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ABSTRACT

Neglecting the spin, two electrons are described in quantum mechanics by means
of a wave equation in six variables. It is shown that well-known relations between
angular momentum operators make it possible to determine the dependence of the
wave function on three variables, The problem is thus reduced from six to three
dimensions. For a state with an assigned "orbital" angular momentum t, say an
5, P, D state the dependence of the wave function on three Euler angles is deter-
mined by the value of /. The wave function is a linear combination of products of
distance and angle functions, the latter depending only on the three Euler angles.
The angle functions are well-known solutions of the wave equation for a symmetrical
top. The distance functions satisfy wave equations in three variables r &, r2, r&~ or r &, r&,

8. The case of P terms is worked out in detail. Equations (10), (25) apply to two
electrons having the same azimuthal guanhcm number. Equations (18), (20), (24)
describe all the other cases, for instance S and P electrons combining to give 'P
and 'P. Triplets are described by (18) and singlets by (20).

VM electrons are treated in quantum mechanics by means of a six di-
mensional wave equation. In most atomic problems it is sufficient to

consider the two electrons under the inRuence of a central field of force and
to treat all other questions by perturbation methods. It is well known that
in this approximation essential simplifications are introduced by the spheri-
cal symmetry of the central field of force. The eigenfunctions may be arrang-
ed in non-combining systems, each system corresponding to a certain value
of the total angular momentum. By considerations of this sort it has been
shown that correct space quantization, multiplet intensity relations, selec-
tion rules, and anomalous Zeeman eRect formulas are consequences of quan-
tum mechanics. t

In the calculations of the two or many electron problem it is customary
at present to employ an approximation method such as Hartree's and to

t See in particular E. %igner, Zeits. f. Physik 43, 624 (1927) and especially p. 640 where
the general possibility of {6)below is pointed out. The difference between the present treat-
ment and signer's lies in the use of (4) with its known system of eigenfunctions.
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consider each electron as subject to the action of a central held of force. In
the calculations of the normal energy levels of He, however, Hylleraas' found
it useful to consider the problem exactly. His calculations apply to the S
states, which reduces the problem to a three dimensiona1 one. We shall see
that the reduction from six to three dimensions can be always made and that
it is an immediate consequence of the spherical symmetry of the field. Even
though the solution of a three dimensional wave equation is difficult we be-
lieve to have simplified the general problem because the application of vari-
ational methods, such as the Ritz method to a six or five dimensional
problem is usua11y out of the question.

Let f be the Schroedinger function. Let the coordinates of the electrons
be (x&, y&, s&), (x&, y. , s~). By the general theorem of conservation of angular
momentum

8
Z

Bsy
+ P2

832
—s., +l(l+1) rP=O

l3 Y2

for any state with angular momentum /. Introducing polar coordinates
(r„8„&,), (r„8„&2)this becomes

8 cos 8y 8 8 a 2

sin Q~- + cos Q& + sin Q2 + cos Q2 cot 82
88g sin 8& BP~ 882 8@2

+ —cos Q, + sin Q, cot8,
88g 8qhi

a 0—Cos $2 + sin Q2 Cot 82
882 8@2

+ + — +ll+ j &=0. (2)

We now reexpress f in terms of Euler angles 8', p', p and r„r~, 8 connected
by the transformation formulas:

8' =8g,

cos 8 = cos 8' cos 8s+sin 8' sin 8s cos (Ps-P~); sin 82 sin n= sin 8' sin P

cos 82= cos 8' cos 8 —sin 8' sin 8 cos p;

cos 8' = cos 82 cos 8+sin 8~ sin 8 cos e,.
sin 8 sin a = sin 8' sin (Q2 —p~)

sin 8 sin Q = sin 8~ sin (P~ —Q~)

the notation being throughout as in the first paper of Hylleraas. The angle 0

drops out of (2) which reduces itself to

~ ~ ~

cos 8 Q2 j ()2
+cot8', +, —2, ,+, , +l(l+1) rP=O. (4)88" 88' sin2 8' 8@2 sin' 8' BPBP' sin' 8' Bg"

' Hylleraas, Zeits. f. Physik 54, 347 (1929};4&, 469 (1928}. See also J. C. Slater, Proc,
Nat. Acad. 13, 423 (1927); G. %.Kellner, Zeits. f. Physik 44, 91 (1927).

' For derivation see appendix I.
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This is a we11-known equation, being a special case of the wave equation for
a symmetrical top. Its eigenwerte are known to correspond to integral values
of l, the value zero being included. The angular momentum about the 2' axis
is represented by the operator

h B B B B h B B h B
iV&= . ~i -yi +~~ -y~ = . + = . (3)

'I2gi By Bx By Bx 2gi B$ B$ 2 i B$'

If l(l+1) =0 there are no eingfunctions (4) except those which do not depend
on 8', p, 4t'. Thus for 1=0 the wave function depends only on rj, r&, 8 or
rI, rI, r» as pointed out by Hylleraas for S states. In all other cases i.e. for
P, D, states f depends on the angles. Thus for I' states (I =1) we have the
following nine independent eigenfunctions

cos 8', (1 + cos 8')e&"&+&'&, e~'& sin 8', e+&' sin tI', (1—cos tI')e+'&&~'.

V~e may say therefore that for any P state

p= gy;(r„r„e)N;(S', y', y) (6)

where NI, . uo are the above set of nine independent eigenfunctions. Equa-
tion (6) is, however, too general because the nine eigenfunctions can be
subdivided into three non-combining sets, each set containing three functions,
all the functions of a given set depending on g' as e'"&'. According to (5)
each set describes such an orientation of the total angular momentum that
its component along OZ is mk/27r. For m =0 such a set of functions is

cos |I', e+'~ sin 0'. (6')

In (6) therefore, it is permissible to extend the summation only over these
three functions if we are interested only in solutions with m =0. The legiti-
macy of using only these three functions is of course a consequence of the
invariance of the Hamiltonian under rotations about the s axis. On account
of this invariance the result of operating by the Hamiltonian on any term in

(6) gives rise to angular functions with the same value of m. In the general
expression (6) therefore each set of functions is entirely independent of the
other two.

Since the two electrons are equal we have a further subdivision into non-
combining term systems. This is the usual subdivision into symmetric and
antisymmetric solutions. With this in mind we use Hylleraas' expressions
(23), (24) according to which the Schroedinger equation for the energy is

1 8 8$ 1 8 ( Bg 1 1
+— —,r2' +-

r~' Br~ Br~ r2' Br~ L Br2 ry sin 8

Bf
sin 8—+A q[rP]

Bg

1 1 B eh/+ — —sin 0—+.4g[f] +8s'mh '(E V)P =0-
rq~ sin 8 B8 B8
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8'f 1 8 8$
Az[P] =(cot'8+2 cot Scot 8' cos /+cot'8') + —sin8'

a@2 sinS' W' ae'

1 8'f 8'f 8Q sing 8 P+ +2 cot 8' sin @———2 cos P —2
sin' 8' 8$" ace@ sine' acay'

8+ 2 8'f 1 8'f
+ 2 cot 8 sin & — (cot 8'+ cot 8 cos P); A z [P]= —— (7)

a@+' sin e' a@a@' sin2 8 ay~

On account of spherical symmetry V is a function of r&, r2, 8 only and does
not contain 8', p', p. The functions I; behave therefore as constant coe%-
cients with the exceptions of the terms Az [P], Az [P]. Since by (3) sin 8 sin

@=sin 82 sin 0., the angular eigenfunction sin 8 sin p is seen to be antisym-
metric in the electrons 1 and 2. For this reason A~ and A2 must produce simi-
lar eRects on it. In fact it is found that

A z [sin 8' sin Q] =A z [sin 8' sin $]= —sin ' 8(sin 8' sin Q) .

Ke see therefore that the particular linear combination of two of the eigen-
functions for m =0, namely sin 8' sin p when operated on by the Hamiltonian
gives rise to itself only. A possible I' state is therefore given by

P=f(rz, rz, 8) sin 8' sin P

and the differential equation for f is

8 I 8f 8 8f
~

rz' + rz' +(rz '+rz ') — sin 8—
r2'~r2 sin He 88 sin'8

+Szr'rzzh '(E—V)f=0 (10)

This diRerential equation diR'ers from the one for 5 states only by the term
—(rz '+rz ')sin-'8 and it is seen that the determination of its eigenvalues
can be carried out by analogous methods. The physical interpretation of the
solutions (9) becomes apparent if the perturbation e /rzzbzetween the two
electrons is supposed small. Then (10) is separable. Supposing the separation
to take place by

we obtain

f= P„&z&(cos 8)g(rz, r,) (10')

8 P 8f 8 8f
I

rz' + r ' —rz(rz+1)(r z+zrz z)f+Szr'rzzh '(8—V)f = 0.
rl ~r14 ~rl r2 ~r2 r2

This may be considered as the radial part of the Schroedinger equation for
two electrons, each being initially in a state with azimuthal quantum num-
ber rz. The same may be seen from (10') because by (3)

sin 8 sin 8 sin p = sin 8z sin 8z sin (Pz —Pz)
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so that the angular part of (10') is a linear combination of products of the
type P '(cos 81) s&'2'. The solution (9) represents therefore P states which
arise either from two 'I' or two 'D or two 'F electrons etc. The solutions of
(10) may be symmetric or antisymmetric in r1, r2 giving the singlet and triplet
systems. They inc1ude the case of equivalent orbits.

Out of the three functions (6') we have left now only two

cos8', sin 8' cosP

substituting these into (7) it is found that the Hamiltonian operating on one
of them gives rise not only to itself but a1so to the other. Here we must write

/= f1 cos 8'+f, sin 8' cos ele.

Operating on this by (7) we get two simultaneous linear equations in f1 and f2

[/2', ] —2(f+, c'cc e,J+],=0
88)

o[J ]+ Ie —'. —
eJ) ;"—.ef. o. -=

88

(12)

where

8 ( 8f 8 8(
L[f]= ]

r12 + r2'
r1 ~rlE ~ri. r2 Br2 Bfg

8
+(r1 '+r2 ') sin 8—+82r2222h 2(E V)f (13—).

sin 888 88

Equations (11), (12) are unsymmetrical in (1) and (2). Making the substi-
tutions

F1=f1+cot 8 f2, F2= (sin 8) 'f2

we have

while (12) goes into'

'IP =F1 cos 81 F2 cos8e—
2 BF1 28' 2

L[F1]+—cot 8 F1 + —=0
rj' 88 r~' sin 888

2am, 2 aZ,
o[ec,]+ +—c ce ——ec)=o.

rg2 sin 888 r2' 88

(16)

Here F1, F2 are functions of r1, r2, 8 only. Any ]ate in (15) must be either sym-
metric or antisymmetric in (1) and (2). The latter case is obtained if

F2(rl 22 8) Fl(&2 rl 8) ~F(rl r2

' For direct derivation see Appendix II.



Letting F=F& the two equations (16) reduce to a single equation in F sis

2 BI' 2 BE
L[F]+ co—t8 —F + — — =0.

Be r~' sin 8 B8
(18)

The symmetric solutions are obtained by letting

F2= —Ii I.

Here we write F& = G and (16) reduces again to a single equation

2 BG 2 BG
L [G]+—cot 8 —G —— = 0.

rI' B|I r2~ sin 0 BO
(20)

The only difference between (18) and (20) is in the sign of the last term. This
term represents the resonance between the two electrons. In the unper-
turbed state i.e. if the perturbation term e'/r» is not important the simplest
solutions of (18) are those for which (8F/88) =0. Then (15) shows that we
deal with a 'P term arising from a 'S and a 'P electron while similarly the
solutions of (20) give the corresponding 'P terms. In addition to these solu-
tions there are others for the unperturbed case. Thus if we set

F=g(r, , r,) cos 8+g/3

we 6nd from (15) that

f =g(cos 8 cos Hy —cos Hs/3) g(cos 8 cos Hs —cos Hy/3) .

Since

cos 8 cos 8~ —cos Hs/3 = g cos 8&P&(cos 8&) —cos 8& sin 8& sin Hs cos (Qs Qy)

this angular function is seen to consist of a linear combination of

e&'~~P2 (cos 8,) and e&'~2P~" (cos Hs) .

This is a case of 'P and 'D terms combining to give a 'P. In a similar way all
other combinations between electrons of unequal azimuthal quantum num-
ber resulting in P terms are contained among the solutions of (18).

Summarizing the classifications of all solutions belonging to the subset
(6') we may say that (9) and (10) give the P terms arising from electrons
which in the unperturbed state have equal azimuthal quantum numbers
while (15), (18), (20) give the P terms arising from all other electron com-
binations.

It will be remembered now that equation (6) contains two more non-com-
bining sets of eigenfunctions corresponding to m = + i. The spherical sym-
metry of the problem enables us to write them down by analogy with those
already found. Thus corresponding to (15) and (18) we have now a complete
set of orthogonal eigenfunctions



TWO-ELEC 1ROE PROBLEM

I,= (3'c'/4s)(F sin H,e'» —I' sin 82e'*)

= (3"'/4s) [cc sin 8'+b( —i sin 4 —cos 8' cos ct)) ]e'e'

cc, = (6'c'/4s)(F cos 8 Fco—s 8 ) =(6'~'/4s) [cc cos 8'+b sin 8' cos 4)] (21)

cc ~ (3——"'/4s)(F sin 8)e &) F—sin H~e '*)
= (3'"/4s) [cc sin 8'+b(c sin P —cos 8' cos P) ]e '&'

a=F—F cos 0, b=F sin 0.

The normalization being such that

J
(F' 2FF co—s 8+8')dV„, „, c=

, 1, ; dV„, ,„,, c) =r, 'r, ' sin Hdr)drmdH.

These three eigenfunctions belong to the eigenwerte of (18) and are to be
used together in solving perturbation problems such as fine structure cal-
culations. Similarly there are three other eigenfunctions for every solution
of (20). The remaining three functions are of the type (9). We note that
sin 8 sin $ = R./R where R, = [r)Xr&]. Forming the combinations R,+iR„
we find this set of functions to be

[(3"'/4s.)ef&'(i cos P —cos 8' sin )b), (6'"/4s.) sin 8' sin )t),

(3' )2/4 s)e '4"( —c cos P —cos 8' sin P) ]f.
The differential equations (16), (18) and the corresponding sets of eigenfunc-
tions (21), (22) correspond to essentially different cases and for this reason
the variational equations belonging to the two cases are different. Ke con-
sider the type of solution described by (16) and (21) first. The variational
equation belonging to the problem is

5J~ + + +8 ' I '()' —Z)c')d* c =0 (23)
BX1 BS2

with the equation of condition

(23')

Here dx& ds2 is the volume element of the six dimensional configuration
space. Taking any of the functions (21) the volume element may be reex-
pressed in terms of r&, r2, 8, 0', p', p and the integrations may then be per-
formed over the angles 8', p', p in (23) and (23').

The result of the calculation is:4

~F 1 ~F1 ~F2 ~F2 ~F 1 ~F1 ~F2

BF1 &F2 BF2 '
+(r, '+r, ') — —2 cosH + +2r;2F12+2r2 &F

88 88 88 88
' For derivation see appendix II.
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+2rI ' sin HEI- +2r~ ' sin8E;—

88 88

+8m mh i(V—E)(FP—2FiFi cos8+F i}dV„„,i=0
and the equation of condition is

(24)

)' (FP 2FiF—i cos 8+Fi')dV„, ,„,,i= l. (24')

Performing independent variations of F& and F, the differential equations (16)
follow from (24). Corresponding to (17) and (18) the variational equation
(24) gives two different equations, one applying to an antisymmetric P and
the other to the symmetric one. Each of these involves only one function
and its transposed and can be worked out by the same method as used by
Hylleraas. It will be noted that the antisymmetric solutions (24) involve
combinations of the type E' —2EEcos 8+E'. If r& = r2, this vanishes for 8 =0,
so that the values of F(r, r, 8) are not important. On the other hand for the
symmetric solutions G(r, r, ir) are not important. It will be noted also that
both the diHerential equation and the variational one involve simultaneously
a function of r„re, 8 and its transposed and that the dependence on 8 is of pri
mary importance in determining the difference between symmetric and antisym
metric soll, fi ons.

The variational equation corresponding to (10) can be written down by
inspection and is

with the equation of condition

t f'dV„, , i=1. (25')

This divers from the equation used by Kellner and Hylleraas only by the
term (r~ '+ri ') f'/sin' 8. Obvious changes of variables to r„ri, r» can of
course be made and the elliptic coordinates used by Hylleraas can be intro-
duced here with the same boundary conditions.

Only I' terms have been considered here. It is clear, however, that the
same can be done for any other value of E. Since closed expressions for the
general case are complicated, we do not consider them here.

APPENDIX

{I)Derivation of equation {4)
This can be derived either by the analytical procedure indicated in the text or else by the

following geometrical consideration. The first three terms in (2) are squares of infinitesimal
rotation operators about the axes x, y, s. The changes in 11| during a rotation are brought about
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only through its dependence on 8', @', P. %'e draw two lines ON, OM in the xy plane arith
azimuths -x/2+&, p. Resolving a rotation about OX along ON and OM with ON J OM the
6rst contributes sin p' a/a8'. The second must be compounded as a sum of rotations along
OZ and 0(1) and give rise to

cos @'{cot8'(a/ap') —(a/sin 8'a@}}

The rotation operators are thus found to be

a a a
L =sin g'—,+cosp' cot 8'—,—.ae' a&' sin 8'ap

a a a
L„=—cosP'—,+sin p' cot 8'—,—.ae' a$' sin 8'aqua

a
L,=—.

a@
I

Equation (4) is then obtained as

(L '+L„'+L,'+i(l+1) 1/=0.

Usual commutation relations between rotation operators are of course also satisfied by L, I „,
L'
(II) Derivation of (16) and (24).

On account of spherical symmetry it is sufficient to calculate the variational equation for

f=Fi—F2 cos 8=a cos 8'+b sin 8' cos @

where

a =Fi—F~ cos 8, b =F2 sin 8.

The equation to be transformed is (23). The volume element is

We have

dry ~ de =ri'rP sin 8 sin 8'dridr~dede'~'.

e - ap s

(gradi P)'= —+ri ' —+(sin 8i) '

aF, aF, ae—= —F& sin 8i+ —cos ei ——cos 8~
ae a8 ae a8i

aFi aFg ae
cos 8i — —cos eg

a/i ae ae

Remembering now that

(a)

we have:

(
aFi ~Pa

+ . —=Fi2 sin' ei+ —cos ei ——cos 8~
ae) sln2 8 ae ae

a8 aFi aFg—2Fi sin 8i——cos 8i ——cos 8~
aei ae a8

Substituting the value for a8/a8i which follows from the first equation (3) and using the
second equation {3)

ae
sin 8i—~ —sin 8' cos P

ae,
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%'riting further

BFI BFg BF..u'= ———cos 8, b'=—sin 8
88 89 88

we transform the above expression into:

F~ sin~ 8'+ {u' cos 8'+b' sin 8' cos @} +2F~{a' cos 8'+b' sin 8' cos p) sin 8' cos @.

Hence

{4x}'
[I'i'+(&/&)(~" +&")+&'6]

3~1

Using the symmetrical expression for the term in r&~ and replacing all integrals of (a cos 8 +
b sin 8' cos p)' by (4~'/6) (a'+b') equation (24) follows at once.

To verify (16) directly we evaluate

ag a4 a%—+cot 8~—+ .
g8 0 88~ sin' 8~8/~~

Remembering that

8 a2—+cot 8&—+ . 8=cot 8
88P 88~ sin~8~8&P

and the relation (a), the above expression reduces to

~'F& ~F &'Fa OFT 2~F&
cos 8~ +3 cot 8——2F~ —cos 8~ +cot 8—+

88~ d8 88~ 88 sin 888

similarly for

a2 l9 8—+cot 8g—+
88@ 88q sin~ 8~8+'

Substituting into Schroedinger's equation, (16) follows on requiring independent vanishing of
coefficients of cos 8~, cos 8~.


