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ABSTRACT

A method is developed for the numerical calculation of characteristic energy
levels in cases where the wave equation contains, or can be reduced so as to contain,
a single space variable. The procedure consists in the numerical integration of an
auxiliary differential equation for several chosen values of the energy, after which the
characteristic values are obtained by interpolation. The method is one of considerable
generality so far as the form of the differential equation is concerned, and is capable of
giving any preassigned degree of accuracy.

1. The entrance of wave mechanics into modern physics gives new in-
terest to boundary value problems associated with linear differential equa-
tions, especially those problems treated by Weyl' and others which have
to do with the Sturm-Liouville equation

d d
;[ﬂx) ﬁ] — g(@)y+M(x)y =0 (1)

in the intervals 0 <x < o or — o <x< . A problem of particular physical
interest is the determination of those characteristic values of A (eigenwerte)
for which (1) possesses solutions that are finite at both ends of the interval.?
In several important special cases the complete analytical solution of this
problem is known,? but in other instances it is necessary to resort to approxi-
mate methods.

The object of this note is to describe a numerical procedure for obtaining
the characteristic values of N belonging to the equation

2,

d’u
——4G(x,Nu=0. (2)
dx?

Equation (1) can be reduced to this form by the substitution y=wup~1/2
provided p has first and second derivatives and does not vanish in the in-
terval.

! Weyl, Mathematische Annalen 68, 220 (1910), and Gottinger Nachrichten, (1910),
p. 442. Hilb, Mathematische Annalen 76, 333 (1915). Milne, Trans. Amer. Math. Soc. 30,
797 (1928).

2 Schrédinger, Ann. d. Physik 79, 361 (1926). See p. 363. Kemble, Phys. Rev. Supple-
ment 1, 157 (1929), see p. 177.

3 Cf. e.g. Kemble, reference 2, pp. 183-186. Condon and Morse, Quantum Mechanics,
(McGraw-Hill, 1929) Chapter 1I.
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Equation (2) contains as a special case the wave equations of the type

d*u 87
d_x;-*_ 1 [W—V(x)]u—-(), (3)
as is seen by setting
8wl
A=———
h?
and
8riu
G(x ,\)=\— 0 V(x).

Equation (2), however, is considerably more general than (3).

With regard to G(x,\) we assume that dG/d\ exists and is positive, that
G(x,\) is continuous in x, that when |x | is sufficiently large G(x,\) is negative
for the values of N under consideration, and (if the interval is 0 <x <)
lm Gx, )= — .

2. For simplicity we consider only the case in which the interval is
—ow <x< . Letxbea value of x in the interval, and let #;(x) and u,(x)

be two solutions of Eq. (2) satisfying the conditions
#1(x0) =1, #s(%0) =0,
, , €))
' (x0) =0, uy' (x9) =a#0.

The constant a is arbitrary and in any particular case is to be deter-
mined so as to make the numerical work as simple as possible. These solu-
tions satisfy the well-known identity

() s (%) —us(x)u,'(x) =a. ()
Let a function w(x) be defined by the equation
w(x) = [w*(x) +us?(2) |12 (6)

By differentiating this equation twice, eliminating u,"’(x) and u;”(x) by
means of (2), and simplifying with the aid of (5) we find that the function
w(x) satisfies the simple differentiation equation

d*w a*

dx—2+c(x,x)w—;v—3=o. (7)

Now the general solution of (2) can be expressed in the form

u(x) =Cw(x) sin {af w_‘ldx—a} , (8)
EL)

in which C and « are arbitrary constants. Since with the given hypotheses

w(x) does not approach zero at either end of the interval, it is clear that a

solution satisfying the desired conditions at both ends of the interval can

be found if and only if
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a <
— f wldx=n 9)
TV

in which # is a positive integer.

3. Now the integral
a kel
N=— f w2 x (10)
T V_»n

is an increasing function of A, so that if we select £ values of X for which this
integral is finite (values of A for which N is infinite belong to the continuous
spectrum and do not interest us here), say AL<A?- .- <A¥, we obtain &
values of N, say Ni<N;:--<N;. If an integer = lies in the interval
N:<n < N, we may use the method of interpolation to obtain approximately
the corresponding value of A, A =X\,, which will be precisely the zn-th charac-
teristic value of N counted in order of magnitude.

To put this plan into execution we proceed as follows:

First, we solve Eq. (7) with the initial conditions w(xg) =1, w'(x0) =0
for each of the k values of A\, \,' A2 .. - A*. For this purpose we may use
any one of several well-known methods for the numerical integration of
differential equations.

Second, using in turn each of the solutions now obtained, we evaluate
by numerical quadrature the integral (10) and get the k values of N, N,
Ng, - -+, Ni

Lastly, we obtain by interpolation the values of A corresponding to each
integer in the interval N; to N;.

When the characteristic value of N has been found it is then possible to
integrate (7) using this value of A and then obtain the corresponding wave
function itself by means of (8). As a matter of fact, however, it will generally
be easier to obtain w(x) and ffw™? dx by interpolation from the compu-
tations already performed.

Naturally the speed and accuracy of the method depend largely on good
judgment in the selection of the trial values A!, A? - - -N*. This is perhaps
best illustrated by means of an example.

4. We take as an illustrative example the differential equation

d*n 8w .
dz2+ e (W—kzt]u=0,
which upon the substitutions

JAvES
g=———x
(872uk) o

64 4,,271/3
x:[ ”] w,
hik

’
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reduces to

d2u+()\ Yu=0
— —xHu=0.
dx?

For simplicity we choose xo=0, a=A!2, so that equation (7) becomes

d’w
—+AN—xH)w—Aw3=0, (11)
dx?
with the initial conditions w=1, w' =w"" =w® =w® =w® =0atx=0. The
desired solution is even, so that we need to compute it for positive values of
x only.
The critical values of \ are evidently positive, and when # is large their
order of magnitude can be obtained from the formula*

1
mn=n [ - s R,,
0

in which R, is bounded. This gives
No=n43[2.184+E/,]

where E is bounded. Itappears, therefore, that \; will probably lie somewhere
between 1 and 4, so we choose the four trial values AN'=1, A\?=2, N3=3,
M =4, and calculate the solution of (11) for each of these values. The method
actually used was that described by the author elsewhere.®? With the aid of a
calculating machine and Barlow’s Tables the integration can be done rapidly.
The values of 1/w? and 1/w? are read directly in the columns headed “square”
and “cube” respectively. We retained only enough significant figures in
w to give 1/w? to four places of decimals. The first one of the four computa-
tions is shown below to illustrate the general method. The integrals

I(X)=f w“’dx=2f wdx
—o0 0

were found with the calculating machine, using Weddle’s rule and were
checked with Simpson’s rule. They proved to be as follows:

A I(N) Al AT NI
1 3.0469

621
2 3.1090 8

629 6
3 3.1719 14

643
4 3.2362

¢ Milne, Trans. Amer. Math. Soc. 31, 907-918 (1929), see formula (25) p. 914.
5 Milne, Numerical Integration of Ordinary Differential Equations, Amer. Math. Monthly
33, 455 (1926).
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From (8), since a =\'/2, we get

Ao= [wn/I(N)]2

867

and by a few trials find from this that the values of the first two characteristic
numbers are

A =1.0605
Ne=3.7998.

CoympuTtaTION I. A=1.

x w w’ w'’ [xt—1] 1/w3 1/w?
0 1.0000 .0000 0000 —1.0000  1.0000 1.0000
1 1.0000 10000 0001 —.9999  1.0000 10000
2 1.0000 10001 0016 —.9984  1.0000 1.0000
3 1.0000 10005 0081 —.9919  1.0000 1.0000
4 1.0001 10021 0252 —.9744 10997 19998
5 1.0005 .0061 0605 —.9375 19985 19990
o 10015 0151 1238 — 8704 19955 19970
7 1.0038 10322 2258 —.7599 19886 19924
8 1.0084 10620 3708 —.5004 19752 10833
9 10168 1104 6016 — 3439 0513 10673
1.0 1.0314 11853 9114 0000 9114 10400
11 10551 12966 1341 ‘4641 8514 '8983
12 1.0024 14590 1.040 1.0736 7671 18380
13 11493 16930 2.792 18561 6587 7570
14 1.2344 1031 4.039 28416 5316 6563
1.5 1.3606 1.522 5.924 4.0625 3071 5402
1.6 15467 2.251 8.850 5.5536 2703 4181
1.7 18232 3.353 13.57 73521 1650 13008
18 2.2377 5,067 2134 0.4976 10893 1997
19 2.8706 77803 3458 12,0321 10423 1213
2.0 3.856 12.32 57.83 15.0000 0175 0673
21 5440 2001 1004 184481 10062 10338
2.2 8.058 33.66 180.7 22425 10019 0154
2.3 12.60 58 74 338.6 26 98 10005 10063
24 2057 106.9 661.6 3218 10024
2.5 36.5 230.0 1387. 38.06 .0007
2.6 60 4100 10003
S wdx =3.0469 by Weddle.

3.04688 by Simpson.



