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ABsTRAcT

The form of the diffraction bands of a very fine uniform crystalline powder
has been computed for the (1, 0, 0), the (1, 1, 0) and the (1, 1, 1) planes for cubical
and octahedral crystals of the regular system. The shape of the bands is approxi-
mately that of the Gauss error curve. Both the shape and the half intensity breadth
vary from band to band and the variations are characteristic of the shape of the
crystals. There is definite correlation between the form of the band and the direction
of the corresponding Bragg planes with respect to the external features of the crystal.
The mean breadth of the bands is nearly the same for cubical and octahedral crystals
having the same volume. The values of the constant of Scherrer's equation are in gen-
eral smaller than those computed by other investigators for the cubical case.

Secondary maxima. —A case is found in which secondary maxima of the intensity
function would be sufficiently intense to be directly observable. It is pointed out that
such an effect might lead to a false interpretation of the crystal structure of a very
fine crystalline powder.

w HEN monochromatic x.-rays are diffracted by a fine crystalline powder
the difTraction bands are found to have a measurable width which is a

function of the fineness of the powder. The effect is closely analogous to the
low resolving power of a diRraction grating having a small number of lines.
In this case we can regard the crystals as three dimensional gratings, the shape
and size of which inHuence the form of the observed diffraction band.
Scherrer' investigated the case of crystals of the regular (cubic) crystallo-
graphic system which are cubical in shape and gave for the half intensity
breadth, 8, of' a di6raction band produced by the powder method,

E)8—
D cos (80/2)

in which ) is the wave-length of the incident x-rays, D, the length of one edge
of the cube, and |Io, the angle between the diffracted and the incident ray,
E is a constant whose value Scherrer found to be 2 [log2/s. ]"'.Two other in-
vestigators treating more general cases have obtained results which reduce to
Eq. (i) for the case of cubical crystals. They obtained slightly different
values of the coefficient K. Seljakow' investigated the case of crystals of any

* This investigation was supported by a grant from the Heckscher Foundation for the
Advancement of Research at Cornell University.

' P. Scherrer, Nachr. Gesell. Kiss. Gottingen (1918),p. 190.
~ N. Seljakow, Zeits. f. Physik 31, 439 (1925).
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crystallographic system whose shape is a parallelopiped geometrically similar
to the unit cell and whose edges are parallel to the crystallographic axes.
v. Laue' treated the case of parallelopipeds which have edges parallel to the
crystallographic axes but which are not necessarily similar to the unit cell.
His development brought out two interesting facts; viz. that the breadth
of the diffraction bands depends upon the shape as well as upon the size of the
parallelopiped; and in the general case, that the breadth is a function of the
Miller indices of the band.

Considerable use has been made of Scherrer's equation in estimating the
size of crystalline powders. Particular interest attaches to the investigation
of colloidal preparations of such elements as gold, silver and nickel. These
elements crystallize in face-centered cubic lattices and are normally of the
octahedral form. In the investigations cited above no attempt has been made
to determine the shape of the diffraction band. The shape of the band should
depend upon the Miller indices of the band, the shape of the crystals, and, if
the crystals are not of uniform size, upon the distribution of size. It seemed
desirable to investigate the theoretical breadth and shape of several diffraction
bands for crystals of octahedral as well as cubical shape. .

The general procedure for computations of this sort is given by v. Laue'
and in the following discussion his notation is generally followed. Assume a
parallel beam of monochromatic x-rays incident upon a crystal in a direction
which we shall specify by the unit vector so. Consider the rays diffracted by
the crystal in the direction of the unit vector s. The intensity of the dif-
fracted beam may be expressed' as a periodic function of the quantities A;
defined by 2;=0 a; H; i =1, 2, 3 in which k=2m/lI and H=s —so. a&, a&

and a3 represent the three primitive vectors of the space lattice. In the case
of fine powders the extinction eR'ect is negligible~ and each unit cell of the
crystal may be regarded as diffracting in the direction of s rays which are
identical except for phase. In the expression for the total intensity of the
diR'racted beam, Ai, A2, and A~ represent the phase differences between
rays diffracted by cells adjacent respectively along the three crystallographic
axes of the crystal. The principal maxima of the function occur when the
phase differences, 2;, are integral multiples of 2x, i.e. when A;=27rh;; i =
1, 2, 3 in which the quantities h; are integers. It will be noted that h&, h2, and
h3 are respectively n times the Miller indices of the Bragg planes of the crys-
tal where n is the order number.

In the cubic system, the magnitudes of the three vectors a; are equal and
we can write ~a;

~

=a. This makes it possible to regard A ~, A2, and A3 as the
projections on the three crystallographic axes of a vector, A = kaH. Consider
a rectangular cartesian system in which A &, A2, and A3 are the coordinates
with axes parallel to the crystallographic axes of the crystal. We will desig-
nate the space thus dehned as A-space. Each point, A;, of this space deter-

3 M. v. Laue, Zeits. f. Krist. 64, 115 {1926).
' M. v. Laue, Enc. Math. Wiss. 5, 459.
~ R. J. Havighurst, Phys. Rev. I2] 28, 882 (1926).
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mines a value of the intensity function. The points 2xh, in A-space form a
lattice which is geometrically similar to Ewald's reciprocal lattice. ' Each such
point corresponds to a principal maximum of the diffraction pattern.

Since H is the difference of two unit vectors, s and so, its numerical value
is 2 sin(9/2) in which 8 is the angle between the two vectors, s and so, i.e. the
angle of diffraction. It follows that A, the numerical value of A, may be ex-
pressed by

~=XIII

el =(4 s/X)sin(~/2).

The direction of A is that of H and depends only upon the directions of the
incident and diffracted rays. The vector A is therefore independent of the
size, shape and orientation of the crystal. If the incident beam falls upon a
crystalline powder, the same vector A pertains to the ray diffracted by each
crystal in the direction determined by the angle 0. To each crystal of the
powder there corresponds an A-space with axes parallel to the crystallo-
graphic axes of the crystal. The total intensity of the beam diffracted through
the angle 8 by the powder is the sum of the values of the intensities deter-
mined in the A -spaces of the several crystals by the vector, A.

The intensity function is determined by the size and shape of the crystal,
the crystal lattice and the structure factor. Consider a large number, &, of
crystals of uniform size, shape, space lattice and structure. Then the same
intensity function, J, will pertain to the A-spaces of all the crystals and the
total intensity will be found by integrating Jbetween such limits as to include
all possible orientations of the crystallographic axes. For the purpose of carry-
ing out this integration, it is convenient to specify the orientation in terms of
the direction of Ao, the radius vector of the point 2mb; in A-space correspond-
ing to the diffraction maximum, h;, with which we are concerned. Let @ be
the polar angle between the directions of A and Ao, $, the azimuth angle about
the direction of A as a pole; and P, that about the direction of Ao as a poie.
The total intensity, I, will then be represented by

J A; sin pdpd$df

I==.V—

J ..~«««

J(A;) sin Pd@df
4~ o &o

since J(A;) is invariant with respect to $. This double integral is the»me
as that representing the integral over the surface of the sphere in A-space
whose center is the origin and whose radius is A. It will be convenient to
consider I as this surface integral.

The intensity function' for the case of a crystal whose shape is a cube with
edges parallel to the crystallographic axes is well known. Expressed in term~

' P. P. Ewald, Zeits. f. Krist. 56, 129 (1921).
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of the intensity diffracted by one unit cell per unit solid angle in the specified
direction, it is given by

sin' 2MA~ sin' —,'MA2 sin' ~MA3

sin'-,'A~ sin'-,'A2 sin'-', A3
(4)

in which M is the number of unit cells along one edge of the cube. The prin-
cipal maxima of Joccur when A;=2mb;and the value of Jat these maxima is
Jo ——3P. Because of its structure the intensity of the rays diffracted by a unit
cell mill vary with the direction thus causing the various principal maxima
to have different intensities. In a study of the variation of intensity within
a diffraction band, we compare the surface integrals over spheres in A-space
which comprise a very thin spherical shell and we may neglect the variation
of the structure factor with respect to A within this shell. This is accomplish-
ed by measuring the intensity function in terms of its maximum value at A, =
2+k; for the band, k;, under investigation and gives

J'= J/Jo.

Let us investigate the intensity function for an octahedron consisting of
a simple cubic lattice with axes x, y, z along the diagonals of the octahedron
and a single distracting particle at each point of the lattice. Let 3f be the
number of diffracting particles along a diagonal. We will take M to be
an odd integer. We will specify the points of the lattice by the coordinate
whole numbers nj, n2, n3 measured parallel to the x, y, s axes respectively in
terms of the length of the unit cell i.e. x =nja, y = n2a, s = n3c. The points hav-
ing a particular value of n3 form a square parallel to the x, y plane whose
diagonals extend from —(m —~n3 ~) to (m —~I3 ~) in which nz= 1/2 (M —1).
In this square the points having a particular value of n2 form a row which ex-
tends from n~ = n~" t—o n~ ——n~" in which n~" ——m —~n2

~

—~n3 ~. The resul-
tant of the rays diffracted in the direction of s by the (2n&"+1) points com-
prising the n~, n3 row will be in phase with that diffracted in this direction by
the central point, 0, n2, n3, of the row. The contribution of any point, n&, n&,

n3 to this resultant is cos(nqA, ) multiplied by the amplitude. Measured in
terms of the ray diffracted in the direction of s by any point, the resultant is

, cos (n&A&). As we now proceed to combine the resultant rays from
the various rows of the n3 square, we are combining rays having unequal am-
plitudes whose values are symmetrically distributed about the central row,
O, n3. Each component ray has the phase of the central point of its row. The
resultant will therefore have the same phase as that of the ray diffracted by
the central point 0, 0, n3 of the n3 square and will be

I c(ons, A,)g ,"', cos(n~A~) I

in which n, '=m —~n3 ~. Similarly we may combine the rays from all such
squares and obtain I', the resultant amplitude of the ray diffracted by the
octahedron in the direction of s.
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m na'

I'= g cos (n, 4,.) g cos (Ns4&) g cos (n~A, )
As I

141
II

Principal maxima of P occur when AI =2mb~, A2=2xk2, A3=27rh3 where hI,
k'2 k3 are integers. The value of these maxima is Po ——(4m'+6m'+8m+3)/3
and the intensity function measured in terms of the intensity at a maximum
is J' = I"/P p'. (7)

An investigation of the variation of I' with respect to M shows that if I'
is expressed in terms of new variables, u; = 1/2 M(A; —2sh;), it is approxi-
mately independent of M in the neighborhood of the point 2mb .. If we now
write the expression for J„', the limit of J' as M approaches thesumma-
tions of Eq. (6) become definite integrals which may be evaluated. The result
of the integration is

(Nl Qg )Qa Sin S3+(Sm S3 )Sl Sin Sl+(S3 Sl )tlat Sin Q2

(Qg' -82') (S2'-Qs') (Sa' -Sy')

~ ~ ~

~

An investigation of Eq. (8) shows that the distribution of the values of
J„about the origin of u; is nearly spherical i.e. J„ is approximately a single
valued function of u = (uP+uP+uP)'". For any given value of u, maxima
or minima occur if (a) u;=uq ——0, (b) u;=u;, uq ——0, or (c) u;=u;=u~. On
the sphere in A-space whose radius is u and whose center is 2xh; these maxima
and minima occur at intersections with diameters parallel respectively to (a)
the axes of the space lattice, (b) the diagonals of squares bounding the unit
cells, and (c) the diagonals of the unit cells. The values of J'„' for these three
conditions are given by

6J '= (I;—sin u,),
ug

3J„'= (siri u, —u, cos e;),
Q;

u= +2u;

3J„'=—[(1+u ) sin u; —u; cos u;], u=+3Nf;
4u

and are shown as functions of u in curves Ia, Ib, and Ic of Fig. L. For values
of u&5.7, minima at which J„'=0 occur at other points on the sphere. It
follows that when u&5. 7 all values of J„' must lie in the narrow strip en-
closed between the curves and when u)5.7, in that enclosed between the
curves and the line J„'=0.

The nature of the approximation involved in using Eq. (8) instead of
Eq. (7) is shown by curves Ia, Ib and Ic of Fig. 2. Here the corrections which
must be applied to J„' in order to obtain the value of J' for the case, M= 11
are plotted against u. The correction curves for larger values of JI/I are of the
same general form with maxima and minima approximatelyat the same values
of u, but they have smaller values for the ordinates. The correction for any
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value of u is approximately inversely proportiona1 to M'. For values of M
which ordinarily occur these corrections are small.

The secondary maxima of the function J' defined by Eqs. (6) and (7), lie

on the diagonals of the cubes of the lattice formed in A-space by the principal
maxima points, 2xh;. At the centers of these cubes where three such diag-
onals intersect there occur secondary maxima at which the intensity is

approximately three times that at the neighboring secondary maxima. The
large ordinate at u = 29.9 in curve Ic of Fig. 2 is due to such a large secondary
maximum. In the derivation of Eq. (6), M was assumed to be odd. If M
were even, no secondary maxima would occur at these points in A-space.

f 5 6 7
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Fig. i. The intensity function, J„', plotted against u; (I), for octahedral crystals; {II),
for cubical crystals. I is measured parallel to the radius vector A p of (a) the (1, 0, 0) maximum,

(b) the {1,1, 0) maximum, {c)the (1, 1, 1) maximum.

Substituting the coordinates of these points, (2vrk; —s.), for A; in Eq. (6)
we obtain I' = ( —1)'"(3/3E) (M'+1) /(M'+5) which gives a value of J ap-
proximately 9/3II times that at the neighboring principal maxima. Colloidal
crystals have been examined by x-raysv for which the equivalent value of M
was as small as 9. Crystals of this size, having octahedral shape and a simple
cubic lattice would form an x-ray powder spectrogram in which these large
secondary maxima should be directly observable as faint diA'raction bands.
The principal maxima points, 2~k;, form in A-space a simple cubic lattice,
geometrically similar to the reciprocal lattice' of the crystal. If we include the
large secondary maxima points, (2mb; —s), the reciprocal lattice becomes
body-centered. Since the reciprocal lattice of a face-centered crystal is a body-
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centered lattice, the observed diffraction pattern would be similar to that of a
face-centered crystal. The relative strengths of the bands would be very much
like that observed in the di6raction pattern of sodium fluoride.
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Fig. 2. The correction function, G(M, I;)=J' —J ' plotted against e; for a simple cubic
lattice; (I) octahedral crystals, M=11; (II) cubical crystals, &=6. The small circles show

corresponding values for a face-centered lattice. e is measured parallel to the radius vector
A, of (a) the (1, 0, 0) maximum, (b) the (1, 1, 0) maximum, (c) the (1, 1, 1) maximum.

The intensity function in the case of a cubical crystal may be treated in
the same way as in the case of an octahedral cystal. If we express J' of Eq.
(5) in terms of u; and take the iimit as M approaches oo we obtain

Sin Qy Sln N2 Sln N3
/ I ~ ~I I S

(10)

The conditions for maxima and minima of this function are similar to those
for Eq. (8). Curves IIa, I Ib, and IIc of Fig. 1 show the corresponding maxima
and minima as functions of u. In this case additional min'ima at which J„=0
occur for values of u &3.3. Curves IIa, IIb, and IIc of Fig. 2 show the cor-
rections to be added to J„'to obtain the value of J' for the case, M = 6. Here
also the correction for a particular value of u is inversely proportional to M~.

Since crystals having face-centered lattices are of particular interest, the
intensity functions have been developed also for diffracting particles at the
points of a face-centered lattice. In the octahedral case, the result is

in which

p+Q 2J-
&o+Qo

sos—1 nq' —I lt

Q= g cos (noAo) 4 g cos (N,A, +-',A,) icos (n,A, +o~A)
-m+1 0 0

~ R. Zsigmondy, "Kolloidchemie, " Leipzig 1920, p. 406.
s cf. A. L. Patterson, Zeits. f. Physik 44, 596 (1927).
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+two other terms formed from the first by a rotation of subscripts and Qo =
4m'+6m'+2'. The limit of J' as 3f approaches ao is identical with J„'as
given by Eq. (8). The corrections to be added to J„' to obtain J' are so
small that the curves have not been drawn. The points indicated by the
small circles in Fig. 2 indicate some of the values for M = 11.

In the case of crystals of cubical shape with a face-centered lattice

(R,+5,)
in which R= J'"as given by Eq. (4), R, =3II',

sin-.'MAi sin —,'(M —1)A, sin —,'(M —1)A35=——
in 2~1 Sill gc42 sin ~33

+ two other terms formed from the first by rotation of subscripts and So =
3M(M —1)'. The limit of J'as Mapproaches &e is identical with J„'as given
by Eq. (10). The corrections to be added to J„' to obtain J' are larger than in
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Fig. 3. The correction function, G(M, u;) =J' —J ' plotted against u for a face-centered
lattice and cubic crystals, &=10. The small circles show corresponding values for a simple
cubic lattice. u is measured parallel to the radius vector A 0 of (a) the (1, 0, 0) maximum,

(b) the (1, 1, 0) maximum, (c) the (1, 1, 1) maximum.

the other cases studied. The curves are shown in Fig, 3 for M = 10. As in the
other cases the positions of the maxima of these curves vary but slightly with
3f. In this case the ordinates are approximately inversely proportional to M.
For the purpose of comparison, corrections for the case of the cubical shape
with a simple cubic lattice for M = 10 are shown in Fig. 3 by sma11 circles.

The narrow limits, between which all values of the intensity function must
lie as shown in Fig. 1, make it possible to select an integrable function pf u
which closely approximates J. An approximate solution of our problem may
be obtained by substituting this function for J in Eq. (3) and performing the
integration. An investigation' of the case of octahedral crystals by this

' C, C. Murdock, Phys. Rev. [2] 31, 304 (1928).
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method gave the value of the constant K of Eq. (1) as 1.6 when D was meas-
ured through the center of the octahedron from corner to corner. The inves-
tigation showed that the value of K was different for the various diA'raction
bands. The method of procedure, however, is not suitable for the study of this
variation or for the determination of the form of a diffraction band.

Let us represent the function, J„', by the expression, e "'/&'+F(u;) in
which the value of P is so selected that the first term approximates J„'for the
case under consideration. We may now express Jof Eq. (3) as

J=JOJ'=Jo[ J„' +G( M, u;) I =JO[e ""+F(m;)+ G( M, u;)} (13)

in which G(M, uf) represents the correction to be added to J„' in order to ob-
tain J'. The ordinates of Figs. 2 and 3 are values of 6 for the particular cases
shown. We wiH use u' in place of P as the variable of integration.

u'=u '+u "-+u '

= ~~M'[A'+4s'h'-' —4s (hgAg+ hgA 2+hgA3) ]
=-'M' [A'+4s'h' —4s.hA cos @]

in which h' = kP+ k2'+ &32. Therefore d (u') = s kA M' sin Q dQ.
In terms of u' the limits of integration of Eq. (3) become v' and w' where

s= q M(A —2s.k) and w= 2 M(A+2s. h). These limits are such that the
integration may be considered as a surface integration over the surface of a
sphere in A-space whose diameter is 2A. In changing variables from A; to n;
we shifted the origin to the point, 2mb;, associated with the diffraction band,
k;, with which we are concerned. Ke also changed the scale of the space by
the factor 1/2 M. In terms of the new scale, the diameter of the sphere of
integration is AM=m+v. The diameter of the sphere which passes through
the point 2xh; is 2mhM=m —v. The point 2xA;; is not the only point on the
surface of this sphere at which a principal maximum of Joccurs. For example
on the sphere of integration for the (1, 1, 1) diffraction band there are eight
points, 27rh;, corresponding to the following values of k, ; 1, 1, 1; -1, 1, 1„'

1, -1, 1; 1, 1, -1; 1, -1, -1; -1, 1, -1; -1, -1, 1; and -1, -1, -1. Let N represent
the number of such points. Since J is a periodic function of A;, the integration
indicated in Eq. (3) includes the values of J in the neighborhood of all these
points and the contribution to the integral in the neighborhood of each point
is identical. J„ is not a periodic function. It can approximate JoJonly in the
neighborhood of the point, 2vrh;. In its integration the limits should be fixed
so as to include 1/X' times the area of the sphere and the integral should be
multiplied by N'. It will not be found necessary to specify exactly the
upper limit of this integration. Its order of magnitude may be ascertained by
taking the upper limit of n' as r', where r represents the radius of a circle
whose area is 1/X' times the area of the sphere. Thus s.r' =4s'k'M'/X' and
r'=4s'3Ph'/N' The value of h'/N' is 1/6 for the (1, 0, 0) and the (1, 1, 0)
di8'raction bands, but has a larger value for each of the other bands. The
upper limit of integration is therefore of the order of magnitude of 2/37r'M'
or larger.
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Making these substitutions in Eq. (3) we obtain

SE'Jo y9 rm

I=
~~ e " » d(u )+ f(u v)d(u')+ g(M u v)d(u')

4 2h+ ~2 s vs

XE'Jo
[V+V+W],4x'AM' (14)

in which f(u, v) = 1/2' fe' F(u;) dP, the average value of F with respect to P,
g(M, u, v) = 1/2' fP G(M, u;) dP and U, V, and W represent respectively the
three integrals of the equation.

The first integral, V, of Eq. (14) has the same value for each band, h;, and
may be written

p rs

U= jl e "'i"'d(u') =p'e """'

if r'/p' is large. Since r'/P'&~'3f'/P' and M'/P' is of the order of 10 for
the smallest colloidal crystals so far studied, 7 this assumption is justified.

The second integral, V, of Eq. (14) varies from band to band. It may be
evaluated graphically by the following method. Contour plots are made of
the function, F(u;) =J„'—e "'I"' for a number of values of u. These may be
made on the surfaces of spheres, the radii of which are taken as equal to u. It
has been found more convenient, however, to make plots which are the. pro-
jections of such spherical plots upon planes tangent to the sphere and perpen-
dicular to the direction of the vector Ao. From these plots the curves for
F(u;) at various values of u and v are plotted as functions of f and integrated
by inspection to obtain the values of f(u, v). These values are then plotted as
functions of u' for various values of v and the integrals evaluated graphically.

It is not practicable to carry out this process to the upper limit of inte-
gration. For large values of u, the value off becomes small but remains finite
and small errors in the function produce large errors in the integral due to the
fact that the integration is performed with respect to the square of u. If s'
is the upper limit of the graphical integration it leaves a part, f ~ f(u, v)d(u ),
unevaluated. By properly choosing the value of s, the error involved in

neglecting this part of the integral may be compensated in making the ex-
perimental observations. In an experiment the incident radiation will not be
strictly monochromatic. Moreover there will be some generally scattered
radiation. Both of these effects will give a background intensity superimposed
upon that which we are computing. In practice the intensity is measured on
either side of a diffraction band and from these data the background intensity
is estimated for the points in the band on the assumption that there are no
maxima or minima in the background intensity in that region. If the value of
s is taken two or three times the largest value of v used, this assumption is also
justified for f„'f(u, v) d(u ) and the part of the intensity proportional to it
wi11 be automatically subtracted from the measured intensity as part of the
background correction.
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The third integral, W, of Eq. (14) may be evaluated by the method used
for the evaluation of V. If, however, G can be approximated by an integrable
function of u, it will be simpler to proceed as in the case of J„.An examina-
tion of the correction curves of Figs. 2 and 3 shows that the (a), (b) and (c)
curves of each set are practically identical for the smaller values of I and that
for the larger values, two curves of each set have small ordinates. Advantage
may be taken of this to approximate G by the function Cu'e """ which

gives as a first approximation

W=Cp'(p'+o')e " '"

C is a function of 3L It may be expressed for the various cases studied
as shown in Table I.

TABLE I.

Simple lattice
Face-centered lattice

Cube

C = ~/(3')
C= ~/(3M)

Octahedron

The remainder, G —Cu'e " '", may now be integrated by the method de-
scribed for the evaluation of V.

Since W depends upon 3f, which, in general, can only be known as a result
of the solution of our problem, we will first investigate the case in which 8"is

negligible. If W=0, Eq. (14) maybe written

in which I.= U+ V. L is the surface integral over the sphere of N'J„'. The
only quantities in the second member of Eq. (17) which depend upon v, are
L and A. If, therefore, we measure the intensity in terms of its maximum

value, Io, for which v = 0, we obtain

I' = I/Io =L'A o/A,

in which L'=L/Lo and Io represents the value of L when v=0. The factor
A o/A may be written by Eq. (2) as sin (Ho/2) —:sin(8/2) in which 8o is the value
of 8 corresponding to the maximum, k;. In this form it is seen to be determined

by directly observable quantities. Within a diffraction band 8 differs only
slightly from 8o and the factor may be written 1/(1+ o cot (8,/2) 68) where
68 = 8 —Oo. Since this factor is unsymmetrical with respect to ~0 it introduces
asymmetry in the diffraction band. It is due to the fact that the integrations
for values of v which are numerically equal but of opposite sign, are performed
over spheres of different areas. In the graphical process for the evaluation of
V another source of asymmetry occurs. It is due to the curvature of the
spherical surface. No case has yet been found in which this second asymmetry
is large enough to be taken into consideration. Because of the small value of



X-RA Y DIFFRA CTION BA NDS

s used in the evaluation of Van integration in the spherical surface is practic-
ally the same as an integration in the tangent plane perpendicular to the
vector, Ao. If the integration is performed in this plane, the asymmetry due
to curvature does not appear in the result.

We may now write Eq. (18) as

L'= [1+-', cot (80/2)68]I'.

In this form there are collected in the second member the experimentally
observable factors and the first member is a symmetrical function which may
be computed for any band k„ from the integrals Uand V of Eq. (14). Uis the
same for all bands. If V is integrated over the tangent plane it will vary from
band to band due to the variation of the direction of the vector Ao. This is,
however, the same for all bands having the same Miller indices. It follows
that the function L' will be the same for all orders of a diffraction band and
need only be computed for one order.

The function I.' has been computed for the (1, 0, 0), the (1, 1, 0), and the
(1, 1, 1) diffraction bands in the cases of cubical and octahedral crystals. In
the cubical case, the value of p was taken as g3, contour plots were made for
eight values of u, and the graphical integration performed to the limit s'= 90.
In the octahedral case the value of p was taken as 3, contour plots were made
for eleven values of u, and the graphical integration performed to the limit
s'=120. Table II gives the resulting values of L' as determined. The un-
certainty in the values due to the errors of the operation are of the order of
+ 0.005. Since L is a symmetrical function the values are given for the posi-
tive values of v only.

TABLE II.

Cube
J I

(1, o, o) (1, 1, o)

Octahedron
L I

(1, 0, 0) (1, 1, 0) (1, 1, 1)

0
1
1.41
1.73
2
2.5
3
3.5

1.000
.728
.500
.333
.221
.074
.027

.054

1.000
.692
445

.300

.211

.123
, 089

.072

1.000
.680
.466
.333
.268
.170
.131
.094
.069

0
1
2
2.6
3.2
4
5
6
7

1.000
.874
.591
.428
.292
.177
.105
.064
.039

1.000
.891
.631
.456
.305
.145
.060
.046
.040

1.000
.905
.673
.504
.348
. 170
.051
.020
.025

Experimentally we measure the width of a diffraction band in terms of
differences in the angle of dilfraction. By the definition of v, and by Eq. (2),
we obtain

s = -',M (A —2s.h) = (2s aM/X) [sin (8/2) —sin (8,/2) ] .

If we substitute d/d8 (sin 8/2) 68 for sin (8/2) —sin (80/2) we obtain

s=(saM/k) cos (80/2)68.



20 CARLETON C. MURDOCH

Let v' represent the value of v for which I' = 1/2 and, following Scherrer, let
8 represent the half intensity breadth of a diffraction band, measured in
radians. Then

and
s'=(saM/X) cos (8,/2) (8/2)

8= (2v'/s) X/(Ma cos (80/2)) . (2o)

This is identical with Eq. (1) obtained by Scherrer since Ma =D, the length
of the crystal along a crystallographic axis. Thus we obtain for the value of
Z, 2v/vr. For comparing crystals of different shape, it is convenient to
measure the size of the crystal in terms of D', the cube root of the volume.
D' may be used in place of D in Scherrer's equation, if a suitably modified
constant E' is used in place of X. For the cubical shape O' =D and K'=X.
For the octahedral shape D"=1/6D'and E'=Z/6'~~ Table III shows the
values of v', K and E' as computed from the data of Table II.

TABLE I I I.

Indices Cube E=E' Octahedron
E

{1,0, 0}
(1, 1, 0}
(1, 1, 1}

1.41
1.32
1.36

0.90
0.84
0.87

2.32
2.45
2.62

1.48
1.56
1.67

0.81
0.86
0.92

These values are in general smaller than the results of previous investigations.
Scherrer's value of X as computed from Eq. (1) is 0.94. Seljakow' obtained
0.92 and v. Laue' 0.90 for the value of E for the cubical case. The previous
investigation' of the octahedral case gave X=1.6 or E'=0.88, a value 7 per-
cent less than Scherrer's value of E. This difference was attributed to the
shape of the crystal and it was concluded that the values of the crystal vol-
umes which have been estimated by the use of Scherrer's equation were too
large by 20 percent if the true shape of the crystals was octahedral. It now
appears that the smaller value of K was due not so much to the shape of the
crystals as to the method of computation. An examination of Table I I I
shows that the mean values of%'in the cubical case and in the octahedral case
are practically the same. Both Seljakow' and v. Laue' used methods which
may be regarded as the substitution of a function of u for the intensity func-
tion.

The results shown in Table III illustrate the dependence of the half in-
tensity width of a diffraction band upon the indices of the band. The numeri-
cal order of the values of X in the two cases is different. In the cubical case
the largest value of X is that of the (1, 0, 0) band while in the octahedral case
it is that of the (1, 1, 1) band. In each case, the value of X for the diffraction
band which is associated with a Bragg plane, parallel to a face of the crystal,
is larger than the values which are associated with the other planes.

The shape of the crystals not only influences the relative width of the dif-
fraction bands but also the form of the bands. This is shown in Fig. 4 in which
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I.'is plotted against v/s', or what is the same thing, 268/B. On this scale the
half intensity width of all the diffraction bands is 2 and their shapes can be
directly compared.

The upper halvesof all the curves are practically the same and aresuffi-
ciently approximated by the exponential relation I '=e &""'"'~ which is

g(f PP)

IQA&)

C4p

.75

& ~~,Q(QO)
OAo& r

0

.25

I.5 2. 25 5.
sac/s

Fig. 4. The (1, 0, 0) (n), the (1, 1, 0) (n) and the (1, 1, 1) (n) di&raction bands for, (I)
octahedral crystals, (II) cubical crystals. The scales are such that the maximum intensity is
1 and the half intensity breadth is 2. The unbroken line shows the corresponding Gauss error
curve.

plotted in unbroken lines in the figure. The lower halves of the curves show
marked variations. Three types occur:
(a) that illustrated by I(1, 1, 1) and II(1, 0, 0), falls slightly below the ex-
ponential curve to a minimum and then rises to a secondary maximum;
(b) that illustrated by I(1, 1, 0) and II(1, 1, 0) follows the exponential curve
until well below the half intensity point and then becomes nearly parallel to
the v/v' axis;
(c) that illustrated by I(1, 0, 0) and II(1, 1, 1) lies well above the exponential
curve throughout the lower half of the curve and continues to approach the
axis of v/v' to the limits of the computation.

There is a correlation between the type of curve and the Bragg plane
associated with the diffraction band. Type (a) occurs when the Bragg plane is
parallel to the faces of the crystal, the (1, 0, 0) for the cube and the (1, 1, 1)
for the octahedron. These are the same bands which show large values of E.
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Type (c) occurs when the Bragg planes are perpendicular to lines connecting
opposite corners of the crystal, the (1, 1, 1) for the cube and the (1, 0, 0) for
the octahedron. Type (b) occurs for the (1, 1, 0) band in both cases. In both
the cube and the octahedron the (1, 1, 0) planes are perpendicular to lines
connecting the centers of opposite edges of the crystal. The extension of this
correlation to the case of crystals of dodecahedral shape would suggest that in
this case the (1, 1, 0) diffraction band would be of type (a).

These results have been obtained by assuming that the third integral, TV,

of Eq. (14) was negligible. This will not be true if M is very small. By Eq.
(20) and Table II we may now estimate the value of M and compute cor-
rections to account for the Rnite value of W. If 8'AO, we must write in place
of L' of Eqs. (18) and (19), (I.+ W)/(I o+ Wo) in which WD is the value of W
when v =0.

If W is small compared with I & we may write (L+ W)/(Lo+Wo) =L'+
(W/L, ) —(W/L, ) L' and compute W by Eq. (16) taking P'=(1.2v')'=La.
This gives for the correction to be applied to I.',

AL' =8'/L o (Wo/Le) L' =C—v"
I (v/s') 'e " ' " 1.2—'(L' —e " ' & ) I . (21)

This may be readily computed. C is given in Table I; v' in Table II; v/v' are
the abscissa of Fig. 4; and e "'&' are the corresponding ordinates of the un-
broken line curves of Fig. 4.

At the half intensity point, Eq. (21) reduces to DL' =-',Cs". If we assume
the slope at the half intensity point to be that of the unbroken line curve we
obtain for the correction to be applied to v',

Ae' =0.72Cv". (22)

Thus v' may be corrected for the 6nite value of 8' by multiplying it by the
factor (1+0.72 Cv") =(1+1.8 CK'). Since Rand X' are proportional to v'

this same correction factor may be applied to them and also to the values of
D and M as computed by Scherrer's equation.

Eqs. (8) and (10) have been derived for the face-centered, as well as for
the simple lattice. They may be shomn to hold for the body-centered lattice
as well. It follows that J', its integral, I., and the results shown in Tables II
and III and Fig. (4) hold for any of these space lattices. However, the cor-
rections to these results computed by Eqs. (21) and (22) vary with the space
lattice. The corrections have been derived on the assumption that the diffract-
ing materia1 is concentrated at the points of the lattice. Actually these points
are merely centers of space distributions of distracting material. Since the
corrections depend upon the distribution of diffracting material within the
unit cell, a more exact determination of W than that given by Eq. (16) does
not seem to be warranted by the assumptions.

It has been assumed throughout the discussion that the crystalline pow-
der is made up of crystals of uniform size. In practice this assumption is
frequently not justihed. Any attempt to determine the size distribution from
the x-ray di8raction pattern requires a knowledge of the theoretical form of
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the band for the case of uniform size. Indeed it was this requirement which
instigated this investigation. The closeness with which the form of the dif-
fraction bands agrees with the Gauss error curve as shown in Fig. 4 makes it
possible to assume this form for the purpose of estimating the distribution of
particle size. The (1, 1, 0) band is particularly suitable for this purpose. It is
hoped that studies of the form of the (1, 0, 0) and (1, 1, 1) bands together with
studies of the relative width of the bands will lead to information as to the
shape of the colloidal crystals in cases where there is approximate uniformity
of shape.

The shape of the x-ray diffraction bands of a very fine uniform crystalline
powder has been computed for the (1, 0, 0), (1, 1, 0) and (1, 1, 1) planes of
cubical and octahedral crystals of the regular system. The results are shown
in Fig. 4 plotted to such scales that themaximum ordinate is 1 and the half in-
tensity breadth, 2. The coeScient X of Eq. (1) which relates the half intensity
breadth of a band to the size of the crystal has been computed for each case.
The values are shown in Table III. In comparing these theoretical results
with experimental data, one must take care to comply with the following
conditions.

(a) The experimental data must be corrected for "background" radiation
and instrumental errors.

(b) The corrected data must be multiplied by the asymmetrical factor,
[1+-,' cot(0,/2) D8] of Eq. (19).
(c) An approximate value of M should be computed by Eq. (20) and Table
I II.
(d) The corrections to the ordinates of Fig. 4 may then be computed by Eq.
(21) and Table I and the approximate value of M may be corrected by the
factor (1+1.8 CK').
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