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ABSTRACT

Shatter oscillations are an apparently novel type in which the pressure sinks
periodically to the minimum value which the liquid can sustain, the liquid mass
becoming then porous or "shattered"; they tend to be much slower but more power-
ful than, purely elastic vibrations and the wave-form is very different, pressure im-

pulses alternating with long intervals of quiet. An experimental case is described and
the general theory of such oscillations is developed. Further experiments are needed.

AN ExPERIMENT

EVERAL years ago the writer was privileged to witness some interesting
experiments upon liquid oscillations in the plant of the Goulds Pumps

Company at Seneca Falls, N. Y., which were of an astonishing and apparently
little-known type. It is the purpose of this paper to describe them brieHy,
together with the theory proposed by the author, in the hope that some phy-
sicist may be induced to make a detailed study of the phenomena and so to
And out whether the theory is correct and adquate.

In the most interesting experiment a pipe 31 m long and full of water was
connected at one end to a tank which contained a considerable mass of water
and over it air at a pressure of about 4 atmospheres (the pressure of the at-
mosphere included). At the other end of the pipe was a small pump with its

Fig. 1. Indicator record showing pressure distribution.

discharge valve removed and its suction valve blocked shut, so that it served
merely to "fan" the water with an approximately simple-harmonic motion.
A recording gauge recorded the pressure of the water in the pipe at a point
near the pump.

Under the circumstances one might expect the water column to oscillate
like a "closed organ pipe" (i.e. open only at the tank end, where the pressure
must have been sensibly constant); the speed of sound in water in such a pipe
being about 1360 m per sec, the fundamental period should be around 0.091
sec. Nothing of the sort was observed. At suitable pump speeds oscillations

*Part of this paper was read before the National Academy of Sciences; an abstract of this
part appears in Science, 'To, 618 (1929).
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did occur, and of enormous amplitude, but they were much slower than the
slowest possible elastic oscillation, and the distribution of pressure was of
the remarkable type shown in Fig. 1, which is copied from one of the actual
indicator cards. Isolated "humps" of pressure appeared at intervals, in the
figure one every 0.7 second, separated by long quiet intervals during which
the pressure seemed to be about zero (certainly below atmospheric); the
humps always occurred during discharge strokes of the pump (which are
shown by horizontal lines in the diagram, four per oscillation in that case).
The maximum pressure was usually around 25—30 atmospheres but in one
case it rose to 75 atmospheres before the gaskets blew out of the pump and
stopped the experiment.

Now the direction in which to look for an explanation of this phenomenon
seems obvious enough. In an ordinary elastic oscillation a compression is
followed by an equal rarefaction, but water cannot withstand a tension of
20—30 atmospheres; under special conditions tensions up to 5 atmospheres
have been observed, but in practice, according to what appears to be the opin-
ion of engineers, the pressure never sinks below zero (i.e. one atmosphere be-
low atmospheric) —at all events no appreciably lower pressures were ever
observed in these experiments, although the indicator was often capable of
showing them.

We have, then, a case, apparently new in hydrodynamical theory, of
large-amplitude oscillations in a liquid whose pressure cannot sink below a
certain critical pressure, po. It was at first naively supposed that under these
circumstances large gaps might form in the liquid mass; for instance, in the
present case, that the column might break loose from the pump and retreat
several feet down the pipe. But a little reflection shows that this cannot
happen when the minimum pressure is really quite definite. For in order to
form such a gap the layer of liquid on one side or the other of it must at some
time experience an acceleration directed away from the incipient gap, and,
since by hypothesis the pressure is po in the gap and cannot become less than
this in the liquid, no force producing such an acceleration can be developed by
pressure differences in the liquid (although it could arise, of course, from gra-
vity in a non-horizontal column, and large gaps could then form). For
theoretical purposes the stituation might be idealized satisfactorily by assum-

ing that when the pressure sinks to po the elasticity drops discontinuously to
zero. What happens in practice, however, must be that the liquid mass does
break, at many closely spaced points, in consequence of local inhomogeneities
of composition or of state and under the action of cohesive forces, so that the
liquid becomes full of small crevices or, as we shall call it, "shattered. " Ke
sha11 study this process a little more closely.

THEoRv OF SHxTTERrNG IN x Lrqvm Co&.UMN

The point at which the pressure first sinks to the minimum value, po,
must be one where, momentarily,

Bp BN i Bp—&0 —=-——&0 (l)
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in which p = pressure, t = time, e =elasticity, u = particle velocity, x = dis-
tance along the column. Continuity being assumed, p will then proceed to
reach po at neighboring points and a shattered region will form in which p =po
and is thus uniform, so that Bu/Bt =0. In this region, according to (I), Bu/Bx
&0 (see also below, after Eq. (2) ); the liquid will therefore expand at a con-
stant rate through enlargement of the crevices so long as the shattered condi-
tion persists. The boundaries of the region, which we shall cali "shatter-
fronts, " advance thru the liquid with a speed V which can easily be calcu-
lated. During an interval dt let the shatter-front advance positively a dis-
tance Vdt from a point P to P'; then at the beginning of dt the pressure was

po at P and po+(Vdt) Bp/Bx at P', whereas at the end of dt it has risen at p'
by an amount, actually negative, (Bp/Bt) dt and has now become po, thus
(VCh) Bp/Bx+(Bp/Bt)dt =0 and

BP BP BQ BP
V

Bx Bx Bx

A second and rather peculiar condition for the propagation of the shatter-
front arises from the condition that the liquid must be left behind it in an
expanding condition (or at least not in a contracting one, since then the
pressure would immediately rise above po again). In the same notation, at the
beginning of dt let the particle velocities at P and P' resp. be u and u+(Vdt)
Bu/Bx; then at the end of dt the velocity is still u at P (because of the uni-

formity of pressure), but at P' it has changed by (Bu/Bt)dt The cond. ition
stated then requires that the final velocity at P' shall exceed that at P, or that
u+(Vdt) Bu/Bx+(Bu/Bt) dt&u; and, since Bu/Bt= —(I/p) Bp/Bx where p is
the density and the speed 'of sound is c= (e/p)'", we have by (2):

c' (3)

where k = (ep)'". It follows that the shatter-front moves with a speed above
that of sound; its progress therefore depends upon conditions in the liquid due
to other causes than what may be going on in the shattered region.

In its advance the shatter-front may eventually come to a point where the
first of Eqs. (3) is no longer satisfied. It will then turn into a "reconsolidating
front" and immediately start back in the opposite direction, for the higher
pressures in the adjacent unbroken region will accelerate the liquid toward
the shattered region. As the reconsolidating front reaches each point in the
shattered region, the crevices suddenly close up and the liquid already present
undergoes an impulsive acceleration and compression which give to it both the
particle velocity u and the pressure p that obtain on the unbroken side of the
advancing front. For convenience let us resolve conditions in the unbroken
column as usual into two wave-trains moving in opposite directions; let the
unbroken column lie on the left, toward —x, and let ui, pI be particle velocity
and pressure in the wave-train moving positively and u2, p2 the corresponding
quantities in the other wave-train. Then by the usual laws for elastic waves
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pi=kui, ps= —ku„and at the front p=pi+p~, u=ui+um. Here ui, pi, refer-
ring to the "incident" waves, are determined by conditions to the left and can
be regarded as known, while u& and P2 can be regarded as referring to waves
"reRected'" from the boundary of the shattered region and are to be found.
Let U =velocity of advance of the reconsolidating front and in the shattered
region let u, = particle velocity and f= degree of shattering or fraction of the
space that is empty of liquid, both taken at a point just ahead of the advanc-
ing front. Then in time dt the front sweeps over a section PP' of length Udt;
during this time the liquid Rowing in at P, of volume udge per unit of cross-
section, must fill up not only the crevice-space fUdt but also the space (1—f)
UCt (p —po)/s emptied through compression of the liquid already in the
section PP' and the space emptied by the outRow past P' of a volume u,dt of
the shattered column. Hence

p p0u= f+(1 f) —U+u, . (4)

(We assume u/ U small so that terms in u' or u/ U can be neglected, as in the
ordinary theory of sound. ) During the same interval dt the difference in pres-
sure at the ends of the section PP' must impart to the liquid already in it the
additional momentum acquired as its velocity changes impulsively from u, to
u; whence,

p —po ——p U(1 —f) (u —u,) .

From these two equations we And:

(5)

(p —po)'+ (p —p,) = k'(u —u,)'1—

1 1 f- ~f 1 1 f-
ft=—&+—l+f. ~ '—

&) .
U2 C2 P —P0 C2 p po

Equation (6) expresses the "boundary condition" that must hold under
these conditions at the junction of shattered and unbroken regions. Eq. (7)
gives U, and shows, among other things, that U &c under the conditions as-
sumed, since s/(p —po) will be many times greater than 2.

The reconsolidating front in its turn will diasppear upon meeting either a
similar front moving in the opposite direction or an obstruction, with resulting
final elimination of the shattered region (as a third alternative, of course, it
might also be overtaken and destroyed by a fresh shatter-front). When two
reconsolidatrng fronts meet, with pressure and particle velocity P, u in the
one moving positively and approaching from the left and P', u' in the other
one„ then at the point of meeting these quantities will change impulsively to
certain values p, I . Let us resolve the motion on each side into positive
and negative wave-trains, with respective pressures pi=(p+ku)/2, pi=
(p —ku)/2 on the left, and pi' ——(p'+ku')/2, p, '=(p' —ku')/2 on the right.
Then, after the two fronts meet, these wave-trains advance as usual and by



their superposition determine subsequent conditions in the liquid; after the

lapse of a very short time the trains will overlap a little at the point of meeting
and will produce there the following values:

1 k p). pg'
p = p, +p, '=—(p+p')+ —(u —u'), u =—— =—(u+u')+ —(p —p') (8)

2 2 k k 2 2k

The case in which the reconsolidation front is stopped by an obstruction, such

as the closed end of the pipe, can be handled by putting u =0 in the last
equations and eliminating p' and u', this gives the usual impact formula:

p =p+ku.

The extension of the theory just developed to the three-dimensional case
is easy, but for completeness we shall sketch it. The boundary of the shat-
tered region is in this case a closed surface which may move either as a shatter-
front or as a reconsolidating front, or in part as one and in part as the other;
the theory developed above will apply provided we take the x-axis along the
normal to the surface, with the single exception that we must also take account
of expansion due to the component of particle velocity tangential to the sur-
face. The tangential acceleration vanishes because over the surface p=po
and is constant. One finds thus as the conditions for the advance of a shatter-
front, in the unbroken liquid just ahead of it:

p
div u)0, k'(dsv u)'=

l9'8

n denoting distance along the normal to the front (which is also the direction
of gp), and for V, the speed of advance of the front along its normal:

P BP BP
V= —— —= e(div u) —;V'~ c'.

83 Bn Bs

~hen the boundary starts back through the shattered region as a reconsoli-

dating front, we have as boundary conditions for the determination of p and
u in the unbroken liquid,

(p po)'+—1— p —p,) = k'(u„—u,„)', (6')

in exact analogy with (6), u denoting the component normal to the front, and

also, owing to the absence of pressure gradient over the front,

u] = use) (6//)

the f denoting the vector component tangential to the front. These equations
are equivalent to three scalar ones and suffice to determine the reHected wave
in terms of the variables describing the incident waves and the conditions in

the shattered region. The value of U, the speed of advance of the front along
its normal, is given as before by Eq. (7).
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EXPLANATION OF THE EXPERIMENT

In the light of these theoretical developments the course of the oscillation
described at the beginning of the article is believed to be as follows. The
enormous gradient implied by the momentary high pressure at the pump sets
the water into rapid motion toward the tank; this phase should last about
0.091/4=0.023 sec. Then as the pressure sinks to po a shatter-front sweeps
quickly along the pipe and a considerable section of the column becomes shat-
tered and remains so, the crevices widening steadily, for a considerable time.
Some photographs of the column taken thru a short glass section of the pipe
seemed to confirm the prediction of the theory as to its condition during this
phase. Finally, as the reconsolidating front arrives at the pump and the now

rapidly moving column is brought to rest, a "water-hammer" results and the
high hump of pressure is thereby restored.

Unfortunately the mathematical discontinuity in the equations seems to
preclude obtaining any simple solution as an illustrative case. The best
method of attack seems to be to start with an assumed hump of pressure and
determine the motion of the liquid by approximate methods of calculation.
It seems most profitable, however, for such a calculation, rather laborious at
best, to be undertaken in conjunction with a repetition of the experiment in
which simultaneous pressure records are obtained at several points along the
pipe, in order to obtain a complete check on the theory. No projected ex-
periment of this sort is known to the writer at the present moment.


