h44> dty 6<h44) d% 8<h44) -
ar ax\ 2/ dr e\ 2/ dar 9\ 2/

We note at once that (h44/2) satisfies the same differential equations of mo-
tion as the gravitational potential ¥ in the ordinary Newtonian theory, and
since hy, tends to zero at large distances may now write

s
2

provided we make the usual convention that the gravitational potential shall
be zero at infinity. This equation connects the relativity and Newtonian
methods of treatment, providing the gravitational field is weak enough to
permit the use of the older method.

In addition to this equation, we shall also need to use a value for a certain
integral which was known in the Newtonian theory but is sufficiently un-
familiar so that we shall now derive it. The integral in question is 3[pdV,
where p is the pressure within the fluid and the integration is to be taken over
the volume V of the whole sphere. We write

R
3fpdV = 3f drr2pdr

where R is the radius of the sphere, and by partial integration obtain

R R
3fpdV=41r73p — f drwridp
lo 0

R
=—f 4nr® dp
0

=¥ (38)
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where the first term has been dropped since 7 is zero at one limit and p at the
other. It is evident, however, that the quantity —4nr?dp is the total radial
force acting outwards on the spherical shell of material d M, lying between the
radii » and r+dr and hence can be equated to the gravitational attraction
acting on this shell which gives us

EM,
3fpdV = f aM,.
0 r

Moreover, the quantity on the right hand side of this equation is obviously
the work that would be necessary to remove the material of the sphere to
infinity and hence the negative of its potential energy. So that we can finally

write
oV
3fpdV = —f—Z-dV (39)

where the integral on the right hand side of the equation is a well-known ex-
pression for potential energy, p being the density of material and ¥ the gravi-
tational potential.

We are now ready to return to equation (31) which gave as an exact
expression for the total energy of the sphere

U = f(Poo+3P0) g1 dV.

In accordance with equations (32) and (38) we can write as approximately
valid in the case of a weak field

— h
\/gu = (14+h)t? = 1 + —24—4=1+‘I/.
And this can be substituted above to give
U = JpodVo + [poo¥dV, + 3fP0dV0 + 3fP0‘I’dVo-

In the case of a weak gravitational field, however, the potential ¥ is every-
where small compared with unity and for the case of ordinary matter in a
weak gravitational field* p, is small compared with pe. Hence the last term
in the above expression may be dropped entirely and the next two preceding
terms simplified by omitting the subscripts (o) which specify a proper system
of coordinates for the measuring of quantities. The result then becomes

U = fpooan + Jo¥dV + 3fpdV

# This is not true for radiation where p, =pw/3, so that our present considerations apply
to a sphere in which the density of ordinary matter is large compared with that of radiation,
which is of course the case for which the Newtonian potential energy was known,
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and introducing the value of 3/pdV given by equation (39), we finally obtain
as an approximate expression for the energy of a sphere of perfect fluid in a

weak gravitational field
¥
U= fPOOdVO + deV (40)

In satisfactory agreement with older theory, the energy thus consists of two
parts,—the first being the total proper energy of the material out of which
the sphere is composed, and the second the well-known Newtonian expression
for its potential gravitational energy.

As far as the writer is aware, this is the first case in which it has been
shown that Einstein’s exact relativity expression for the energy of a system
is more closely approximated by including the Newtonian potential energy
than by going at once to flat space-time. It is hoped that the reasonableness
of this result will lead to increased confidence in the use of the energy mo-
mentum principle in general relativity.

§9. THE INTERPRETATION AND USE OF THE ENERGY-
MoMENTUM PRINCIPLE IN THE CASE OF NoON-
ISOLATED SYSTEMS

So far, the applications of the energy-momentum principle, which we have
considered in the foregoing, have dealt with the conservation of energy for an
isolated system enclosed within a distant boundary located in the free space
surrounding the system, and these applications have been made largely in
order to illustrate the reasonableness of Einstein’s formulation of the princi-
ple. In applying the theory of relativity to the phenomena of nature, however
we may often be interested in using the energy-momentum principle to give
us information as to the changes which could take place within a limited re-
gion which forms part of a larger system. Hence in the present section we shall
consider the interpretation and use of the energy-momentum principle when
applied to such non-isolated systems, and in the following section we shall
discuss specifically the changes which the energy-momentum principle would
allow in the distribution of matter within a certain kind of non-isolated sys-
tem.

Let us return to the fundamental differential equation, true in all sets of
coordinates, which was given in §1

)
— (T4) =0 (41)
axy I3 14

where &, is the tensor density of material energy and momentum and t; the
pseudo-tensor density of potential gravitational energy and momentum.
Taking x4 to be the time like coordinate, this equation will lead to the mo-
mentum principles with u=1, 2, 3 and to the energy principle with u=4. For
our present purposes, however, we shall leave p unspecified since the follow-
ing considerations are general enough to apply to the energy-momentum
principle as a whole.
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Multiplying the above equation by dxdx.dx;, and integrating over the
system of interest we obtain with some rearrangement of terms

2 f f f (Tt dadxadx
ax4 " " A A3

T f f f [j"(zl+t‘)+‘€'(1’2+f2)+—6~(23+t2)]dxldx2dx3
dxy * * dxe *HH Oxy *OH ’

and, by performing the indicated integrations on the right hand side, this can
be rewritten in the form

9 1 4
—_ ff (I +t )dxldxgdm
ax4 B B
= — ff 1 dJC2dx3 - ff : dxld,\33— ff
zy Ty

where the limits of integration for the spatial variables x,, x,, x; are to be
chosen so as to include the system of interest.

Equation (42) as written is true in all sets of coordinates, owing to its
immediate dependence on the covariant equation (41). The interpretation
and use of the equation, however, are often simplified if we choose coordinates
in such a way that the limits of integration which must be taken in order to
include the system of interest actually lie on the boundary surface which sep-
arates the region in question from its surroundings. Thus for example quasi-
Galilean coordinates x, y, z with the limits of integration x to x’, y to ¥/, and
z to 2’ lying on the boundary of the system, are usually preferable for our
present purposes to polar coordinates 7, 6, ¢, with the origin inside the system
and the limits of integration 0 to 7, 0 to m and 0 to 2w, in which case 7 is the
only limit actually lying on the boundary. The increased simplicity of the
properly chosen coordintes arises from the fact that the right hand side of
equation (42) is then completely determined solely by the values assumed at
the boundary by the quantities T, t} etc. and is not dependent on their
values within the system.

Having chosen coordinates in the way suggested, the interpretation of
equation (42) becomes very simple. The equation now states that the rate of
change with time x4 of the volume integral on the left hand side of the equa-
tion is equal to the quantity on the right hand side, whose value is entirely
determined by the conditions prevailing at the boundaryof the system. The left
hand side of the equation can then be interpreted as the rate of change with
the time of a component of the total momentum of the system, with u=1, 2,
3, or the rate of change of the energy of the system, with u=4; and the right
hand side of the equation can be interpreted as the flux of momentum or en-
ergy through the boundary.

The use of equation (42) will also be facilitated by the suggested choice of
coordinates, when we are interested in some process which takes place within
our system under circumstances such that we have definite information as to

, (42)
dxdx,

T3
z3

Ty

c 2
T+t

T+t
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the values of the quantities ¥, t, etc. at the boundary of the system, but
do not have definite information as to the values they may assume in the
interior of the system during the course of the process which interests us. In
the following section we shall use coordinates of the kind suggested without
further remark.

§10. APPLICATION OF THE ENERGY-MOMENTUM PRINCIPLE TO THE
STATIC STATES OF A SYSTEM

Having thus obtained an indication as to the interpretation and use of the
energy-momentum principle in the case of non-isolated systems, we shall now
apply the principle to determine what restriction it would impose on the form
of line element within a system which could exist in different static states. To
solve this problem we apply the energy-momentum principle to the following
process.

We start with a non-isolated system which together with its surround-
ings is originally in some given static state such that none of the components
of the metrical tensor are changing with the time x,. Without altering the
metric or the distribution of matter and radiation outside of the system, we
then assume a change to take place in the distribution of matter and energy
inside the system in such a way that the system ultimately arrives in some
new possible static state. In the absence of the detailed knowledge, which
would permit us to describe the exact mechanism of the internal process that
takes place, we now inquire into the restrictions which the energy-momentum
principle, as applied to the system as a whole, would impose on the changes in
the form of line element inside the system which could accompany such a
process.

The first condition on the possible changes in the line element is imposed
by the hypothesis that the metric and the distribution of matter and radia-
tion outside the system are not to be changed by the process, this hypothesis
being introduced since our interest will lie in those changes which could take
place solely within the system without affecting anything in the outside sur-
roundings. As an immediate result of the assumption that the metric is not
to be changed outside of the system, it is at once evident that the process
must produce no change in the values at the boundary of the components
g. of the metrical tensor and their first differential coefficients 9g,,/dx..
And as a result of the assumption that the distribution of matter and radia-
tion is not to be changed outside of the system, it is evident that the energy-
momentum tensor 7** will remain unchanged at the boundary since it is
completely determined by the distribution of matter and radiation in accord-
ance with the equation of definition

ds ds (43)

The second condition on the possible changes in the line element is im-
posed by the requirement that the process taking place within the system
shall agree with the energy-momentum principle as applied to the system as a
whole. This condition is given by our previous equation
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d 4 4
é‘;‘fff (I”-i—t“)dxldxgdxa
4
=—fﬂz;+t; " dadas— fflzjquf‘ " dwidas— ff
z] 2

To apply this equation, we note that at the start of the process when the
system is in its original static state, the left hand side of the equation is
obviously equal to zero since none of the quantities involved can be changing
with the time. Thus at the start of the process the values at the boundary of
the quantities T} - - -t; must be such as to make the right hand side also
equal to zero. The quantities T,, T2 and T, however, are determined by
the g,, and T** and the quantities t, t and t, by the g,, and dg,,/dx,, and
hence in accordance with the last paragraph the values which they assume at
the boundary will not change during the process. The result is that both sides
of equation (44) remain equal to zero throughout the process, and the condi-
tion imposed by the energy-momentum principle reduces to the requirement
of constant energy and components of momentum for the system as given by
the equation

PRCE)

3
dxldxg.
3

’

T+t

z

f f (T, 4+ t))dx1dxadxg = const. (45)

To investigate the effect of this condition on the possible changes in line ele-
ment which could occur, we shall now reexpress the integrand by substituting
for it the expression given by equation (7) in §3. We thus obtain

fffa( 4—68+14gﬂ68>ddd (46)
—| —8“ —g 8% X18%X28x3=const.
3%y gane T 2 O gges )T

Y Y

In this equation, however, the suffix v is a dummy and the term with y=4
will be zero at the beginning and end of our process, since by hypothesis the
system is at these times a static one and the rate of change of all quantities
with respect to the time x4 is zero. Hence, writing the summation out in full
and performing the possible integrations with respect to xi, x; and x; which
are indicated, we can now express the condition imposed on the form of the
line element by stating that for the static states at the beginning and end of
the process we must have the relation

ff FELIE LA
- awe 2 8 gges % e
1 1

. 9% 1, 6653 z’
“+ ff —ga -+ ——-g“ga o dxdxs (47)
2 2

oL 1, ~ov|=
+ ff —GME‘; + —é—gng"ﬁ pyw: dxdxs=const.
3 3 7
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where the limits of integration x;, x;’ etc. lie on the boundary of the system.
The quantities occurring in the integrands of this equation, however, are com-
pletely determined by the values of the components g,, of the metrical tensor
and their first differential coefficients, as can be verified from equations
already given in this article. Hence the condition imposed by the energy-
momentum principle has already been met by our previous requirement
necessary to preserve the metric outside that the values at the boundary
for the g,, and their first differential coefficients should not be changed by the
process.

Hence, noting the restriction given in §9 as to the kind of coordinate sy-
stems that we employ, we can now state the following otherwise general
conclusion. Let us start with a non-isolated system, which together with its
surroundings is originally in some given static state, and consider that some
process then takes place which leaves the metric and the distribution of mat-
ter and radiation outside the system unaltered but changes the matter and
radiation inside the system in such a way that we finally arrive in some new
static state. Assuming no detailed knowledge as to the nature of the internal
process that has occurred, but applying the energy-momentum principle to
the system as a whole, we then find that the requirements imposed by the
energy-momentum principle on the possible changes in line element within
the system are to be met by the condition that the components g,, of the me-
trical tensor and their first differential coefficients dg,,/dx, are to retain their
values unaltered at the boundary.?

§11. ConcLusION

This concludes the material which it was desired to present in the present
article. Itis hoped that the general coherence of the treatment and the speci-
fic satisfactory result, as to the inclusion of the ordinary Newtonian expres-
sion for potential gravitational energy in the case of a fluid sphere in a weak
gravitational field, will increase the confidence with which the energy prin-
ciple is used in general relativity.

Some apology should perhaps be offered for the great length of the two
preceding sections on the application of the energy principle to the changes
that may take place within a limited region which forms part of a larger sys-
tem. There are, however, a number of points connected with the develop-
ment which have seemed puzzling enough to warrant a detailed exposition
and the final conclusion is one of considerable usefulness.

It should perhaps also be remarked that we have not treated in the fore-
going any questions which involve the energy of the closed universe as a
whole since these deserve separate consideration.?

% In connection with the formulation of this section, I have been greatly helped by dis-
cussions with my colleague Dr. J. Robert Oppenheimer, for which I wish to thank him, also
in this place.

% See Einstein, Berl. Ber. 1918, p. 452, and Tolman, Proc. Nat. Acad. 14, 348 (1928).



