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ABsTRAcT

The leads of a tungsten filament in vacuum cool the ends of the filament and so

affect the voltage, candle power, electron emission and other properties of the fila-

ment. For long filaments, where there is a central portion at a uniform temperature
'1„, the temperature distribution near the lead is derived. A method for determining

Tp, the temperature of the lead-filament junction, is given. Tables and formulas

are presented which allow ready calculation of the effect of the leads on the properties

of any long tungsten filament for which the current and diameter are known. From the
more general results it has been found that the decrease in voltage due to the cooling

of one lead may be represented bye V=0.154 (T /1000) —0.081 (T,/1000) —2.1 10 '
T,T —0.056. There is an extension of the theory to cover the cases of filaments in

gases, filaments of other materials, etc.
Part II of the paper gives figures from which may be found the properties of

filaments so short that the first theory does not apply. Some experimental checks of

the theory are given.
In general the results and the methods of application have been placed first,

and the mathematical derivations have been placed at the end of each part.
For a short filament with leads cooled in liquid air a negative slope of the volt-

ampere characteristic when the central temperature is much smaller than T is

observed.

PART I. THE LONG FILAMENT

&HE extensive use of tungsten filaments in research and industry makes

it important to consider how the cooling effects of the leads inHuence

the characteristics of such filaments. For wide ranges of temperature the

characteristics of hypothetical filaments which are not cooled by leads may

found from tables of the properties of tungsten'-' The magnitudes of

the lead losses have been evaluated experimentally' s ' and by theoretical

methods. " It is felt that there is still a place for a systematic treatment

i Ã. E. Forsythe and A. G. Korthing, Astrophys J. 51, 146 (1925).
' C. Zwikker, Royal Acad. Amsterdam 34, No. 5 (1925}.
3 H. A. Jones and I. Langmuir, G. E. Review 30, 310, 354, 408 (1927).
4 H. A. Jones, Phys. Rev. 28, 202 (1926).
' I. Langmuir, Phys. Rev. 7', 154 (1916).
' I. Langmuir, Phys. Rev. 7, 302 (1916).
~ I. Langmuir, G. E. Review 19, 208 (1916).
' A. G. Korthing, Journ. Frank. Inst. 194, 597 {1922).
P T. H. Amrine, Tra.ns. Ill. Eng. Soc. 8, 385 {1913).
"A.G. Korthing, Phys. Rev. 4, 524 (1914);R. Ribaud and S. Nikitine, Ann. de Physique

7, 5 (1927);V. Bush and K. E. Gould, Phys. Rev. 29, 337 (1927).
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which may be conveniently applied to a filament operated under any ordinary
conditions. "

Temperature distribution. For most tungsten filaments the cooling effect
of the leads does not extend appreciably to the central portion of the filament.
The absolute temperature, T, of this portion may be calculated from the
diameter of the filament and the current through it." The temperature of
other parts of the filament is best expressed as a fraction, 8, of T . Thus
8= T/T, where T represents the absolute temperature of any point of the
filament.

We may consider the effect of each lead independently, since the two
effects do not overlap. Of fundamental importance is the variation of 0
with x, the distance from the lead. This is shown later to be governed by
the equation,

where P is a function of 8, and is given by Eq. (30). a is a parameter of the
dimension of length, and depends on T„and the filament diameter D.

TABLE I. Values of ap for various values of T, (For 'a' use Eg. (Z).)

600
700
800
900

1000
1100
1200
1300
1400
1500
1600

ap(cm)

5.84
4.08
3.01
2.33
1.863
1.524
1,274
1.084

.936

.821

. 724

1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700

ap

0.646
.582
.527
.481
.441
.406
.377
.351
.329
.309
.291

2800
2900
3000
3100
3200
3300
3400
3500
3600
3655

ap

0.275
.261
.247
.235
.223
.213
.209
.195
. 187
.183

ao, the value of a for D=0.01 cm (4 mil approx. ) is given in Table I. a for
other values of D may be found from

a = ao(D/0. 01)'I'.

Integration of (1) gives

The values of (x/a),' for various values of 8 are tabulated in the second col-
umn of Table II. Note that a is effectively a unit of length. The symbol
(x/a)~, will in general represent the distance, expressed in a-units, from a
point at temperature HIT, to a point at temperature 82T . To obtain dis-

" I. Langmuir, Trans. Faraday Soc. 17', 634 (1922). See also references (7) p. 210, (6)
p. 312, {3)p. 356. In these papers formulas for b, V and AVH are given. They were derived by
methods similar to the ones used in this paper." Ref. {3),p. 312, Table I, column 4.
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tance in a-units, divide the distance x in cm by the value of a, in cm, found
from Table I.

TABLE II. Values of (x/a) and p(80).
For n&4: p(80) =(x/a), &. For n 1.2, see columns 3 and 6.

0,0
. 1
.2
.25
.3

.5

.6

0.000
.0419
.1110
. 1522
. 1974
2999

.4200
, 5628

0.000
.040
. 102
. 137
. 172
. 245
.320
.392

0.7
. 8
.85
.9
.95
.99
.999

1.000

(x/a),

0.7394
.9766

1.1354
1.3592
1.7260
2.5535
3.7224

0.464
.532

, 598
.630
.654
.659
.660

The temperature distribution near a cooling lead is represented by the
curve farthest to the right (labeled 0.995) in Fit. 2 (Part II). The incre-
ment in the abscissa (x/a)q' from the ordinate 02 to ordinate 8, gives the dis-

tance along the filament from a point at temperature 0&T to a point at tem-
perature 82T .

In practice the junction of lead and filament will be at a temperature
TO=HOT . The exact determination of this temperature is rather difficult.
If the leads are short and fairly heavy we may assume To= T&, where Tz is

the room temperature. The error due to this assumption in the value of any
filament-property for the whole filament" computed by the methods of this
paper will be less than 1 percent when the length of the lead is less than a
eel tain maximum length lo. Ke find that lo is given approximately by

/, = 0.32(x/u)(DJ/0. 1)'(Xq/0. 586)/A.

A is the filament current in amperes and (x/a) represents the half length of
the filament. DI, is the lead diameter in cm. XI. is the thermal conductivity
of the lead in watts cm ' deg '. For nickel leads Xr/0. 586=1, for tungsten
leads X&/0.586=2.73 for molybdenum Xz/0. 586=2.49.

Thus with nickel leads for which DI, =0.1 cm and l (1.6 cm, used with a
20 cm filament of D =0.02 cm for which the highest operating temperature
is T,„=2400' we may assume To ——Tz, since we find A =4.02," x/@=20.2,
and thence from Eq. (4a) /, =1.6 cm.

For leads such as those used in incandescent lamps it is sufficiently
accurate for many purposes to assume that To= (1/4) T

If desired we may evaluate DT= To —Tg in terms of the lead length l.
V'e find that

DT = / 2 (0.586/Xr. ) (0.1/DI, ) ' (AT0) . (4b)

(r3 T), is the value of r3, T for a nickel lead for which Dq ——0.1 cm, /=1 cm
and A =1 amp. It is given in Table III as a function of thevalue of T for
the filament. Note that these values are for a filament of constant current,

"Such as the voltage or the candle power of the whole filament.
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and hence that the diameter of a filament for which DT = (DT)0 is smaller

for the higher temperatures in the table.
The data from Table III are not dependable above TO=1000', where

radiation loss is appreciable, nor when the resistance loss in the lead is large.

TABLE III. (AT)0= To —Tp for nickel leads when A =1, D1,=0.1, l = 1.

T ('K)

1000'
1200
1400
1600

(aT),

21'
26
32
38

T

1800'
2000
2200
2400
2600

(aT) 0

45'
51
58
65
72

2800'
3000
3200
3400

(») 0

80'
87
95

102

The actual temperature distribution of the filament is given by (cf.
Eq. (3))

To find the distance from the lead, x, of a point of known temperatures,
we may evaluate the two integrals above by means of Table I I, and then ob-
tain x from (x/a)eo by using Table I. Conversely we may find the temperature
8 of a point at any given distance, x.

By the use of data on the characteristics of tungsten filaments as functions
of temperature, ' ' and from the temperature distribution along a filament as
found above, the properties of the filament at each pointcanbecalculated.
For example, we can determine the electron emission, the radiated energy,
the luminous intensity, et cetera, at each point.

The effect of lead losses on filament characteristics Many .filament prop-
erties which are functions of the temperature would be strictly proportional
to the length of the filament if the temperature were everywhere uniform.
Let h be a quantity which measures some one of these properties per unit
length at any given absolute temperature T. For example, h may represent
the voltage drop per cm or the electron emission per cm of length. Let
h be the value of h at the temperature 1 . Nearly all the properties of
tungsten which we shall need to consider vary in proportion to some definite
power of the temperature over rather wide ranges. Thus we may put

h=h 0~

n = (dh/h) (T/d T)

(6)

(&)

where n is approximately constant. "
If a filament of length 2x were all at its maximum temperature I'

the value H of any property for the whole filament would be

H = 2xh

"For values see Ref. 3, p. 354 Table II or Ref. 1, p. 153 Table I-B.
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The cooling effect of the leads makes H, the actual value of the property
for the whole filament, less than II . AH, the amount of this decrease due
to one lead, may be thought of as the total value of the property over a
short length of uncooled 61ament. Designate by 6 VH the voltage drop across
this length. AVII is then the volt-equivalent of AH, and the fractional
decrease of H can thus be expressed as a fraction of the total voltage V

AVE/V = hH/H

The ratio H/H is a measure of the extent to which the cooling effect
changes the property. V~e have

H/H = (H —2AH)/H„= (V —2AVsr)/V„.

The factor 2 accounts for two leads.

TABLE 1V. Values of 8,=J p(1 —&")d&/4P.

(10)

1
1.2
2.0
3.0
4.0
5.0
5.1
6.0
7.0
8.0

0.583
0.660
0.882
1.076
1.217
1.329
1.339
1.421
1.500
1.566

9.0
10
11
12
13
14
15
16
17
18
19

B1

1.626
1.682
1.728
1.772
1.813
1.850
1.885
1.918
1.949
1.978
2.006

20
22
24
25
26
28
30
35
40
50
60

B1

2.032
2.079
2. 124
2. 145
2. 165
2.203
2.238
2.315
2.384
2.497
2.589

If V is the actual voltage drop (in volts) and LpiV the value which DH
has when the property measured by II is voltage

H/H„= (V+2AV —2AVH)/(V+ 2AV) .

It will be shown later that the value of AVH is given by

d Vis = 1.812 10 4 2' 4 4 [84
—P (8p) I . (12)

8I is given in Table IV. It is a function of rs, the temperature exponent for
the property II in question. For n) 5, 8& is given by the equation

Bi ——0.5110+1.1660 1ogip n 0 0591/—n+. 0 2224/n'.

+0.0140/n' —0.468/n4+

The coefficient of Eq. (12), 1.812 10 PT ",is given in Table V.
P(8p) in Eq. (12) is a function of 8p. It is independent of n if n)4 and

80&0.5, and is given by

n)4, 8p(0. 5 P(8p) =(x/a)p . (14)

This value of x/a is to be taken directly from Table II for 8 =8p. For n = 1.2
(the exponent for resistance and the only important small value of n)
P(8p) is given in the third column of Table II.
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TABLE V. 1.812 10 'T "

1000'
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200

1.812 10 6T "
0.1439

. 1629

.1825

. 2024

.2229

.2438

.2651

.2869

.3091

.3316

.3544

.3777

.4011

2300'
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500

1.812.10-6T„I g

0.4250
.4493
.4737
.4985
.5236
.5490
.5744
.6003
.6266
.6528
. 6797
. 7066
. 7337

Since the current is constant, the voltage has the same temperature ex.-

ponent as the resistance. Hence 6 V may be found from Eq. (12) by setting
n = 1.2. In many cases to apply Eq. (11) it may be easier to find the theoreti-
cal voltage U = V+25V directly from the resistivity at T and the fila-
ment dimensions. The wattage input depends on the resistance of the
filament and hence 6 VII in this case is to be found for n =1.2. The wattage
radio, ted on the other hand depends on n =5.1 or thereabouts. "

Method of application. In finding the value of 8, for Eq. (12) from the
value of n, we notice that for most properties of tungsten n is not constant
as was assumed, but varies slightly with the temperature. We must take
a mean value of n, that is, its value at some effective temperature TF.
This temperature is roughly that at which h=h /2. This temperature
and the corresponding value of n may be found directly. '

As an alternate method to find Tz we note that for some properties h may
be quite accurately expressed as

h=CTIe ~'~ (15)

Thus for candle power Wiens' law (using a Crova wave-length) gives 0 =0,
b=25200'. The Richardson-Dushman equation for the electron emission
from pure tungsten has k =2, b =52600'. The rate of evaporation of a tung-
sten

filament

is

expresse by Eq. (15) with h=0, b =94100'. Setting h=h /2
in Eq. (15) and using Eq. (6) to evaluate the term in h, we find approximately

b/Ts b/T„+ [1—h/n——] log, 2.

Differentiating Eq. (15) and comparing with Eq. (7) we see that

n= h+b/T.

(16)

Hence from Eq. (16) and the values of the constants given above
we obtain the following equations for effective values of n in terms of T

candle power n=25200'/T +0.7

"Ref. 3, p. 312, Table I, column 5.
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electron emission e =52600'/T„+ 2 .6

evaporation n =94100'/T +0.7.
(19)

(20)

The decrease in the rate of evaporation near the leads is ordinarily not
a matter of experimental interest, but under certain conditions its effects

may be directly observed. Nitrogen or carbon monoxide in the presence of
a tungsten Filament at very high temperatures gradually disappears because

every atom of tungsten which evaporates combines with a molecule of the
gas to form a stable and non-volatile compound. Thus the rate of "clean-
up" of the gas depends on the total amount of metal that evaporates.

The direct application of Eq. (12) as outlined above is the most accurate
method for the evaluation of AU~. In many cases where only approximate
results are desired 6 UH may be found from the following empirical equations,
which were found to fit the data calculated from Eq. (12). The deviation
from the results of Eq. (12) is less than the amount tabulated for the given

range. The actual error of the results may in some cases be larger than this,
due to approximations in the derivation of Eq. (12).

His

Voltage*
Candle Pov er
Electron emission
Evaporation
Watts radiated

Range-
T

1000-2500'
600-3500

1000-3500
1500-3500
1100-3000

Range-
Tp

0.081' 0.056*
.182 —.004
. 158 .072
. 160 .060
. 160 .084

any values
300-1400'
300- 900
300- 900
300- 900

0.154*
, 338
.44Q
.480
.293

TABLE VI. 6 VH =P(T f1000)—Q(To/1000) —R volts.

P Q R

0.1—0.5
. 1— .5
.07—.5
.07—.5
. 1— .4

0.004
.01
.009
.008
.01

Range —Max. rror
00 (volts)

l

~ For voltage (Watts input) a term —2.1 10 'TpT is to be added to the right hand side
of F.q. (21).

In many cases with short, heavy leads Tp=3QO', In these circumstances the following
approximate equations hold.

TABLE VII. 6 I II =Pp(T,„/1000) —5 volts (22

H 1s

Voltage
Candle Power
Electron Emission
Evaporation
watts radiated

0.148
.338
.439
.477
. 287

.051

.119

. 103

. 121

Range —T,„
1000-2500

600-35QO
1000-3500
1500-3500
1000—3100

Max. error (volts)

0.004
.01
.007
.001
.01

ComPu&ation of T . If we kn-w the diameter of a filament and the cur-
rent through it, T„„may be obtained directly from Tables which give tem-
perature tabulated against current divided by d'"."

If the diameter is not known, but if the length 2x is known, the volt-
age V and a,mperage A corresponding to the temperature we wish may be
found. Assuming that the filament is all at the maximum temperature
T, we compute VA'". /(2x) and find a first approximation for T„." For

"Ref. 3, p. 312, Table I, column 6 gives VA'I'/(2x) as a function of T.
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this value of T there is a certain voltage correction DV. This gives us a
much better value, V+24V, for the voltage if the filament were all at T„.
(V+25 V) A"'/(2x) then gives us a second approximation for T„. As many
approximatiov. s as desired may be made.

Shorter filaments Wi.th shorter filaments the cooling eRects of the two
leads overlap, and the temperature at any point may be found approximately
by adding the cooling effect of each lead at that point. Kith still shorter
filaments these temperatures and the values of IIIR found as above
are in error. The amount of the error depends on n, the temperature expo-
nent of the property in question. Part II, Table X gives in column 2 the
maximum value of the half length (x/a)~ii' for which the error in H/H is
less than 1 percent. Column 3 gives similar information for 5 percent error.
For details see Part I I ~

DERIVATION OF THE EQUATIONS

The fundamental differential equation giving the temperature distribu-
tion near a cooling lead is'

2 'r+ [) (d'T/dx')+ (dh/d T) (d T/dx)']7rD'/4 = iii. (23)

The symbolism is explained in Table VIII. The terms A'r and ze correspond
respectively to the rate of production of energy and the rate of radiation

T.&BLE VII I. Symbols.

A

D
DI.
l

ao

sub m

sub c

T
TB
To =8oT
AT
8

( /)a',

H,„

k

~ t'H

Bl
&is
n(8.)

Filament current in amps K'

Filament diameter (cm) r
Lead diameter (cm)
Length of lead (cm) H
Distance along filament (cm)
Unit of length (cm) Table I
a for D =0.01 cm
Value at the uncooled central por- V

tion of the filament H.
Value at the center of the filament

(Part II) n

Absolute temperature
Room temperature P

I.ead-filament junction temperature cd

= To TB
= T/T, „
Distance in a-units from point at 8&

to point at 8~

Thermal conductivity of filament
Thermal conductivity of lead
Value of any property per cm of ~o

filament length

=h for power radiated
=h for resistance
= h for voltage drop
Value of any property for the whole

filament
Value of H if the whole filament

were at T„
=H for voltage drop
Value of H if the v hole filament

were at T,
Temperature exponent for any

property =d log h/d log T
= n for resistance
=n for radiation
=n for thermal conductivity
=ad8/dx
see Eq. (12)
Table IU
Value of B~ for u&=5

Table I I
= T../T'

of energy per unit length of filament, while the expression involving) corre-
sponds to the net rate of conduction of energy into an element of the
filament.
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An inspection of tables giving the characteristics of tungsten filaments
as functions of the temperature shows that it is possible to express Eq. (23)
in a much simpler form. '

The resistance of a tungsten filament can be expressed quite accurately
over a wide range of temperatures by the equation r =cTI', where c is a con-
stant and p=1.20 (for the range between 600'—3,000'K). Similarly the
radiated power may be expressed approximately by the relation m=c'T",
where co is fairly constant, having the values, 5.65 at 1,000'X, 5.12 at 1700',
4.93 at 2,000', 4.71 at 2,400' and 4.48 at 3,000'. In the majority of experi-
ments in which it is desired to calculate the cooling effect of the leads the
temperature of the hottest part of the filament will probably be below 2,400'.
By averaging the values of this exponent from 2,000' to 400', weighing
each in proportion to the corresponding value of zv, the effective exponent
is found to be 5.1. We shall, therefore, take this to be the value of or. Even
at very high Filament temperatures, where the effective exponent would be
about 4.7, we shall see that the error made by using +=5.1 is practically
negligible.

The heat conductivity of tungsten at temperatures from 1,300 to 2,500'
has been given by Forsythe and Worthing. ' It ranges from 0.93 watts
cm —' deg ' at 1,300' to 1.21 at 2,500'. We find that the empirical equation

) =0.840(T/1000)" (24)

expresses the values of ) at the 13 observed points given in their table
(at 100' intervals) within an error of 0.0022 or about 0.2 percent.
This equation is used throughout this paper.

In the central uncooled portion m, the power radiated per unit length,
is equal to A r, where r is the resistance per unit length at this place. Since
g is constant throughout the length of the filament, the temperature ex-
ponent of A'r is the same as that of r, that is p. Hence we can replace the
first term in Eq. (23) by w O'. Similarly w may be replaced by w 8 .
From Eq. (24) we obtain the relation X=X 8", where X„ is the thermal
conductivity at temperature T„. Using the values of X and dX/dT from this
relation, we obtain from Eq. (23)

d'8/dx'+0 4(d8/dx)'/8=. (8" " 8& ")/—a'

where a, is a parameter defined by
a' = sD9 T„/4w .

(25)

(26)

We can replace w by its value s„'/r where v„ is the voltage drop per cm
at temperature T . The factor r D' which then occurs in the equation is
independent of D and varies as T„"(it is in fact the function R given by
Jones and Langmuir). ' Thus

r~'=7. 89 10 'T~".
From Eqs. (24), (26), (27)

a=1.812 10 'T i'8/s



EFFECT OF END IOSSES

In computing c from this equation v„was found from Tables of charac-
teristics. "' Since s„~D '", we obtain Eq. (2).

In Eq. (25) set s»=5. 1, p=1.2 and substitute P as defined by Eq. (1)
for x

4d&/dg+0 4f .'/8=8" 8"— (29)

By taking as new variables @' and log 8 this equation becomes linear and may
be solved in the usual way to give

4 ' = (3—58"+28")/6. 58". (30)

The constant of integration, 3, is fixed by the condition that dg/dx =0, and
therefore P = 0 at 8 = 1, the center of the filament.

For values of 8 close to unity (30) may be expanded in terms of Z = 1 —8

ys =3.9Z' —4.81Z'+3. 715Z' —0.8886Z'+0. 4068Z +0.27Z'+ . (31)

Temperature distribution Wh. en 8 0.6 the integral in Eq. (2) may be
found by expanding 1/Q in the series

1/~ 1 4728s 4[1+(5/6)gs s+(25/24)gs

/3)8s s+1 4478s. s (5/6)8s. i+ ]. (32)

Integration gives

(x/a)', = 1.05148"+0.306784+0. 2323gs s

—0.06218s s+0.231g"—0.1178&s s+. . . (33)

When 8~0.6 Eq. (31) gives

I/g =0.5064 [1+0.6167Z+0.0941Z' —0. 1809Z'

—0.227Z4 —0.172Z'+ ]/Z. (34}

Integrating we obtain the indefinite integral, and find the integration con-
stant by comparison with Eq. (33) at 8 =0.6, where both series are sufficiently
convergent to give results accurate to 1 part in 1,000

(x/a)s ——0.2247 —1.1660 logss Z —0 3123Z—0.0238Z'

+0.0305Z'+0. 0287Z4+0. 0174Z'+ . (35)

Column 2, Table II was calculated from Eqs. (33) and (35).
Lead fitamentjun-etio@ temperature The rate o. f flow of heat, Q, in watts,

past any point of the filament is equal to the integral, from that part to
the center, of the difference between the heat generated by resistance and
that lost by radiation.

1

Q = so a
~

(8"—8")dg/4

Setting so =As, substituting for a from Eq. (28), and integrating

Q=(1.812 10 'T ")6.5 "(3—5g"y2g")"A
where tII corresponds to the temperature of the point in question.

(36)

(37)
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For short fairly heavy leads at temperatures below 1,000'K the resist-
ance loss and radiation loss in the lead are negligible. A11 the heat that Hows

into the lead from the filament must fiow out at the cold end, which may be
assumed to be at room temperature. Taking the heat conductivity of nickel
leads as constant at 0.586 watts cm ' de@ ', the leads have a constant tem-
perature gradient given by

Xg, (dT/dl)7rDg'/4 =Q. (38)

Consequently for the total temperature difference DT= To —T& for the
leads we obtain

6 T= 4lQ/(7rD g9.t ) . (39)

Eqs. (37) and (39) give Eq. (4b) for AT in terms of (DT)0. To find the latter
we notice that the lead temperature go has little eA'ect on Q. Setting 00
=0.24, 2 =1, l=1, Dq=0. 1, Xl, =0.586, we obtain from Eqs. (37) and (39)

(AT)0=145[1.812 10 'T "]. (40)

Eq. (40) was used in conjunction with Table V to compute Table III.
Filament characteristics. AYe have

I

2AH = II„, H= 2a —(h —h) dg/4 .
"&p

(41)

Applying Eqs. (6) and (28) and substituting for h, /v the equal ratio II„/ V,
where V is the voltage drop that would exist between the ends of the
filament if it were all at the temperature T

I

DVn =AH(V~/H~) =1.812 10 'T " (1 fl")dg/P-
8p

(42)

AVH is a convenient symbol for the expression hH(V /H ). It represents
the voltage acrossasection of uncooled filament of such length that II„,
for this section would equal the decrease caused by the cooling effect of the
lead. The advantage of this nomenclature is that it requires no knowledge
of filament diameter or length.

By breaking up the integral of Eq. (42) into

(a I

I3, = Jl (1—8")d0/4 (43)

&e,
P(&o) = )I (1—8.)de/4, (4.4)

we obtain Eq. (12).
In evaluating BI, we meet the difficulty that we must use two different

series for 1/Q, one for small and the other for large values of 0. Let I/Pq
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be the value of 1/P given by the first six terms only of the series in Eq. (32)
and 1/P& by the first six terms only of the series in Eq. (34) . We have

0 &0&0.5
0.5 & e & 0.65

4 =42.
Since the series are equivalent between 0.5 and 0.65 we may put

J3, = [ (1 8")d—8/y, + t (1 8")d—8/@,
0

where 0.5 & t (0.65. A simple transformation gives

t 1

Bi = (1—"8)(1/g —i 1/bi)d8+ (1—8)d8/g i.

0 0

(45)

The value of 1/Qi —1/it' is practically zero for values of 8 between 0.5 and
0.65, and therefore the value of the first integral is not dependent on the
actual value of t. Even at8=0. 1 the value off/Qi —1/Pi is only 0.117, but
at 0 = 0 it becomes 0.573. Thus the larger part of the first integral is for values
of 0&0.1. In this range 0" may be neglected in comparison with unity for
all large values of n. Even if n=1 the error in neglecting 0" will be small.

Calling the first integral of Eq. (45) Fi, we have

t

Fi —— d8/g i d8/—Qi
0 0

t

= (x/a),
' — dk/4, .

0

(46)

Designate the right hand side of Eq. (35) by F& From the. derivation of this
equation

Fi+C= Jt d8/Pg

C being a constant of integration. Hence

d8/F2 [F2+c]8=0 [F2+c]a=1 F2(1 ~) F2(1).
6 p

But from Eq. (35) Fi (1 —t) = (x/a), . Hence from Eq. (46)

F i Fi(1) = —0.0348

the numerical value being found by setting a=i in the expression for I"2

in Eq. (35) . Due to the definition of P& this value is not affected by the missing
terms of the series.

Putting the value of 1/P& from Eq. (34) in the second integral of Eq.
(45), we find
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6 p1
Bi= 0 0348+0 5064 ZA~ II (1 8 )(1 8)~—'d8

~o

where A&, A2, A3 are the coefficients, 1, 0.6167, etc. , in the series in Eq.
(34). This reduces to

B &
——0.2247+0. 5064 (1—8")d8/(1 —8) —0.3123/(N+ 1)

0

—0.0477[(@+1)(N+2)] '+0. 1833[(N+1) (@+3)] ' . (47)

the coefficients of the next two terms being 0.6894 and 2.092.
If n is an integer we have

pl
(1—8")d8/(1 —8) =1+y+3+~~+ +1/N

dp
(48)

and for other values of n the integral can be expressed in terms of gamma
functions. For n=1.2, its value is 1.1216. For large values of n the integral
is given by the series

pl
(1 8")d8—/(1 —8) =0.5772+log. n+ 1/20

0

—[12m(5+1)] ' —[12N(++1)(5+2)]—i (49)

Inserting this value in Eq. (47) and expressing as a series in reciprocal powers
of n we obtain Eq. (13).

In computing Table IV for values of n less than 5, Eq. (47) was used
but Eq. (13) was found more convenient for the larger values.

To evaluate P(80) we note that in general 80(0.5 and hence that for
fairly large n the term 8" is negligible, and Eq. (14) holds. For AV, when
n=1.2, P(80) for the third column of Table II was obtained by using the
series expansions of 1/$ given by Eqs. (32) and (34).

App/ication under other conditions. For filaments in the presence of gas,
or for filaments of materials other than tungsten there will be changes in the
values used in Eq. (29) for co, p and k, where k is the temperature exponent
of the thermal conductivity. By methods similar to the derivation of Eq.
(30) we find that the general expression for $ is

y'=28 '~[(1—8~+'+')/(p+ k+1)—(1—8"+"+')/(a)+k+1)]. (30a)

The integral 8& in Eq. (12) may be found by numerical integration or by
direct integration in some cases. Thus, when re+k+1=2(p+k+1), P' is
a perfect square, and

& =(~—S) '"[0[(N+ k+1)/(~+k+1)] —0 [(k+1)/(8+k+1)]} (50)

where P(x) =dlnI'x/dx is the logarithmic derivative of the gamma function.
Table IVa gives some values of 8& obtained in some of these ways.
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TABLE IVa.
Bi =fs (1 —II")dI//P for various exponents co, p, 0, n

5.1
4.3
6.0
4.0
4.0
4.0
4.0
4.0
3.8

0.0
1.85
1.0
1.0
1.0
1.0
1.0
1.0
1.2

1.0
4

1.0
1.0
1.0
1 ' 0
1.0
1.0
0.4

5.1
20.
1.0
1.0
5.0

10.0
20.0
40.0
27.2

B1

1.695
4.079
0.371
0.428
1.118
1.486
1.871
2.264
2.522

Data such as those in Table IVa show that the variation of B~ with ~
is small and may be represented thus

For n=p

For n =20
Bt =Bts [1+0.077(5.0—ts) ]

Bt=8 t s [1+0.100(5.0 —ts) ]

(51a)

(51b)

where B&; is the value of Bj.for co =5.0. B» may be found by these equations
from tables of B~ such as Table IVa. Fig. 1 is a plot of B&~ as abscissa against

p as ordinate for constant values of k. The full lines are for voltage cor-
rection, n=p. The dotted lines are for @=20.
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Fig. 1. Plot of B15 (~ =5) against p for constant k.
Full lines n =p. Dotted lines n =20.

The deviations of B~ found from Fig. 1 from the value of B~, for the
same n, found in Table IV may be expressed as a fraction, X, of the latter
value. The variation of X with e, for constant values of co, p and k may
be approximately expressed by

X(II) =$(20) —n(20 —II) [X(20)—X(p) ]/(20 —p) (51c)

where
n p 5 10 30 40

a 1 0.42 0.27 0.15 O. ii
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We may find Bi for any exponents n, oi, lt and p by finding X(20) and
lil(p) for the appropriate values of &a, k and p from Fig. 1 and Eqs. (51a)
and (51b). Eq. (51c) and Table IV then give the desired Bi

Other metals Fr.om Eq. (26) and the derivation of Eq. (28) we see that

a=(X T R„/s )'" (28a)

where E. is the resistivity of the metal in question at the temperature
T . AVe then have

AVn=(X T R„)"'[Bi—P(eo)]. (12a)

The Kiedemann-Franz law states that, at a given temperature, )R,
and hence the coeKcient in Eq. (12a), is approximately the same for most
metals and alloys. This coefficient is thus given by 1.812 10 5T "in Table
V. Consequently the magnitude of At/"H may be found for any metal which
obeys this law with the help of Fig. 1 and the assumption that the change
of P(ate) is similar to that of Bi.

End losses from filaments in the presence of gas. Gas around a filament
causes a loss of heat by conduction and increases the voltage required
to reach a given T Eq (12.a) shows that for a fixed T, 6 Vn is the same for
filaments in gas and vacuum except for the variation in the values of Bi
and P(90). The latter may be evaluated by considering the conduction loss
to be part of the radiation loss w in Eq. (23). Thus if at T the conduction
loss is 1/4 of the radiation loss, and if the conduction loss varies as T","
the effect on 8& may be represented as a change in the effective value of co

from 4.6 to 3.8, which by Table IVa means an increase of about 15 percent in
the values of Bi given in Table IV. In general the values of 6 1/'~ for vacuum
hoM with fair accuracy for small gas pressures, but the temperature distri-
bution is altered.

For new filament materials or other new conditions there will be no
accurate knowledge of the filament characteristics and the temperature ex-
ponents for the application of the above method, which method nevertheless
will, we hope, still be capable of indicating whether or not lead losses are
important in any given case,

PART II. LEAD LossEs IN SHoRT FILAMENTs

Temperature distribution. Shorter filaments do not admit the assumption,
made for most of the results of Part I, that the central portion of the fila-
ment is not cooled by the leads. Even the calculation of temperature distri-
bution by adding the effects of the two leads is not very good in these cases.
Thus when x/a, the filament half length, is 1.53, for which the cooling effect
of one lead at the other gives 8=0.994, the long filament case gives a central
temperature corresponding to 8=0.85, while the true value is 0=0.8. Theo-
retically the maximum temperature T can only be attained in an infinitely

These conditions are approximately those for a filament of 0.007 cm diameter at,
T =2900' in 10 mm of N2. See I. Langmuir and G. M. J. Mackay, J. Amer. Chem, Soc. 36,
1717 (2914). For larger filaments the conduction losses are relatively smaller.
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long filament (cf. Eq. (3S)). A "short filament" is one for which this fact
invalidates the conclusions of Part I.

Let T, be the actual temperature at the center of the filament, and let
the larger value T still indicate thetemperatureofa hypothetical portion
uncooled by leads as calculated from the current and diameter of the fila-
ment. Let 8, = Tv/T.

Eq. (I) holds as before with a more complicated value for P. If (x),; is
the distance from the center to a lead at temperature T0=00T„, we have,
as before

&e,
(x/a)~e,'= I d8/y

~ ea

(S2)

a has the same values as before, and is given in Table I.
Table IX gives the values of (x/a)s for various values of 8,. Fig. 2

gives the plot of (x/a)~' as abscissa against 8 as ordinate, for constant values
of 8,. The value of 0, for any curve is of course the intercept on the 0 ax.is.

O. 7

QZ

/Ci 8 Z.O
(X) c
ae

Fig. 2. Plot of (x/a)e&c against 8 for constant values of 8,.

These curves are temperature distribution curves. Thus if 8, =0.8 the curve
with that intercept gives us the temperature (8) at any distance, (x/a)e,
from the center. To find for any filament the value of O„we need know only
one point on the temperature distribution curve. Thus for a filament of
known length and of known lead temperature, a point having the coordinates
(x/a), ;, 8, is determined on the plot. This point lies on some temperature
distribution (constant 8,) curv- probably not one of these drawn. The
value of 8, may readily be found, however, by interpolating between the
two nearest curves. By continuing this interpolation down to the x/a scale,
the value (x/u)0' is found. This is the value that would obtain if the given
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filament were prolonged until its leads were at O'K, and were left otherwise
unchanged. If desired, (x/a)o" may be found from 8, by interpolating in

Table IX.
Of course the value of any property h at any point of the filament may be

found by first finding the temperature at that point, then applying published
data on filament characteristics. "
TAaLE Ix. Relation between the temperature T, =H.T at the center of a short filament with

Leads at 'E and the Length (Zx) of the filament.

0 ~ 005
~ 01
~ 03
F 05
~ 1
~ 2
~ 3

0.7325
.8262
~ 9221
.9704

1 ' 0401
1.1154
1.1645

0.4
.5
.6
.7
~ 8
F 85
9

.92

(x/a) '

1.2065
1 ' 2510
1.3077
1 ~ 3905
1,5280
1 ' 6399
1.802
1 ' 899

0 ~ 94
~ 95
.96
.97
98
99

.995
999

2.031
2.118
2 ' 225
2.365
2 ' 565
2 ' 912
3 ' 261
4 ' 074

The effect of lead Losses on characteristics If a. ll the filament were at the
actual maximum temperature, T„ the value II. of any property for the
whole filament would be

H, =2h, x=2ah, (x/a)", . (53)

h, is the value of the property in question for 1 cm of filament at temperature
T,. The ratio of the actual value for the whole filament, II, to the hypo-
thetical value is H/H. . The value of this ratio when 8, =0 we designate
as (H/H. ) o If n &4, H is independent of 80 for constant 8. for all the prac-
tical range. Hence, applying Eq. (53)

H=2ah„(x/a)'()'(H/H, ).o. (54)

H, and hence H/H„ is a function of n, the temperature exponent of the
property in question. In Fig. 3, ordinates (H/H. )0 are plotted against
abscissae (x/a)o' for constant values of n (the full lines). The scale fpr
(x/a)~o' at the top, and the scale for 8, on the bottom may be used inter
changeably. They correspond as in Table IX.

For a given filament, knowing x, a, and 80, (x/a)o' is determined frpm
Fig. 2. Fig. 3 then yields (H/H. ) o for the value of n corresponding to the prp
perty in question. H may then be found from Eq. (54).

For n &4, II is not independent of 80. For n = 1.2, the resistance-exponent,
the dotted lines at the top of Fig. 3 give the value of H/H, [not (H/H ),]
for constant values of r0=80/8' Note however that this is still given in
terms of the abscissa (x/a)o'.

For values of x/a less than 1.0, and hence not in Fig. 2, H/H js constant
at the value for x/a= 1.0.

It is to be remarked that for T.&1000'K none of the given data apply
accurately, nor is the temperature distribution accurate. This js
of the uncertainty in the value of X here.
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Computation of temperature distribution Eq. (30) holds with = new con-
stant of integration determined by the condition Q=adg/dx 0 when 8=8,
(the maximum temperature):

3yo —g
—0 ~ 8(g 2 6 0 4g 6 ~ o 82 ~ o+0 4go o) (55)

The integration in Eq. (52) is best carried out by series approximations.
Case I. r =8/8, is small

lrs t

(x/a) o
——8, dr/y. (56)

Expressing Eq. (55) in terms of r, then expanding 1/P by the binomial
theorem and integrating the resulting series term by term

e
(x/a)o ——0.8144Ao og o ri 4[1+0 175Aro'o

+0. 0795 4r o —o 0 035438 "r"+ ] (57)

where A = 1/(1 —0.4 8 ")
In Eq. (57) r" has been neglected. If 8&0.68, the error is less than 1

percent. If in this series we set 8, = 1, we get the series of Eq. (33) of Part I.
Case II. o = 1 r= (8, ——8)/8, is small and 8, is also small.

Eq. (55) may be expanded in terms of o to give

8~ o(1 8r
. )(1 o)

—o.s[1 0 8a(1 2 4388 )

+0 16a'(1 —24. 788.")+0.016ao(1+2298,")+ ]

Terms of the form (1 —bg„")/(1 —8,") were expanded by the binomial
theorem, and 8,"and higher powers neglected. Expanding 1/p and inte-
gi atlng

(x/a) '=8 [ da/y=g "(1+-'8")(2&)"[1—0 33g "&
0

—0.024o' (1—108, '
) —0.0034oo(1+5.388, 'o)]. (58)

This is accurate when 0 and |)[„."' may be neglected in comparison with
unity. At 8, =0.56 this error is about 1 percent.
Case III. 0 is small and tII,. large.

Let z=1 —8 and z,. =1—8, z and z„. are both small. Expanding (55) by
the binomial theorem

1/P =0.5064(1 —0.4z —0. 12z'+

where

)(z'-—z o) o'[1+1.0167Ci+Co+. . . . ] (59)

C&
——(z' —z ')/(z' —z ') ='z[1+(1/2)(z/z)']

Co = 1.5504C&' —0.930(z' —z, ')/(z' —z ')
=' [0.621+1.008(z /z)']z'
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substituting, multiplying Eq. (59) out, collecting like terms and integrating

(x/a) ' = 3 ds//=0. 5064(1+0.g52s o) arc cosh (s/s, )+0.3123(so s o)o o

Zc

+0.2574s, arc cos (s,/s)+0. 0239s(s' —s ')" (60)

This seri@.s is good if 0, ~ —0.7; 9 ~ 0.5.
Case IV. 8,. is nearly unity.

We may choose s small enough for series (60) to converge, but at the same
time much larger than z, . The small quantity z, then has little effect on the
integral from 0 to 1 —z. To evaluate this integral we may neglect z, entirely
and use Eq. (35) of the long filament case, which, by the choice of the integra-
tion constant, gives the value of (x/a)', . s as chosen above is sufficiently
sma. ll for this series also to converge. Adding Eqs. (35) and (60), expressing
arc cosh (s/s, ) as a logarithm and arc cos (s,/s) as a series, and remembering
that z is much larger than z„we obtain

(x/a)o =0.5757 —1.16596 logso s,+0.4043s,+1.9s,'. (61)

The coefficient of the last term was chosen empirically so as to compensate
for the missing terms. Note that the result is independent of the specific
value of z, as long as it has such a value as to make the derivation valid.

Thus we can obtain (x/a)o by Case I and (x/a)8' by Case II or III.
These two methods overlap in the admissible values of 8 except for inter-
mediate values of O„w!~en neither Case I I nor Case I I I is very good. Numerical
integration was used for accurate results in this region. The value of (x/a)o'
may be obtained by Case IU or by the formula

(x/a) o (x/a) o+——(x/a),'.
Table VII and Fig. 2 were obtained by the above methods.
Filament characteristics. Assuming as in Part I that the value of the

property in question varies as the nth power of the temperature, we have

where

H=2h, (T/T, )"dx=2ahJ
p

pea epI= ( 1/8, ") I 8"d8/g —( 1/8, ") 8"d8/Q .
aJ p Jp

(62)

(63)

If n&4, 8" becomes rapidly smaller with decreasing 8. Hence we may
neglect the second integral to obtain

From Eqs. (53) and (62)

&c

y=(1/8, -)
~

8-d8/y.
8p

(64)

(&/&.) o =~/( / )'o'.

There are two limiting cases to be considered.

(65)
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Case I. 8, is small.
We may neglect 8,"in Eq. (55). Introducing r=8/8, we obtain from

Eqs. (63), (53), (62), (52), and (55)
1

2. TT+0 ~ 4d2.(1 22 6)—0 6

H/H. =
r0 4dT(l 22 6)—0 6

T0

The value of 8, has cancelled out. If r0 =80/8, is held fixed, then H/H, is
independent of 8,. Hence in Fig. 3 the values for x/a(1. 0 are the same as
those given for x/a = 1.0.
Case II. 0, is large.

As 8, approaches unity we get the transition from the short filament to
the long filament case. %hen z„.= 1 —9, can be neglected entirely, Eqs.
(64) and (43) give

From Eq. (62)

(x/o) 0
—8."J= &1.

H=2 hIi„( „.8"J).

(66)

Thus when (66) is satisfied the value of H increases in direct proportion to
the increase of length. This is because the central portion, to which the
increased length is added, is at practically constant temperature.

The degree to which Eq. (66) is satisfied is a measure of the approximation
involved in assuming that the filament is long. To construct TableVIII the
true values of J as found below were compared with the value calculated
from Eq. (66). For 22=0 the short filament temperature distributions were
compared with those obtained from the long filament case by adding the
cooling eHect of the two leads.

Evaluation of J. If 8, and hence D=0.48,"(1 —0.48,") ' is small, weset
y =(8/8, )"in Eq. (64) and obtain, using Eq. (55)

where

I=8,"M(1/5. 2)'"(1—0.48,") '" (67)

t,

y "dy(1 —y) '"ll —Dy(1 —y"')(1—y) '1 "'
0

(68)

and m=2. 6p+1.2. M may be expanded as a power series in D

M =G0+ (1/2)G1D+ (3/8)G»D2+ (5/16)G3D'+

where

(69)

1

G» yP+»(1 —y) 1I2[(1 y31 )(2j y) 1]»dy
~o

(70)
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Each of these integrals may be expanded in terms of u =1—y, and then
integrated by means of gamma functions.

Go =ir( —1/2)m. (p)/s. (p+ 1/2) (71)

3ir —1 2 ir p+1
Gi= [1—(1/8)(p+5/2) '

2s (p+ 3/2)

(1/3—2)(p+5!2) '(p+7/2) '+
9~(—1/2) ~(p+2)G2=— [1—(1/4)(p+7/2) '

4ir(p+5/2)
—('/ 4)(p+'/') '(p+ /') '+
27ir —1 2 ir p+3

G3 = [1—(3/g)(p+9/2) '
Sir (p+ 7/2)

+(3/64)(p+9/2) —'(p+11/2) '+ ].
As 8, and D become larger the series of Eq. (69) does not converge rapidly.

A better series may be obtained by setting

M=GO(1 —giD —gpD' —. ) "' (72)

and determining the value of each g; in terms of the GI, 's by expanding Eq.
(72) and equating coellicients with Eq. (69).

If 8, is very small, D may be neglected entirely. For the case n=0,
Eqs. (69), (71), (67) give

J=(x/a)0 =1.309(8,)0'i.

This is useful in determining the smaller values of Table VII.
When 0.9~0.(1 even series (72) does not give accurate results. The

values of Jhere were determined by means of Simpson's rule. The difhculties
due to the infinite integrand at 0 =0, were avoided by an integration by parts.

If n is small, 9, may not be neglected as in Eq. (64). The most important
case is n= 1.2 (the exponent for resistance). The values of J may be found
from Eq. (63), the first integral being evaluated by the methods above,
and the second integral by a series similar to that of Eq. (57). This holds
over the useful range 80~0.6 8,.

A similar method might be used for other small values of n. The calculations
for the second integral may be simplified by neglecting 8" in Eq. (55).
At Ho =0.68, the error made thus is less than 3 percent for any short filament
(ll, 0.94). Since this integral is a correction term, the approximation is
justified. By substituting u=1 —0.40,"—(0/0, )", the integral is reduced
to a form which may be evaluated in terms of elementary functions for
n=1.2, 2.S, 3.8, S.1 and 6.4. Interpolation may be used for intermediate
values of n.

For n ~ 4 Eq. (64) is valid, unless high accuracy is desired. When n = 10,
8, = 0.7, 80= 0.5, the error is less than 1 percent.
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Experimt, nhxl checks. Several lamps were made up to test the short 61a-

ment theory by experiment. Filament L, was a straight 61ament 1.6 cm

long, D =0.0256 cm, cut from a length of wire that had been aged 24 hours at
2400'. lt was welded to nickel leads 5 cm long, DL, =0.254 cm. The tempera-

ture distribution along this filament was measured by means of an optical

pyrometer mounted on a carriage that could be moved along a horizontal

scale which gave the position of the pyrometer accurately to 0.001 inch.

The pyrometer had previously been calibrated against a standard lamp.

The curves in Fig. 4 show the temperature distribution for three different

currents. The solid lines indicate the observed values, and a comparison of

T, in each case with the corresponding value of T listed in the corner of
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Fig. 4. Temperature distribution for filament L, D=0.G256 cm, 2x=1.6 cm,
wire aged throughout its length. Experimental and theoretical curves.

the graph, shows that the center of the filament is greatly cooled by the

leads; in other words, filament J is a "short 61ament. "

The temperature distribution was calculated from the short filament

theory and the results shown in the curves marked by triangles. In Curve

1 where 0, =0.912 and T —T, = 234', the agreement with experiment is

fairly good. In the more nearly extreme cases of Curve 2 where 0, =0.836,
T —T, =408', and Curve 3 where 0, =0.687, T —T.=725, the tempera-

tures given by the theory are too high. YVe attribute this departure from the

observed values to an error in the value of 'A at the cool ends of the filament.

The heat conductivity of tungsten is not accurately known at temperatures

below incandescence, and if we have used values of ) in this range that are too

low, so that the calculated temperature gradient near the leads is too steep,
the resulting T, will be too high. An error from this source becomes important
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only when the short filament theory is put to the severe test of predicting
r, in cases where r, is much less than r .

Since T, must be known before either the voltage or the candle-power
of a filament can be calculated, the following empirical addition to the theory
has been devised, to be used in those cases in which T, can be determined only
by calculation. To compensate for the error that results from using values
of X that are too low, we proceed as if the length of the filament were shortened
by an amount Ax such that the heat loss by conduction will be increased
above Q&„ the value corresponding to X, by an amount $=4Q&hx/(sD').
Qz is given by Eq. (37) which for 8O ——0.24 becomes approximately

Q&, =0.66542 8,(1.812 10—'T ") (74)

It has already been pointed out, in connection with the derivation of Eq.
(40), that changes in Ho have little effect on the factor 0.6654. 8, supplies
approximately the factor by which Q&, must be reduced when the integration
in Eq. (36) is carried only to 8, instead of to 1. The term in brackets is
given in Tab'. e V. Values of P derived from the data of Fig. 4 are given in

Table XI. They were calculated using those values of Ax which made the
theoretical and observed curves coincide at 1500'; the theoretical curves are
indicated by crosses. P is tabulated as a function of Tp, since the error is
greater at low lead temperatures.

TABLF. XI.

300'
471

400'
367

500'
263

600'
159

From Table U and Table XI one can calculate

Ax = s.DQ/(4Qg)

and subtract Ax from the actual half length x of the filament before calcu-
lating r,. This correction applies to calculations of r, only, and the maximum
values to be used are O. I5x for leads in air, and 0.22x for leads in liquid air.

Fig. 5 is a plot of the volt-ampere characteristics of filament G, 1.928 cm
in length, a=0.0103 cm. The curves labelled air, using the bottom scale
for voltage are for the bulb at room temperature, 300'K. The curves labelled
liquid air, using the top scale for voltage, are for the bulb immersed in liquid
air.

The course of the liquid air observations for low voltages is interesting.
For 450'& T, &1200' and T =2,000', the current decreases with increasing
voltage. This phenomenon has been obtained with all short filaments which
have been tried in liquid air.

Thus for one value of the current there are in some cases three possible
values of the central temperature of the filament. With a low temperature
the heat generated is small and so the small temperature gradient is suffi-
cient to carry away the heat and maintain equilibrium. Likewise, with a
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higher central temperature the heat generated is greater and the larger
temperature gradient is necessary to preserve stability. Hence it is possible
that all three central temperatures may be stable. The phenomenon may be
explained in more detail by assuming that below 1,200' X is larger than the
value given by Eq. (24). Analysis shows that the general form of Eq. (73),
which gives (x/o)'Oc for small 8„ is

(x/a)Hr~ 8 o+i—p}/2 (73a)

If k, the thermal conductivity exponent, is less than 0.2, then by Eq.
(73a) the temperature distribution curves of Fig. 2 will cross near 8=0 and
x/a=1. Thus (x/a), " and hence also T„and A decrease with increasing 8,
for small values of the latter. This is essentially the phenomenon observed
above.
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Fig. 5. Uolt-ampere characteristics of filament G, D =0.0103 cm, 2@=1.928 cm, wire aged
throughout its length. Experimental and theoretical curves.

To obtain the calculated voltages, marked by crosses on the curves in

Fig. 5, a correction of 0.66x subtracted from x was found sufficient to com-

pensate for the decreased voltage drop along the ends of the filament due to
the lower temperature which we assume to exist in this region. Thus for
n =0, (temperature distribution) the correction is hx; for n = 1.2 it is 0.66x;
and for higher values of n no correction is needed.

Example of the calculations To illustrate . the method of calculating lead

losses, consider filament G running at a current of 1.295 amps. From
D=0.01030 cm we find D'}' =0.001045, A/D'" = 1239, thence T = 2222'&"'

Table I gives by interpolation @0=0.400, whence, as D'"=0.1015 we find

from Eq. (2) that a=0.406. To determine the lead junction temperature,
we find in Table I I I that (AT) 0

——59' and hence with I = 5 cm and DL, =0.254
cm Eq. (4b) gives ET=59'. Thus To=359', and by interpolation m Table
XI /=410. Table IV gives (1.812 10 'T ")=0.4064, so that from Eq. (75)
we have Ax=0. 100 cm if we put H, = i. The half-length x=0.964, therefore
x'=x —Ax=0.864. Dividing by a=0.406 we have (x'/a)~;=2. 128. Since
To =359' we find Ho by dividing by T, and have 80 =0.1616. We then find
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the point of coordinates 2.128, 0.1616 on Fig. 2, and drawing through it a
curve parallel to the given curves we obtain the intercepts 8.=0.959" and
(x'/a)', "=2.220. Multiplying 8, by T we find T, =2131'.

Eq. (54) shows that the voltage of a short filament is given by

V =A (H/H, )8xp, /(AD') (76)

p, is the resistivity at T. and is 61.12 10 ' ohm cm". To find H/H, we must
first obtain vo by dividing 359 by T,. to obtain 0.168. From Fig. 3 for abscissa
(x'/a), '=2.220 we find H/H. =0.766. We substitute for x in Eq. (76) the
corrected value x —0.66x=0.904 and obtain V=1.315 volts. The experi-
mental value was V=1.330.

To find the candle power we use Eq. (54) to give

Candle power=H, = 2a DC, '( H/H)0(x/a)e' (77)

C, ', the specific candle power of tungsten at T„ is found to be 47.3 inter-
national candles cm '&"&. From Eq. (18) using T, instead of T we find the
elfective value of n to be 12.53. From Fig. 3 for abscissa (x'/a)0'=2. 220 we
then find (H/H, )o=0.362. (x/a), ' is obtained from (x'/a), ' by multiplying
by x/(x —hx) to give 2.477. We thus obtain H, =0.355 in'ternational candles.
We did not measure the candle power in this instance, but in other instances
similar calculations of candle power gave results that were in good agreement
with experimental values.

Discsission of experimental checks In .ordinary practice the ends of a
filament are "unaged, " that is, they can never be heated to the temperature
which a filament must once have before the properties become those of
"aged" tungsten. It is known' that heating tungsten wire for one minute to
a temperature of about 1500' causes the cold resistance to be lowered 15 to
20 percent, and presumably the heat conductivity would be increased at
the same time by about the same amount. The filaments used for experi-
mental checks were made from wire that had been previously aged through-
out its length, in order to obtain uniform results, for the properties of unaged
wire vary from sample to sample and depend on the history of the filament.
It has been shown that in the case of aged tungsten the heat conductivity
at the cool ends of the filament is higher than the values used in the theory.
But where the filament is unaged in this region, the heat conductivity is
lower than in the case of the aged filament which tends to restore ) to the
values used in the theory so that in general the short filament theory may
be used without the correction hx to calculate lead losses from filaments
that are made in the ordinary way.

» Where 8, comes out to be less than 0.95 it is well to substitute 8.equal to the calculated
value instead of unity in Eq. (74), and thus arrive at a second approximation for hx from Eq.
(»)


