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ABSTRACT

The theory of metallic structure, of Sommerfeld, Heisenberg, and Bloch, is
carried far enough to explain cohesive forces, and calculations are made for atoms
with one valence electron, particularly metallic sodium. The numerical results,
though rough, are in qualitative agreement with experiment. It is found that the
forces in general are of the same nature as those met in ordinary homopolar binding,
discussed by Heitler and London; except that the purely electrostatic force from
penetration of one atom by another is relatively more important, the valence effect
from the exchange of electrons relatively less important, than in diatomic molecules.

As a preliminary to the calculation, the relations of the methods of Heisenberg
and of Bloch are discussed, and it is shown that they are essentially equivalent in their
results when properly handled. Remarks are made both about conductivity and fer-
romagnetism. In connection with conduction, it is shown that a definite meaning can
be given to free electrons, that they are necessary to conduction, and that a method
can be set up for computing their number, which is rather small compared with
the number of atoms. Ferromagnetism is discussed in connection with a recent
paper of Bloch. It is shown that a metal like an alkali cannot be ferromagnetic, for
atoms at such a distance that the interatomic forces keep the metal in equilibrium,
are too close to be magnetic. For ferromagnetism, rather, it seems necessary to
have one group of electrons responsible for cohesion, and another group, of smaller
orbit and therefore relatively farther apart, producing the magnetism; a situation
actually found only in the iron group and the similar groups.

I. INTRODUCTION

CRYSTAL of a metal is an enormous molecule, with electronic energy

levels depending on the positions of all the nuclei, just as the electronic
energy of a diatomic molecule depends on the internuclear distance. In this
paper, in which we are interested in cohesive forces, we must find this energy
of the lowest state in terms of the size of the crystal. We limit ourselves to
geometrically similar arrangements of the nuclei, with changing scale. From
the minimum of the curve, we find the heat of dissociation, grating space,
and compressibility of the metal. But also we can investigate the wave func-
tion of this lowest state, and obtain information about the electric and mag-
netic properties of the metal. In this way we are naturally led to a discussion
of the calculations of Heisenberg! and of Bloch on these subjects; in order to
be sure that we really understand the arrangement of energy levels, we discuss

the relationships of their methods, and arrive at a consistent picture combin-
ing them.

1 W. Heisenberg, Zeits. f. Physik 49, 619 (1928);
F. Bloch, bid. 52, 555 (1929).
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As for the results, one naturally asks first, what are the forces holding a
metal together? Are they ordinary attractions on account of penetration of
atoms, or valence forces, or electrostatic forces of ionic attraction, or van der
Waals forces, or some special sort not found in other cases? This question
cannot be answered categorically; no doubt all the forces are simultaneously
present, and the problem is to find the relative magnitudes. The tentative
result at which we arrive is that the simple penetration of one atom by
another is the most important part of the effect. But valence effects are also
present, although weakened by having the valences shared by many neigh-
bors, and are responsible for a considerable fraction of the attraction.
Although these actual magnitudes may not be verified by more accurate
calculation, still we have discussed the problem in enough detail so that the
general relations can be understood in any case.

The other question one will ask is, what is the situation of the electrons
in the metal? Can one give a meaning to the question, how many free elec-
trons are there? The answer, from whichever side we look at the question,
seems to be the same. Most of the valence electrons are at any time attached
to their atoms. These electrons cannot take part in conduction; they could
do it only by having a whole file of such electrons simultaneously jump to
the next atom in line, a most unlikely occurrence. But a few electrons at
any time—calculation suggests a few percent—will be detached from their
atoms, leaving an equal number of positive ions behind them; and they are
what, by all rights, one should call free electrons. These electrons, and the
positive ions left behind, can take part in conduction. First, the free elec-
trons can move easily from one atom to the next. Second, a bound or associ-
ated electron on one of the atoms next a positive ion can jump to that ion,
leaving its own atom ionized. We are thus led precisely to the dual theory of
conduction, by free and by associated electrons, which Professor Hall?
has suggested and elaborated. When we look at the metal by the method of
Heisenberg, these results become clear. In that method, a wave function
consists of the assignment of electrons to atoms. We find that we must go
beyond Heisenberg, in assigning sometimes two electrons to one atom,
sometimes none, instead of always one; for we need such states to solve the
problem of the stationary states of the metal. That is, we introduce free
electrons. And when we consider transitions from one state to another, it
is easy to see that these transitions can result in conduction only when such
free electrons are present. On Bloch's scheme, where we describe directly
the velocity, rather than the position, of the electrons, it is less easy to see
the relation; but here too one can show that, if there are no free electrons, the
velocities of all electrons must compensate, so that there is no net current.
Since this paper is not primarily about conduction, we do not go into these
points with any detail.

The only metals specifically treated are those with one valence electron
per atom, and that in an s state; that is, the alkalies. And it is assumed that
they can be replaced by single valence electrons moving in non-coulomb

2 E. H. Hall, Proc. Nat. Acad., 1920-1921.
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fields. This can be easily justified. It is to be noted that the other metals
are more complicated, not merely by having more electrons, but by having
them in p or d orbits, thus introducing new degeneracies. The actual cal-
culations of cohesion have been carried through for sodium, with satisfactory
results. They are only done roughly, however; the primary purpose of this
paper is to make clear the general relations, rather than to attempt accurate
calculations. The work is being carried further by Dr. Bartlett, and I wish
to thank him for help on some of the calculations used in this paper. The
work described here has been done while the writer was on leave, working in
Leipzig. He wishes to thank Professor Heisenberg for his courtesy in extend-
ing the privileges of his laboratory, and for a number of illuminating con-
versations on the subject of the paper; and also to thank Harvard University
for granting leave, and the Guggenheim Foundation for the assistance of a
fellowship.

2. CoMPARISON OF HEISENBERG'S AND BLocH’s METHODS

The problem of a metal must be attacked by perturbation theory, and
the unperturbed functions which we use can be set up in two quite different
ways, one used by Heisenberg, the other by Bloch, either giving us a finite
set of unperturbed functions. We regard the perturbation problem in the
following way: we seek those linear combinations of these functions which,
in the sense of the variation method, form the best approximations to solu-
tions of Schrédinger’s equation. This problem is solved by computing the
matrix of the energy operator with respect to these functions, and solving
the equations

2 (H(i/ k) —8(i/ (YW)S(k) =0

for the coefficients S(k) to be used in making the linear combinations,
and the energy values W of the resulting terms. (The term & (¢/k) must be
given a slightly different form if the unperturbed functions are not orthogo-
nal). This differs from the more conventional method: there one starts with
an infinite, complete set of unperturbed functions, instead of our finite set,
but solves only as a power series in the non-diagonal terms of the energy
matrix, breaking off after the second power in all ordinary applications.
It resembles more closely the quite different method ordinarily used with
degenerate systems, where one takes only very few unperturbed states, but
correctly solves the problem of combining them. For a nearly degenerate
problem like the present one, with a great many states near together, the
conventional method of developing in series will not work well, for the series
do not converge well, and we are forced to use something like the present
method. The justification comes simply from the assumption that the lowest
states can be well approximated by such a linear combination of Heisenberg’s
or Bloch’s functions (which correspond to having the atoms in their normal
states). Surely this is not exact; for better results we should have to consider
also the excited states of the atoms. But also certainly it is a fair approxi-
mation for the lowest states of the metal.
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Heisenberg’s functions, amplified in a simple way, form good approxima-
tions when the crystal is extended, for they are derived from the separated
atoms. Bloch’s functions on the other hand come by analogy with the free
electron theory of Sommerfeld, and are good approximations when the
crystal is compressed. The actual solutions of the perturbation problem are of
course linear combinations of either Heisenberg’s or Bloch’s functions, not
individual ones, and one gets the same final result whichever set one starts
with (for the two sets of functions can be written as linear combinations of
each other). But the fact that in the limiting cases the functions of one of the
two sets become rather good approximations can be used, along with inter-
polation, to derive the general nature of the real stationary states. This
comparison is made in the present section, and is illustrated by the interesting
case of Hs, where the calculations can be made exactly. At the outset, we
must recognize two facts: first, that we must amplify Heisenberg’s method
by including polar states, to make it general enough to agree with Bloch’s
and to permit conductivity; second, that although Bloch has the proper set
of functions, he has nowhere attempted to solve the perturbation problem,
but has merely taken his unperturbed functions as being correct, which
amounts to getting the energy to the accuracy of the conventional “first
order perturbations.”

The first step in either Heisenberg’s or Bloch’s method, as we apply them,
is to write an approximate solution as a product of functions of the individual
electrons. Heisenberg takes, for these separate functions, the wave functions
of electrons attached to individual nuclei; the number of such functions is
the product of the number of nuclei, multiplied by the number of different
sets of quantum numbers we consider for an individual nucleus. If we
restrict ourselves to s states, there are then only two states per nucleus,
corresponding to the two orientations of the spin. For nucleus a, we denote
these two? by #.(a/x), us(a/x), and we have such a function for each nucleus

ab ...n. Bloch takes, on the other hand, combinations of these functions:
ua(klm/xyz) = Ze“i("‘“’G‘+"’2/G2+m”“"?‘)ita(glgggs/.\',\‘z),
919293

where g,g.g; are the coordinates of a particular nucleus, GiGyG; the dimen-
sions of the rectangular crystal, and ua(gigags/xyz) the wave function (as
used by Heisenberg) for an electron moving around the nucleus situated at
g122g;. The function with &, /, m represents an electron, in general moving
in the direction k, I, m, but pausing at the various atoms on the way. There
are as many sets £, [, m allowed as there are atoms in the crystal; for larger
k, 1, m the function proves to be merely a repetition of one already counted.

3 We use here for convenience in writing Pauli’s notation #4, ug for the spin, rather than
the more explicit but more cumbersome notation #(n/x;) 8(ms/ms) used in a previous paper.
See J. C. Slater, Phys. Rev. 34, 1293 (1929). The method used in the present paper is described,
as applied to atoms, in the paper referred to; it should be understood that, although we speak
here of using Heisenberg’s and Bloch’s methods, our actual procedure is quite different from
that of these authors.



COHESION IN MONOVALENT METALS 513

Now we actually set up the product of functions mentioned in the
previous paragraph: we pick one out and let it be a function of the coordin-
ates x; of the first electron, a second for the coordinates x; of the second, and
so on to the nth, and multiply them all together. By the exclusion principle,
no function can be chosen more than once. Then we form an antisymmetric
combination, by permuting the indices of the electron coordinates, and add-
ing the permuted functions with appropriate signs, obtaining essentially a
determinant. These antisymmetric functions are the ones with which we
start our perturbation calculation. Many such functions can be set up:
there are 2n functions of a single electron, of which only # are to be chosen
for each antisymmetric function, so that there are (2z)!/(n!)? different
functions. Our perturbation problem is that of finding which linear combin-
ations of these functions most nearly satisfy the wave equation. We may note
the restriction of Heisenberg’s method as he uses it; he does not include polar
states. That is, he does not allow for example the two functions u#,(a/x),
ug(a/x) to appear together in any product. This greatly limits the number of
functions; but although the terms obtained by it certainly represent the
lowest energy levels, since it requires energy to form a positive and a nega-
tive ion from two neutral atoms, we do not make this limitation.

Having set up the unperturbed functions, we next make linear combin-
ations of them, by the method described in a previous paragraph. This
process can be simplified by using a property of the spin. Every unperturbed
function has a certain definite component M s of spin along the axis, equal to
(n.—mng)/2, where n, is the number of electrons with positive component of
spin, ng the number with negative. If now we neglect the magnetic inter-
action between the spins and the orbital motion, the problems with each
value of Mg can be handled separately: the components (/j) from a
function with one value to a function with another are zero. The states with
a given My include, as one readily sees, all those states whose total spin .S
is equal to or greater than My (for just these S’s can be so oriented, on the
vector model, as to give a component Mg along a fixed axis). Thus by solving
each such problem, and comparing, we can identify the spin of each term.*

The two methods can be illustrated by the case of Hs. Here there are
41/(21)2=6 different wave functions. On Heisenberg’s method, the four
functions for an individual electron can be symbolized by (aa), (Ba), (ad),
(Bb); two of these are to be picked out for each antisymmetric wave function.
Thus the six are (aa)(ad); (aa)(Ba), (ab)(Bd); (aa)(Bd), (Ba)(ed); (Ba)(Bb).
They are arranged, first, by Ms: the first has the value 1, the next four the
value 0, and the last —1. Thus the terms consist of one triplet and three
singlets. Among the four terms with M s=0, the first two are polar (and not
considered by Heitler and London, or Heisenberg), the last two are non-
polar. Immediately one finds that the sum of these non-polar functions is
the component of the triplet. We are then left with three functions: the

4 This is essentially the method used in the paper already quoted It has already been
applied by Bloch to problems in the theory of metals. See F. Bloch, Zeits. f. Physik., 57, 545
(1929).
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two polar ones, and the difference of the non-polar ones, from which to find
our three singlets. The difference of the polar ones is antisymmetric in the
nuclei, giving one state; their sum, and the difference of the non-polar func-
tions, give two functions symmetrical in the nuclei, between which we finally
solve the simple perturbation, resulting now in a quadratic secular equation,
and obtain the two remaining singlet states. The energy levels as a function
of the distance of separation are plotted in Fig. 1. The energy level of the
lowest, 1ZS%, is almost exactly as given by Heitler and London, but its wave
function contains quite an appreciable contribution from the polar state.
The triplet is just the repulsive state of Heitler and London. The other two
levels are essentially polar. They go at infinite separation to the energy of
H++H~, greater than the other limit by the ionization potential less the
electron affinity of H (this rough approximation gives — {Rk for the electron

E/Rh

(

2
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Fig. 1. Energy levels of Ha.

affinity, so that the terms go to 5/4Rhk). The lower of these has a minimum;
it is presumably the polar part which, by combination with other functions,
leads to the experimentally known B state of the molecule. We notice that
at large separations the functions behave just like Heisenberg’s (extended)
unperturbed functions: a triplet and a singlet are non-polar, and go to the
lower energy; while two singlets are polar, and go to the higher level.

Next we consider Bloch’s method for the same problem. His functions
for one electron, for this case, are

%0/ %) = uaa/x) +u.(b/ %)
ua(l/x)=uﬂ(a/x>—ua(b/x)y
with similar functions for 8. (These do not follow quite directly from the
general formulas given above; Bloch’s functions must be slightly modified
for finite systems, for they apply rather to infinite but periodic ones.)

The discussion of multiplicity given above goes through without change, if
we only substitute 0, 1 for a, b. We can easily show by direct calculation
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that the resulting unperturbed antisymmetric functions are linear combin-
ations of those found by Heisenberg’s method. For example, for Ms=1,
there is only one function by either method, so these must be identical,
except for a numerical factor. By Heisenberg's method the function is

ta(a/ 1) a(b/ 22) — ta(b/ 21)Uala/ x2) .
By Bloch’s it is
11o(0/ x1) 4o (1/ %2) — t4o(1/ %1) 14o(0/ x2)
= [tala/ %1) +11a(b/ 21) | [ala/ %) — a(B/ 25) ]
— [ta(a/ 1) = 1a(8/ 21) ] [0/ 22) F4a(B/ %5) ]
= —2[tta(a/ 1) 10a(B/ 25) — 1B/ %1) a0/ 22) ] .

We can set up the whole perturbation problem in these functions; and the
solution can be carried out as easily as before, leading of course to just the
same answers. The interesting question now is, how closely do Bloch’s
individual functions approximate the correct ones, for small values of R?
The functions are respectively as follows: a singlet with both electrons in the
state 0; a singlet and triplet with one in the state 0, the other in the state 1;
and a singlet with both in the state 1. The state 0 corresponds to the lowest
vibrational state on Sommerfeld’s theory, the state 1 to the next higher one,
so that the first state has on the simple interpretation only the zero-point
vibrational energy, the next two have each one quantum, and the last
two. Examination of the actual wave functions shows that they agree quite
closely with the functions of Bloch: the lowest one is made, it is true, by
combination of the (00) and (11) states, both being S¥, but the coefficient of
the first is about eight times as large as that of the second, when R is such that
the energy is at its minimum. The next two are made up of the (01) states.
The highest is about eight parts of (11) to one of (00). The energies also show,
for high compression, the behavior expected: the two states which should
have one quantum of vibrational energy draw together, and the one with two
quanta is just about twice as far above the lowest state as those with one.
Even the spacing of these levels is just about what would be calculated on
Sommerfeld’s theory for an electron vibrating in a region the size of the mole-
cule. Thus we see that Bloch’s unperturbed functions form fairly good ap-
proximations to the real functions for the compressed state, as Heisenberg’s
do for the extended state.

We can now return to the general case, and make use of the fact that
Heisenberg'’s functions approximate the real wave functions well for large
separations, Bloch’s for small. First, for the extended system, the energy
is the ionization energy, on account of having many ions as well as neutral
atoms. For a metal, it requires about 6 volts to form a positive and negative
ion from two neutral atoms. Thus if all the atoms were ionized, we should
have 7/2 such pairs, or an energy per atom, or per electron, of about 3 volts.
This measures the extension of the group of terms, for large R. It is a simple
problem in permutations to find the number of terms of each multiplicity
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with each energy value in the limit. The one term of highest multiplicity
will approach the lowest limit, for large R; it must be entirely nonpolar, for
all spins point in the same direction, so that no two electrons can be in the
same atom. For the next lower multiplicity, only one electron has a reversed
spin; it is the only one which can be in an atom with another electron, so
that there can be just one pair of atoms ionized. Following out, we easily
see that terms of lower and lower multiplicity, in the limit of large R, lie
higher and higher, and at the same time are more and more spread out. They
spread in such a way that there are terms of each multiplicity way down to
the bottom limit, although not to the top. As we shall see later, for R large
but not infinite, in the normal case, the really lowest terms have small spins;
but near them are many terms with large spin.

For the compressed system, the arrangement is as given by Bloch's
theory. The total extension of the group of terms increases with 1/R?; for
ordinary values of R, it is of the order of the mean zero-point energy, times
n, which is decidedly larger than 3 volts Xn. Thus not only do the curves
tend upward for decreasing R, giving repulsive energy levels, but they are
definitely doing this at the actual size of the metal. The general physical
interpretation of this repulsion is obvious: the valence electrons act here
approximately as a perfect gas, and the energy levels are those of such a gas
as it is compressed adiabatically against gas pressure, the energy varying
therefore as V=2/® or as 1/R2. Here the terms of high multiplicity lie in the
center of the pattern; those of lower spin also average in the center, but are
more and more spread out. Since the terms of high spin are so low for large
R, but not for small R, they must be even more repulsive than the others. The
possibility seems very remote that any terms except those with very low
multiplicity could be so low as to have minima, and come into the question
for the normal state. We see that for cohesion we are interested only in the
very lowest fraction of the whole set of terms. These terms almost all will
go to the lowest energy level at infinite separation; they become in this
limit non-polar. And the accuracy with which one can compute the lowest
states of H; from Heitler and London’s non-polar functions suggests that
here too this may be possible. Accordingly for our actual calculation of these
lowest states, we shall use Heisenberg’s method with only non-polar func-
tions. We shall find here, as we expect from our qualitative discussion, that
the terms of low multiplicity really do lie below, some of them being attrac-
tive; while those of high multiplicity are repulsive, the highest spins lying
highest. Finally we shall consider the effect of polar terms, and conclude
that it is really small on the low energy levels, although not on the wave
functions; for it is the polar character of the wave functions which makes
conductivity possible.

3. ELECTRIC AND MAGNETIC PROPERTIES

Conductivity. In the introduction we have mentioned the interpretation
of electric conduction on Heisenberg’s and on Bloch’s scheme. One notices
that a single one of Bloch’s functions implies conduction—the diagonal term
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of the momentum matrix is different from zero—whereas with Heisenberg's
functions we must have a continual change from one stationary state to
another. But it is particularly important to notice that, without polar
states, or free electrons, no conduction is possible; we cannot set up combina-
tions of non-polar states with a resultant momentum. For example, with two
electrons, we can set up an arbitrary non-polar function ciu(a/x1)u(b/x,)
+cou(b/x1)u(a/xs). If now we compute the momentum, whose operator is
h/2mwi(d/dx1+0/dx2), the only possibly significant terms are the cross terms,
like

h b g 9 b dv,d
i [ atasmu /x2><—+6—7)u< / 3)ue x3)dndos

dx,y X2

=clc23h—.{ f u(b/xz)u(a/xz)dvzf u(a/xl)aixlu(b/xl)dvl

i
+ f u(a/ x1)u(b/ x1)dv; f u(b/xg)—a-i—zu(a/xg)dvz} .

On account of the penetration of one atom by the other, the integrals
Ju(b/xs)u(a/xs)dvs are hot zero. The integral fu(a/x1)(9/dx:1)u(b/x1)dv, is also
different from zero. But it is exactly cancelled by [u(b/x,)(0/0x:)u(a/xs)dvs,
as one can show by Green’s theorem, so that the whole is zero. On the other
hand, if we set up a polar combination like ciu(a/x1)u(a/x2) +cou(b/x)u(b/xs),
we again get two terms, but now they add, and give a current. As another
example, we can take the term of maximum multiplicity in any system. In
this term, we have seen by Heisenberg’s scheme that each atom has just
one electron, so that we expect no conduction. But in Bloch’s scheme, each
value &, [, m has just one electron. Since each such value is balanced by one
with —k%, —I, —m, having opposite momentum, the total momentum is zero,
and there is again no current.

We can now see the importance of considering exactly the wave functions,
as well as the energy levels, of the lowest state. In the ordinary low states
there will, of course, be no current. But near the lowest state, if there is to
be conductivity, there must be combinations of polar states, having a cur-
rent, which are assumed in the presence of a field, and whose added energy
comes simply from the kinetic energy of the electrons and the self-induction.
Such states are possible only on account of the presence of positive and
negative ions, with the resulting free and associated electron conductivity.

Magnetism. The lowest state of H, is the non-magnetic 'Z, and we have
found such a situation in general. In the region where the lowest states have
their minimum, the metal must surely be in a compressed state, Bloch’s
arrangement of energy levels must be a good approximation, and the states
of large spin must lie very high. We are thus led to the quite general conclu-
sion that the outer electrons, which are largely if not entirely responsible
for both cohesion and conduction, cannot produce ferromagnetic effects. If
a metal is to be ferromagnetic, there must then be other electrons than these
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outer ones which are responsible for it, and these others must have smaller
orbits, so that at the equilibrium distance of the outermost ones, the inner
ones will be relatively further apart, and can be treated as an extended
rather than as a compressed system. It is a very attractive hypothesis to
suppose that in the iron group the existence of the 3d and 4s electrons provides
in this way the two electron groups apparently necessary for ferromagnetism;
for it is only in the transition groups that we have two such sets of electrons,
and this criterion would go far toward limiting ferromagnetism to the metals
actually showing it.

We next ask just how such inner electrons could be ferromagnetic. Cer-
tainly the general trend of the terms of high spin to the low energy values
at large R is an essential part of the question: there will be terms of large
spin near the lowest level. Bloch® has discussed the problem, concluding
that for large R’s the terms of high spin actually lie lower than those of
smaller spin (he does not specifically discuss the dependence on R, but his
energy formulas all contain it parametrically). This conclusion, however, is
not correct; Bloch has merely computed diagonal values of the energy, with
respect to his functions, and for large R these by no means form approxima-
tions to the actual energy values. From the correct treatment of the problem
as we have given it, it is plain that at all R’s there are terms of low multiplicity
as low as those of high spin, or lower. It may be, however, that the mere
presence of so many low terms of high multiplicity may be enough, on ac-
count of their high @ priori probability and large number, to insure that the
terms of large spin should be well represented at ordinary temperatures,
even though there are low terms of zero spin, and so produce ferromagnetism.
If, however, this should prove on calculation not to give the right effect, we
should be led to consider Heisenberg’s assumption that the normal order of
terms is inverted in ferromagnetic atoms, the terms of high multiplicity lying
lowest. He has shown by a general argument that electrons of large total
quantum number (which the 4s electrons of iron have) have an exchange in-
tegral of the opposite sign to that found in hydrogen, so that the order of the
non-polar terms would be reversed. This we should fit into our scheme in the
following way: although this exchange integral is anomalous at large R, it
presumably changes sign and becomes normal at smaller R; for first, Heisen-
berg’s general argument only applies at large R; and second, our condition
that the energy levels should approach those of Bloch at small R, with the
terms of large spin lying high, seems quite general. Thus we should assume
that the terms at small R lie as in Fig .1 but that at a considerable value of
R, there is a crossing over (in this case the 3ZA4¥ crossing and lying under the
13.5%), described by a change in the sign of the exchange integral K used
in the next section from negative to positive. By assuming the existence of
an inner group of electrons with these properties, we seem to secure a con-
sistent picture of ferromagnetism. On the other hand, of course it is always
possible that ferromagnetism is connected with the fact that the valence
electrons of iron have an orbital angular momentum different from zero.

8 F. Bloch, Zeits. f. Physik, 57, 545 (1929).
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4. COHESION

We are now prepared to begin the actual calculation of the lowest sta-
tionary states. We make several simplifications, which we later remove.
First, we consider only non-polar states, in Heisenberg’s scheme, and disre-
gard exchange integrals except between adjacent atoms; this is the approxi-
mation also made by Heisenberg. Finally, for the present, we consider a linear
lattice, » atoms uniformly spaced along a line, rather than a space lattice.
Our problem, of course, is to compute the matrix of the energy with respect
to the wave functions we have chosen, and then solve the problem of making
proper linear combinations. The computation of the matrix is simple. By a
fundamental formula of the previous paper mentioned above, the diagonal
components are a sum, first, of the energies of the separate atoms, which we
need not consider; next, a sum over all adjacent pairs, as the pair of atoms
a and b, of integrals J(ea/b), which is essentially the diagonal energy E; of
Heitler and London; finally, a sum over all adjacent pairs which have the
same spin, of terms—K (a/b), where K is the exchange integral E, of Heitler
and London. Further, it is easy to show that all non-diagonal terms are
zero, except those for which the distributions in the two states differ only by
the exchange of an adjacent a and 3; in such cases, the term is —K. In the
normal case, to which we shall refer specifically, J and K as functions of R
are both negative, K numerically greater than J. But in Heisenberg’s case,
K must be taken to be positive for large R, although presumably negative
for small R.

To illustrate by H,, we have one state with both spins parallel; then the
energy is J—K. Next we have the problems with one parallel, the other
anti-parallel; there are two such states (the two polar ones being omitted).
Each has the diagonal energy J, and the non-diagonal energy between them
is —K. Thus the equations for the linear combinations are

J—W)S(1)—KS(2)=0
—KS(1)+(T—-W)S(2) =0,

giving energy values W=J+K, the first evidently being the singlet, the
second the component of the triplet.

In the general case, the computation of the matrix is no more difficult;
the real problem is the solution of the linear equations for the S’s. We cannot
do this exactly; but we adopt two methods of approximation, one holding
for larger spins, the other for smaller spins. We first discuss the former.

Method for large spins. First we take the problem where all spins are
parallel, n,=#n, n=0. Here there is but one state. Since with our linear
lattice there are (#—1) adjacent pairs, and all spins are parallel, the energy
is simply (n—1)J—(r—1)K. Since J and K are normally both negative,
but K numerically greater than J, this is a positive energy for all values of R,
and results in a repulsive term. For Heisenberg's case, on the other hand, K
is positive, and this term is attractive. Next we take the problem n,=n—1,
ng=1. There are now » unperturbed wave functions: the one electron 8 can
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be attached to any of the » atoms. We number the functions by the number
of the atom where the electron is, only decreased by 3: we have uy2 - - - #Ua_1j2.
Each of these functions will have the diagonal energy (n—1)J—(n—3)K,
since two of the adjacent pairs now have opposite spins, except for the two
functions uy; and #,_1» where our 3 electron is at an end of the lattice, and
the energy is (n—1)J—(n—2)K. Also, all non-diagonal terms will be zero
except those between terms of adjacent number, as for example between
those symbolized by

caaafaca- -
and

caaaafac: -,

and which differ by just oneinterchange of anaand 8. Asaresult, the pertur-
bation equations will be

[(n— 1)]—(n—2)K—W]S<%>— KS<—2—>=0
—-KS(—;—>+ [(n—1)J—(n—3)K— W]S(—Z—)— KS(%) =0
—KS(—“;'—>+ [(n—=1)J—n—3)K— W]S(-‘Z—)-— KS(—;—) =0

3 1
—KS(n——2—)+[(n— N —(n—-2)K—W ]S<n——2—>=0

These equations are easily solved; they occur, for example, in the problem of
a string weighted at equal intervals,® the S’s being the displacements of the
weights. To solve, we merely assume S(k)=g,(ak). The first and last
equations give boundary conditions. They become like the others if we
introduce an S(—3%) and S(n+3%), the first equation becoming

—KS(—)+[(n—1)J—(n—3)K-W]SE)—KS($)=0,

and if we further set S(—1)=S5(%) and S(r+3) =S(n—3). These are then the
boundary conditions; and to satisfy them we must take

S(k/p)=cos prk/n, where p=0,1,---, n—1.

Now we substitute this form in our difference equations; and we get for W
pmr pr prk
—K{ cos—(k—1)+cos —(k+ 1)>+ [(n—=1)T—(n—3)K—W(p)] cos—=0,
n n n
from which in each case
W(p)=n—1)J—(n—3)K—2K cos ﬁr
n

8 See, for example, Rayleigh’s “Theory of Sound.”
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We now have the transformation coefficients S(k/p) and the energy values
W(p) for the rotation of axes to the pth stationary state; the W’s are the
exact energy levels. They are evidently distributed between the values
W) =(rn—1)J—(m—1)K,and Wn—1)=n—1)J—(n—3—2cosw(n—1)/n)
K=(n—-1)J—(n—S5)K, almost, for large n. Obviously W(0) is the energy
of the level of highest multiplicity, which we have found before. Thus the
levels 1 - - - (r—1) are those of next to highest multiplicity.

Next we take the problem with two electrons of spin 8. There are
n(n—1)/2 such terms: each of the two indistinguishable 3’s can be on any
one of the n atoms, so long as they are not on the same atom. Now it is con-
venient to denote states by the two atoms, say 7 and j (each going from 3 to
n—1%) on which electrons 3 are. Our problem becomes analogous to that of a
square membrane loaded at equally spaced points. The diagonal terms
of the energy are all (r—1)J— (n—5)K, unless one of the 3’s is at an end of
the lattice, or unless the two (’s are adjacent. There are four non-diagonal
terms for transitions from each wave function: for —2+1, or for j—j+1.
A typical equation can be written

—KS(i,j—1)
—KS(i—1,/)+ [(n—1)J = (n—5) K= W]S(ij) — KS(i+1,7)
—KS(i,j+1)=0.

This we satisfy by a product of cosine functions, S(ij/pq) =cos (pwi/n) cos
(gmj/n). We easily find that these exactly satisfy the boundary conditions
when 7 or j=3 or n—%. There remains the condition when 7 is nearly equal
toj. If i=j+1, the diagonal energy is (r—1)J— (n—3)K, since the two §’s
are together; on the other hand, since the 8’s cannot be on the same atom, the
coefficients S(jj) and S(j+1, j+1) vanish, so that only two transitions,
rather than four, are possible. If now we define an S(jj) and S(G+1, j+1),
we can make the equations of the same form as the general one, if only
SGN+SG+1, j+1)=25(G+1, 7). This furnishes our second boundary
condition, which is evidently along the diagonal of our square “membrane.”
Unfortunately we cannot satisfy this condition exactly with our cosine func-
tions; closer investigation shows that one must have much more complicated
functions, with hyperbolic cosines, to satisfy it exactly, and one cannot carry
the method through for the general case. Approximately, however, we can
easily take care of our condition. If the p and g are not too great, so that the
“wave-length” of the waves in our membrane is large, we can replace our
condition by a differential one: it states that the amplitude at a point next
the diagonal is the mean of the two adjacent values on the diagonal, and this
very nearly means that the normal derivative of the function, at right angles
to the diagonal, is zero. This we can satisfy by making our function symme-
trical about the diagonal, or using cos (pwi/n) cos (qmj/n)-+cos (gmi/n) cos
(pmj/n). We may expect this to hold best for small p and ¢, not so well for
large values. Itis clearly not right; for example, it yields #2/2 functions, in-
stead of the correct number n(n—1)/2.
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Our function is an exact solution of the difference equations, if not of the
boundary condition; and we find for the energy

T qm

W(p,q)=(n—-1)J— (n—S)K—ZK(cos;+cos—n—),

where p, g go from 0 to n—1, but each pair is counted only once. The term

of highest multiplicity comes from p =¢=0; the (z—1) terms of next highest

value are those with either p or ¢ =0, but the other not; the remaining terms
are of multiplicity smaller by two.

This result can now be generalized without trouble: if we have many
B's, the energy levels are given by

ng P‘ﬂr
W=m—-1)J—n—1-2n,)K—2K Y cos—; p;=0---n—1.
=1 "

The terms where one or more p,’s equal zero are those whose total spin is
greater than (n,—mn;g)/2; those with all p’s different from zero are those whose
total spin equals (n,—mng)/2. The latter value is evidently enormously
greater than the other: every spin has enormously more terms than any
higher spin. Thus the terms of a given component of spin along the axis, and
those of the same total spin, are approximately the same. We can at once
find the distribution in energy of the terms of a given spin. They evidently
cluster about the value (n—1)J —(n—1—2ng)K; they are distributed about
this value like the displacements of a point simultaneously acted on by a sum
of ng periodic vibrations of equal amplitudes but arbitrary phases. This gives,
of course, approximately a Gauss distribution. The width of the distribution
curve can be derived very easily: we compute the mean square deviation
of the energy from its mean, (JJ ~W)2=4K¥Z cos (pir/n)]?, the average
being taken when each p varies independently from 0 to n. We can take
this variation to be continuous rather than discrete. Then the product terms
in the square of the sum of cosines all average to zero, the square terms
average to 1, and the result is 2K?ns. These results may be compared with
those obtained by Heisenberg on the group theory, and which as Bloch has
shown can also be found from the present method. In the notation of the
present paper, putting the number of neighbors of each atom equal to 2, and
leaving out the terms in J, Heisenberg finds

W= —(n—2ns+2n2/n)K
(W —=W)2=2Kns(1—ns/n)(14-2n,/n—2(ns/n)?).

Our formulas agree with these exact ones to terms in #zg but no further, as we
expect from the fact that our approximations hold only for small #z. For
small p’s, as we have seen, our results should be good even for large 73; for
the case of ferromagnetism, when on Heisenberg’s hypothesis the terms are
reversed, these are the lowest terms, so that this result should be very useful
here. In the normal case, however, the lowest terms are those of large p,
and these are the ones we need for cohesion. About these lowest terms, we
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can be fairly sure that they lie higher than the lowest ones we have found,
or (n—1)J—(n—1—4ns)K, since the mean lies higher than the mean we
found. For zero spin, for example, we can be fairly sure that the term lies
above (n—1)J+=zK. But this value need not be a very good approximation;
we actually find, by the method of the next section, that the lowest term for
zero spin is about (n—1)J40.290nK. Fortunately even this has a positive
coefficient for K, and is so an attractive rather than a repulsive term.

Method for zero spin. For zero spin, #n,=ng=n/2, and there are n!/(n/2!)?
terms. We adopt quite a different method of classifying them. Before, most
of the terms of a given ns had nearly the same diagonal energy; but now the
range of energy is large, from (n—1)J for the state with alternating a’s and
B’s so that there are no parallel spins, to (#n—1)J—(rn—2)K for the state
where all the a’s come at one end of the lattice, all the 8’s at the other. With
this large range, we find it convenient to classify terms by their diagonal
energies; and we find as we should expect, that for the lowest states of the
perturbed system we must consider most the low unperturbed states. We do
not need to take into account all states: we find that approximately (though
by no means exactly) the terms can be divided into a number of non-
combining sets, and we set up one such set in the following way. We com-
mence with the lowest state, of energy (n—1)J, where a’s and 8’s alternate.
Next we consider the » —1 states which combine with it, coming from inter-
changing one pair, and each having the energy (z—1)J—2K, except those
from the two end pairs, with energy (n—1)J—K. We leave these two out,
retaining for our set the n—3 states which have the energy (n—1)J—2K.
Each of these has #—3 states with which it combines, coming from inter-
change of one of the n — 3 adjacent pairs with opposite spins. Of these n—3,
the two in which the new interchanged pair is next the one already inter-
changed have the energy (n—1)J—2K; the one in which the pair already
interchanged is changed back has the energy (#—1)J; the two where the
end pair is interchanged have the energy (n—1)J—3K; and the remaining
n—8 have the energy (n—1)J—4K. We retain for our set only these n—§
terms of energy (n—1)J—4K. So we proceed, asking which terms combine
with those already set up, and retaining just those whose energy is —2K
greater than for those with fewer interchanges. We find that a term of our set,
with the energy (n—1)J—2pK, has non-diagonal terms to p terms of the
set of energy (n—1)J—2(p—1)K and to (n—3—5p) terms of the set of
energy (n—1)J—2(p+1)K. Evidently so long as p is small, the terms we
leave out of the set and yet which combine with terms of the set are com-
paratively few. It is only for the large p’s that we make serious error by
leaving out these terms, and for large p the diagonal energy is high enough
so that for the lowest states of the perturbed system these unperturbed
states are unimportant. Thus we may reasonably believe that the low
energy levels found by solving this restricted problem will be approximately
some of the low levels of the actual problem. We can at least be sure of the
following: by the variation principle, they can be no lower than the actual
stationary states.
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The other sets of non-combining terms which we can set up are easily
described, and are of considerable physical interest. Instead of starting
from the state with spins alternating, we start from a state where the spins
alternate up to a given point; there the sequence is interrupted, and alter-
nation commences again, so to speak, in the opposite phase, as

cafBaBBaBaBa---.

With a few such interruptions in the course of the crystal, the energy is very
little above the really lowest state; yet a great many individual inter-
changes would be required to pass to the lowest state. With such a state to
start with, we proceed just as we did before, and construct a whole system
of states; and the non-diagonal terms between this and the first system come
only from high values of p, involving many interchanges, and can be neg-
lected. Physically, at the interruption of phase, one essentially has a slight
interruption of crystal structure. Our catalogue of all possible states of the
metal includes not only that where it is one perfect crystal, but also where
it is composed of many smaller crystals not perfectly joined together. Ob-
viously each problem can be treated separately; physically it would take a
very long time to change from one to the other. And obviously each problem
will give us essentially the same set of energy levels.

We now take our set of wave functions, and try to solve the perturbation
problem between them. For each value of $, we have many wave functions;
and we look for those particular solutions for which all these functions have
the same coefficient S(p). Afterwards we shall show that we really find the
lowest solutions this way. Then, remembering the number of transitions with
non-diagonal term K from a given state, computed above, we have for a
typical equation

—KpS(p—1)+[(n—1)J = 2pK~W|S(p) — K(n—3—5p)S(p+1)=0.

This set of difference equations for the S’s is somewhat similar to what we
had before; it also corresponds to a weighted string. But now the properties,
and hence the wave-length, change from point to point, and we seek the vari-
ous overtones. The equation is a close analogue to Schrédinger’s equation,
in many ways; the fact that it is a difference equation rather than a differen-
tial one is quite immaterial. To solve, we assume S(p) =e” %, where « is to
vary slowly with p. Then S(p) =exS(p—1), etc., so that we have

—Kpte[(n—1)T—2pK—W]—e®K [n—3—5p] =0,

— (=0T = 2pK W]+ ([(n— 1T —2pK — W |*— 4K>p|n—3—5p])112
—2K[n—3—5p]

ex =

The equation expresses e* as a function of p, for any particular W. Now we
must remember that there are essentially boundary conditions; the S’s must
remain finite for p=0 and p=an extreme value. To tell how to apply this
condition, we must investigate the solution we have found.
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The ratio e* of successive coefficients is real or complex, according as
[(n—1)J—2pK — W] is greater than or less than 4K2p[n—3—5p]. Regarded
as a function of p, the limiting cases, where the two are equal, come from
(n—1)J—W=2pK +2K[p(n—3—5p]"2. The right hand side, plotted as a
function of p, forms an ellipse; the straight line represented by the left side
intersects the ellipse in two points, or in none, depending on the value of W.
The region of W where it intersects can be found by computing the maximum
and minimum ordinates of the ellipse; that is, the values of (n—1)J—W
for which (d/dp)(2pK +2K [p(n—3—5p)]Y2)=0. This gives p=(n—3)/10
[1+(1/6)12] = (n—3) X (0.0592, 0.1408). At these two limits, substituting,
W=mn—-1)J+(n—3)K X(0.290, —0.690). For values of W between these
limits, there is a range of p for which e* is complex, and the solution is
oscillatory; outside this region, which is closed, the solution is in any case
exponential. To satisfy our boundary conditions, now, we have a problem
much like that with Schrédinger’s equation in one dimension; and boundary
conditions can be satisfied only if there is an oscillatory region. As a result,
the actual energy levels of the problem must lie between the limits given.
Closer examination shows that a “quantum condition” can be applied, and
that between these limits there are just the number of energy levels there
should be. We now have the lowest level: it lies arbitrarily close to our lower
limit, or is

W=(n—1)J+0.290(n—3)K

as we stated in the last section. In this lowest state, we can show without
trouble that the unperturbed wave functions with p near 0.0592(%z—3) are
represented most strongly. Thus the value of p is really quite small; relatively
few pairs are interchanged, and we are safely in the region where we can treat
the different systems separately.

We have solved our problem for the lowest state in which all terms of
the same p have the same coefficient. We can now investigate the effect of
removing this assumption, varying the coefficient of one function of a given
p in one direction, varying the rest to keep the same total representation for
functions of this p, and calculating the change in the energy. When we do
this, we find the energy to be a minimum with respect to such variation; in
fact, the changes of energy compensate each other to a higher order, showing
that the problem is nearly degenerate with respect to these coefficients.
Thus we may be rather confident that we have a good approximation to the
lowest non-polar states. It is of course obvious that this method becomes
worse as we go to higher states.

It is instructive to ask what ordinary perturbation theory would give us
for the lowest state. The lowest unperturbed state has the diagonal energy
(n—1)J; this represents the ordinary first order perturbation calculation.
Now we pass to the second order calculation. The lowest state is not de-
generate, so that we can use the power series development method. The next
term in the expansion is Z,(H;H;;)/E1— E;), summed over all excited states
j. Now there are non-diagonal terms H;; only to the n—1 states with p=1.
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Thus the H,;'s are all equal to — K, and the energy differences are all given
by E;=E;—2K. Thus we have as second approximation

K? 1
W=mn—1)J+n— 1)§= (n— 1)J+—2—(n—1)K.

This differs from our result in having the factor } rather than 0.290; we
have only the first term of a series development, but it is reassuring that
agreement is as good as it is. For finding the order of magnitude, we could
use this term alone; we shall find this simple method useful with the space
lattice.

Effect of polar states. One can make an estimate, by a method like that
used here, of the effect of the polar states in depressing the non-polar ones,
which alone we have considered so far. We can build up a series of states by
starting with a given non-polar state; then removing one of the electrons to
an adjacent atom, producing a positive and a negative ion; then removing a
second; and so on. The series of states so found behave formally like those
used above. If we solve the problem by the previous method, or by the
second order perturbation method, we get a further depression of the lowest
state, which again can be written as

square of non-diagonal term

(n—1)X X

energy difference

The non-diagonal term which comes in here is presumably of the same order
of magnitude as before, although it is a somewhat different integral. But
the diagonal energy difference is now essentially an ionization energy, which
is of the order of several volts, rather than the fraction of a volt that K is.
Thus the effect on the energy is a number of times smaller than what we
found before, and we can neglect it. It is not worth while calculating more
accurately, in this approximation; for with Hp, it appears that on account of
the lack of orthogonality of the wave functions, the actual depression of the
energy is very much less than this rough method would indicate, although
the effect on the wave function is about what we should expect. One can
reasonably believe for this reason that the polar states in the crystal depress
the energy only very little. But we recall that their effect on the wave func-
tion is to introduce free electrons. By our rough method described above,
we infer that the fraction of free electrons is of the order of 1 percent, for
reasonable choice of the constants. This could easily be in error by a factor
of 10 either way; but at least we see that a definite meaning can be attached
to the number of free electrons, and that there is a definite procedure for
calculating this number.

Normalization and orthogonality. We have not considered the lack of
orthogonality of the wave functions, resulting in factors like the 1/1+.S of
Heitler and London. When one tries to do this, one immediately strikes a
difficulty which appears insurmountable: the factor in the denominator,
instead of being like 14, is like 1+#S+ - - -, where # is the number of
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atoms, so that the term #.S is enormous compared with unity. On examina-
tion of simple cases, it appears that the remaining terms, coming from other
permutations than the simple interchange, are also important, in many cases
the terms almost cancelling each other. Further, in every expression for
energy, like the simple (J+ K)/(1+.S), there are more terms in the numera-
tor, also of great importance. But the simple cases give no suggestion of how
to treat the general case. The key to this difficulty comes from Bloch’s
method. For example, the term of maximum multiplicity has one function,
which can be expressed either by Heisenberg’s or Bloch’s functions.
But the difference is that Bloch’s functions are really orthogonal, unlike
Heisenberg’s, so that we meet no such difficulty. Of course, the same terms
occur, but now in the normalization of the individual functions. And the
numerators, and denominators like 1+#S+4 - - -, appear as products of #n
factors, each of approximately a simple Heitler and London form; further,
all but one or two of these factors of the denominator cancel against equal
factors in the numerator, giving very simple results. Essentially the same
method can be used with the other states; for this method is one for treating
a determinant of Heisenberg's wave functions, and converting it into a
determinant of Bloch’s functions; and all of our wave functions are products
of two such determinants. When we calculate in our case, it appears that the
terms S will have small effect; we are roughly half way between the cases 1+.S
and 1— S5, and the effects of S nearly average out. This method at the same
time gives the proper way of considering more distant pairs, as well as adja-
cent ones; these contribute the further terms in the numerators, as J+ K
+ - - -. We see from the next paragraph that these more distant pairs are
really quite important.

Method for space latiice. So far, we have spoken about a linear lattice of
atoms, rather than a space distribution. We now extend this theory to a crys-
tal; but we shall not carry it through in the same detail. We consider only the
problem of zero spin, and use our second order perturbation approximation.
Let us take the body-centered cubic lattice, which the alkalies have. The
lowest unperturbed state of this lattice can be set up much as with the linear
one: we let the electrons at the corners of the cubes have the spin «, those at
the centers the spin 8. Then each electron is surrounded by eight others of
opposite spin, so that if we consider only adjacent pairs, the diagonal energy
of this state is 4nJ, where there are n electrons, 4n pairs. This lowest state
now has non-diagonal terms, each equal to — K, to the 4% states obtained by
interchanging an adjacent pair. Each of these states has two misplaced spins,
each surrounded by 7 spins of the same sign, so that the energy has a term
—14K. Thus for our perturbation problem, we have a non-diagonal energy
— K, an energy difference 14K, and 4z non-diagonal terms, so that the
perturbed energy is 4nJ+ (4nK?/14K) =4nJ+(2/7)nK.

This formula is rather significant. We compare the energy with that of
the lowest state of the diatomic molecule, =2, which is (n/2)J+3inK. We
observe that for the crystal the coulomb interaction, the term J, has a coeffi-
cient eight times as great: each atom has eight neighbors instead of one, each
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penetrating. On the other hand, the valence term K has a coefficient only
2/7, instead of 1/2. The valence, so to speak, is spread out among all the
neighbors, and weakened in the process. It is partly on this account that we
can say that the coulomb interaction is the more important part of the co-
hesive force, in metals.

We have considered only those pairs with smallest separation, and they
give a definite attraction. But in this lattice, there are not only the eight
nearest atoms at distance R; there are also six, in directions parallel to the
edges of the cube, at distance of 1.155R, and these have parallel spins, pro-
ducing therefore a repulsion. In the diagonal energy, each pair will then
contribute an energy J—K, a positive amount, so that the diagonal energy
of the lowest state if 4nJ+3n(J(1.155 R)—K(1.155 R)). The next higher
diagonal energy also will differ from this not merely by —14 K(R), but also
by an amount 12 K(1.155 R), because by interchange of two spins some of
these repulsive terms are removed. Thus the lowest energy level, counting
also these pairs, is

4nK*R)

ANT(R)+3n(J(1.155R) — K(1.155R
NI (R)+3n(( )~ K( D IK® — 12K (L. 1558)

This results, on computation, in a much weakened attraction. If we were
to consider in succession the effects of pairs at greater and greater distance,
we should come in succession to attracting atoms with antiparallel spin,
and repulsive ones with parallel, so that the successive approximations to the
energy would oscillate, falling first above, then below, the true value.

Application to sodium. For the sodium crystal, approximate calculations
have been carried out, to test these formulas. These were made by taking a
simple analytical expression for the wave function of the valence electron
of sodium, and computing the integrals J and K. The details of the calcula-
tion will not be given here. The first thing that one notices is that, for Na, J
is several times larger in proportion to K than in hydrogen. It is this fact,
taken together with the increased coefficient of the J term, that results in the
importance of the coulomb term. It is also significant in connection with
the question, why do the alkalies, and metals in general, form metallic lat-
tices, while hydrogen does not? We can see the essential answer from our
energy formulas of the previous page. For substances where J is the impor-
tant term, the coefficient of J will be greater, and the energy lower, for
the crystal than for the same number of atoms in diatomic molecules, and the
crystal will be the stable form. For hydrogen, on the other hand, the valence
term K is the important one. Here the coefficient in the molecular form is
greater; and even if the metallic form of such a substance were stable in
the sense of having a minimum of energy for some definite size, as seems
quite possible, still the energy in the molecular state would be lower. The
atoms in the crystal would tend to form pairs, resulting in a molecular lat-
tice; the molecules would repel each other, and would be held together only
by van der Waals forces, which have been neglected in this paper. This seems
to be exactly what hydrogen does.



COHESION IN MONOVALENT METALS 529

The numerical values for Na are approximately as follows. If we take
only the adjacent pairs, the minimum comes at R=4.9ay approximately,
rather seriously less than the correct value 7; this can partly be explained
by the observation that the best atomic wave function for use in the crystal
would be more extended than that determined from the free atoms, which are
here used. The energy at this point comes out about —40 kg cal/gm mol,
the coulomb term supplying about four fifths of this; the observed heat of
vaporization is 26.4 kg cal, so that this gives, as we should expect, too large a
value. If now we consider the repulsive pairs at distance of 1.155 R, the
situation is quite changed. In the first place, the energy is reduced from
—40 to about —9 kg cal. When we remember that these two values are the
first two terms of a series, whose value oscillates on both sides of the answer,
it seems very reasonable that the final result should be not far below the
experimental value. The problem of properly computing this energy must
be done by the method, using Bloch’s functions, described in the preceding
section. In the next place, the minimum of the curve is greatly broadened:
for quite a range of values, from R=4.9 (the previous minimum) to R=7, the
energy stays about constant, the change of the attractive term being just
about balanced by the relatively more rapid change of the smaller repulsive
effect. (For smaller R’s, a situation can be found when the denominator
14 K(R)—12 K(1.155 R) =0, so that the function becomes infinite; but this
is without physical significance.) No doubt a persistence of this effect in the
final answer helps to correct the improperly low grating space we have al-
ready found. It also is interesting in connection with the compressibility.
The alkalies are remarkably compressible, and if we compute the compressi-
bility for the case where only adjacent pairs are considered, the result is too
small by a factor of 2 or 3. On the other hand, considering the next set of
atoms, our very broad maximum would give much too great a compressi-
bility. Here again it seems that our result may oscillate, perhaps approaching
eventually something near the right value.



