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ABSTRACT

The perturbation of a hydrogen-like atom by a plane polarized electromagnetic
wave is considered on the basis of Dirac's equation, and perturbed wave functions
are obtained. These functions lead by a method similar to that used by Sommerfeld
in his "Wellenmechanisches Erganzungsband" to a formula for the spatial dis-
tribution of the photoelectrons. To the first approximation this formula divers
from that given by a factor 5/9 in the second term. The angle between the average
direction of the emission of the photoelectrons and the electric vector of the incident
wave appears therefore to be equal to hv/cd instead of the value (9/5) (h~/cme) given.
The factor 5/9 follows from the consideration of the normalizing factors for the
spherical harmonics, which were not introduced by Sommerfeld. A second approxi-
mation has also been obtained showing the influence of electron spin. This approxi-
mation differs from that obtained by Carrelli in that the spin and some other terms not
considered by Carrelli and also the factor 5/9 appear.

'HE photoelectric effect has been treated theoretically on the basis of the
- wave mechanics by G. Wentzel, ' G. Beck' and by A. Sommerfeld, ' who

gave a better approximation than the first two authors. However, all these
authors have started either from the ordinary form of the Schrodinger equa-
tion (Wentzel, Beck) or from the form which takes into account the magnetic
held but does not consider the relativity and spin effects. It is therefore of
some interest to make the corresponding calculations on the basis of the wave
equation given by Dirac. By means of this equation the relativity correc-
tions and the spin influence can be found.

The computations in the present paper will proceed in a manner closely
similar to the one used by Sommerfield in his book.

I. PERTURBATIQN OF A HYDROGEN-LIKE ATOM HY AN

ELEcTRQMAGNETIc ~VAVE

Dirac has shown' that the Hamiltonian expression for one electron can
be written in the form

II= (Po+ ~~ a/c)+ p~(o, P+ed/c) +pa mc.

In this expression pI, p3 are four-row matrices, 0 is a vector four-row mat-
rix, whose components o &,

0.2, 0.3 are ordinary four-row matrices which satisfy
the following relations

* Fellow of the International Education Board.
' G. %'entzel, Zeits. f. Physik 40, 574 (1926); 41, 828 (1926).
~ G. Beck, Zeits. f. Physik 41, 443 (1927).
'A. Sommerfeld, Atombau und Spektrallinien, Wellenmechanisches Erginzungsband,

p. 207.
' P. A. M. Dirac, Proc. Roy. Soc. A117, 610 (1928); 118,351 (1928).
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O»O2 ~O3 O2&»

O2O3= lO» = —O3O2

O'3O'» = tO2 = —O»O3

o' 1 o2'= 1; o.3'= 1.

Similar relations are valid for p», p3, moreover all o.'s are commutable with
all p's.

The parenthesis (s, p+eA/c) stands for a scalar product of the two vec-
tors o and p+eA/c. A is the vector potential, Ao the scalar potential.

To the Hamiltonian (1) correspond two mutually adjoint functions, f
and P, each of which has four components.

To obtain Dirac's equations it is to be assumed that

zk 8
po

2xc Bt

and p is to be interpreted as a vector operator, whose components are given
by the relations

ih 8
p 2' 8$

Then simultaneously

(pa+ eA 0/c) p+ p, (o, p+ eA/c) p+ p,me/ = 0

$(—pa+ eA 0/c) +Qp~(a, p+ e—A/c)+q'&p3mc =0.
(6)

(7)

In the Eqs. (6) and (7) the following notation has been used. If p is a
four rowed matrix, then

(i=1.2, 3, 4) (8)

(i =1,2, 3, 4) (9)

If the matrices p and 0' are hermitian, as, for instance, those given by
Dirac, ' P is the conjugate complex function to lf. This will be the case in
the present paper. The operators po and p in Eq. (7) operate backwards.

Dirac has shown, also, that the electric charge and current densities are
given by

p = —eyP

J= ec@p» AP

In these expressions PP stands for g„,@qPq and /pe for P;~,p;y;qPq.
It will be convenient to use the equations of second order, which corres-

pond to the Eqs. (6) and P) and in the present case will be equivalent to
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them. These equations were also derived by Dirac and can be written in the
form

—+— + ——V+—+as'c'

eh ieh
+ (o,H)if+ pi(o, E)P= 0 (12)

2+c 2xc

eh& ieh
+ (a, H) — 4pi(a, E) =0 (13)

2xc 2+c

In these equations V' stands for a vector operator with components B/Bx,
B/By, B/Bs; H and E are the magnetic and electric field intensities which cor-
respond to the scalar potential V=AD and the vector potential A, whereas
(a, H) and (a, E) are scalar products of vectors o and H or ir and E respective-
ly.

The point of departure for the following considerations will be an undis-
turbed hydrogen-like atom in the k-th quantum state, consequently V will

be equal to Ze/r, where Ze is the charge of the nucleus. The corresponding
initial proper functions will be denoted by Pi and Pi, . As in the present case
P& is always the conjugate complex function to P& it will be sufficient to con-
sider only the functions. P.

Accordingly the initial conditions are described by the equations

ih 8 eV ' ih ' ieh—+—+ ——q +m'c' ifi+ p, (c,EO)Ca=0 (14)
2mc Bt c 2' 21l c

where Eo designates the intensity of the electrostatic field of the nucleus.
Eq. (14) can be written in the form

1 B'fx 4nieU Bgi, 4s'c'U' 47r'm'c' 2sie
Pi+ if i+ p, (c,Eo)gi—0(15)——

c2 pter kc2 gt k~c2 h' hc

It mill be now supposed that the atom is disturbed by a plane polarized
electromagnetic wave, whose field can be derived from the vector potential

It is known that

and therefore

A =A, = a cos 2~v t——

H= curl A; E= —grad AD —A/c (16)

H, =H. =0; H„=a (2s.i/c) sin 2irv(t s/c)—
E„=E.=O; E.=s. (2si/c) sin 2irv(t s/c). —
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Eqs. (17) correpond to an electromagnetic wave, which proceeds in the
direction of the z axis and is polarized in the yz plane.

If the values (17) are applied to Eq. (12) it assumes the form

1 BQ 42/2e2V2 42rieV B(fz 42(ie(2 z
cos 2mv t ———

c' Bt~ h'c' bc' Bt hc C BX

4x'e'a' s 4x'm'c' 4m'vea z
+ )/z cos2 2)rv t ——+ )/z+ sin 2m

k c c h' hc' c

21KM 4~'ieav z
+ p, (e, ~o)0+ p,e,4 sin 22(v t

kc kc' c

It is convenient to introduce exponentials instead of sines and cosines
in Eq. (18). Moreover the term with (22 as a factor can be neglected, since
usually the amplitude a of the disturbing wave is very small. Then

1 Borg 4222e2V2 42rieV B)// 42(22/22c2 22/ie—~k+ 0+ p)(e, ~o)4c' Bt~ k2c' kc' h' kc

2xiea 8$ 2x'viea
[eo iv(r/-z/ )+ce 2ri (C——zv/c) ] [eor(v(C z/c)—

hc Bx hc'

2m2eva
e
—22riv(t —«/c) 1~ .t,~

go 2Z+ [e&2riv( t—z/c) e
—2xi v( &-z(c) 1gP1&1~ =

hc'

Eq. (19) can be simplified by the introduction of a perturbation parame-
ter x= —2)rie(t//hcv On account of the factor (2 this parameter is a small
quantity, so that all the terms, which have a power of a larger than unity as
a factor can be neglected. Therefore it can be assumed that

4 =6+Xv+ . (20)

In the expression above )/„denotes the proper function for the initial
state of the atom and therefore

e-2r($2 z/h (21)

where Eo is the proper energy of the atom in the initial state and $2 is a
function of the spatial coordinates only. On account of Eq. (20) the sub-
stitution of (21) into Eq. (19) leads to

8~v 4+2e~V2 4m.ieV 8 v 47f.~m'c2 27fiev- ——hv+ &+ p)(cr, +o)V
c2 Bt~ h2c~ hc~ k' hc

Bg/e 2X'Z z
+ exp — (Eo+hv)t+22/iv-

Bx k c

2%i . s
+exp — (Eo hv) t —22(iv-

h C

KV 2K'b

+—exp — (Eo—hv) t 22/2v-
c k c

(22)
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2iri—exp ——(E/, + hv) t+ 2v iv —o 2$
h C

zxv 2irg z
+ exp —— (E/, hv)—t 2x iv——

c h C

2ir g—exp — (E/, +hv)t+2v iv —p/o. ~P = 0
h C

The terms with the squares of p were omitted, according to the former
assumption.

The form of Eq. (22) suggests that

p —p e—(2~i/h) (Ek+hu) f+p e
—(2wi/h) (Etc—hv) t+

If s/X is written instead of vs/c then, on account of (23) Eq. (22) takes the
form

4ir2 4m'e2V2 8ir2eU
(E/, + hv)'vg —— vg ——— —(Ey+ hv)vy Avp-

jg2C2 Ig2C2 h'c'

4ir2m2C2 2~ge '&'.
2

~ . ~+ v~+ p, (o, Eo)v&+ e"''/'—--
h' hc Bx

(2&)

il P gal"P
e+2vriz/X~ P + e+2xiz/Ap ~ y P

C C

A11 upper signs in this equation belong together; the same applies to the
lower signs.

Eq. (24) can be written in the form

4ir2 2il M
»~+ [(Eg+ hv+eV)' —/r/'c']v~ — pi(o, E,)v~

jg2C2 hc

Since

~g'a X' gir
e22rizlx y ek2+iz/ko&tt&+ ek2xiz/xp o p& (25)

Bx

(E~+»+«)' ~'c'=—(Ea+hv+«+~c')(E. +hv+eV mc~) — (26)

and, except for very great values of v, the expression E/, +hv+eV is nearly
equal to mc', it follows that the Eq. (25) differs from that given by Sommer-
feld' only by the terms connected with the electron spin.

However, it is to be remembered that in Eq. (25) the functions v+ and v

stand for four components each. Furthermore in Sommerefeld's equations e

is the electron charge, whereas in the present paper e denotes the absolute
value of the electron charge. This explains the difference of signs, since eV
stands for Sommerfeld's —U.

The solution of the Eq. (25) can be assumed in the form of an infinite
series of the proper solutions of the undisturbed problem. However it is to

~ A. Sommerfeld, reference 3, p. 195, Eq. I'8).
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be taken into account, that the hydrogen atom has a continuum of proper
functions for electron energies greater than mc' in addition to a discrete set
of proper functions for electron energies less than mc'. Accordingly

vg
——QB;*f,+ Jl B*(E')/t/(E')dE'.

However, the expansion of the right side of the Eq. (25) into a corres-
ponding series of proper functions meets a difhculty pointed out by Darwin. '
Darwin has shown that the proper functions of the hydrogen atom form an in-
complete set of orthogonal functions and that therefore it is not possible to
develop an arbitrary four component function into a series of these proper
functions. To do this the number of orthogonal solutions must be doubled.
It means that in order to go through the calculations the existence of the solu-
tions which correspond to the negative proper energies of the electron must
be admitted. These solutions are obtained if the sign of the electron charge
in Dirac's equation is changed from negative to positive and it is clear that
they have no physical meaning. Therefore it is to be remembered that only
those terms of the above mentioned series expansion which correspond to
positive proper energies are to be taken into account in further considera-
tions.

According to these considerations the series expansion can be written in
the following form

Ogler 7f' 2'
s+2m4/) + e'+2efs/x/r f/ + s+2+/z/xp&/r&f/,

ax
= QA, +f/+ Jl A+(E')P(E')dE'. (28)

The integrals in the equation above are to be extended from 8' = mc' toE'~00
and from 8' = —mc' to E'~ —Oo, but only the integrals within positive limits
have a physical meaning.

The functions f;, P(E') are solutions of the undisturbed Eq. (14) and
therefore

8g' 4x'e'V'
E;2/1/, —Af; — E,eV /l/,

h'c' h'c' h'c'

4x'm'c' 2m i e
+ — P;+ pi(/r, EO)0;=0 (29)

h' hc

Similar equation is valid for f(E')
The Eq. (29) leads to

2mie 4m'
p, (0,E,) /I/; =———[(E;+eV) ' r//'c']P;— (30)

' G. Darwin, Proc. Roy. Soc. A118, 654 {1928).
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If Eqs. (27), (28) and (30) are substituted into (26), then it is found that

h'c'

4x'

h'c'
alt (E')

4x'

A;~

(Ev+ hv+eV)' m—'c4

A ~(E')

(Ek+ hv+eV)' (E'—+eV)'

(31)

On account of these relations Eqs. (20) leads to

kcscQ
p e

—2~isa{/& 27r; (E/, +hv+eV)' (E;+—eV)'

J
A+(E') if(E') dE'

e
—2+{{Ea+hvi i/A

(E~+ hv+«)' (E'+«—)'

+
(E/, hv+eV)—' (E;+eV—)'

A (E')P(E')dE'

J {z,—i.+.v)' —(z'+.v)'
'

From Eq. (10) the electric charge density is

(32)

hei e{i A;+*4;41
g2%'tv f

(E/, +hv+eV)' (E;+eV)'—
A

+g 21I sVf

(E,—hv+eV)' (E;+e—V)' (E/, hv+eV)' —(—E;+eV)'
A;+&I,Q; (33)

(E/, +hv+ eV) ' (E;+eV) '—
According to the former assumptions the terms whose coefficients are

prppprtipnal tp G~ were neglected, furthermore the integrals, which corres-
pond to the continuous spectrum are not written out.

From Eq. (33), which is very similar to the one given by Sommerfeld
the dispersion formulas could be obtained in the usual way.

As long as h»((mc'

(E/+ hv+eV)' (E;+e—V)'=2mc'(E/, E;+hv)— (34)

because the energy values include the energy mc', so that on the pne hand
e V is negligibly small with regard to E/, or E; (except for the K-levels of the
heavy elements) and on the other hand each of these terms divers only neg-
ligibly (with the same exception) from mc' (the energy mc' in electron-volts
is of the order of 5 10'v.

With that simplification the Eq. (33) leads to the usual dispersion for-
mula. Only when h» begins to be comparable with mc' and especially for the

' A. Sommerfeld, reference 3, p. 197.
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heaviest elements does Eq. (33) give results dilfering appreciably from the
usual dispersion formula. As hv is equal to mc' for X —24XU it follows that
the diHerence begins to be appreciable for X-rays of the order of 0.1A.

According to Eq. (28) the value of Aj+ is given by

~&a
e+2 i /xd7. + ~

e/2~iz/xy. o

(35)
ur

+—
li

a+2-»y p,«p,d. .

Eq. (35) is obtained if Eq. (28) is multiplied by p; on the left-hand side
and integrated over the whole space. Furthermore the normalizing integrals

JI if',P;dr=C; (36)

are to be used. The integrations in the expressions (36) extend over the whole
space.

II. THE PHOTOELECTRIC CURRENT

The photoelectric current excited in a given direction by an electromag-
netic wave incident on a hydrogen like atom can now be found on the basis
of Eq. (32). Only the photoelectric emission from a single atom will be con-
sidered here. To calculate this emission, those excited states of the atom
which belong to the continuous spectrum are to be considered. Therefore
in the present case the sums in Eq. (32) can be omitted as irrelevant. The
values of the coefficients A+(E') are given by the formulas

i OPS
g+(E~) p(EI) sga~izixdr y y(E&)ir y sza~asi&dr

C(E') Bx
(37)

zg
iigip

X

JI ~.4 (E')~.4 (E')dr
l illlit

A„E'

(the integral extends over the whole space) and

(38)

h„p(E') = y(E')dE'; A„P(E') = I P(E')dE'
dnE hnE

(39)

(see Fuess').
In Eq. (32) the term P&e '~'s"'i" can be also omitted. This term re-

presents the initial k-th quantum state of the atom and therefore its radial
part contains an exponential of the type e ~', where p, is a real positive number.

E. Fuess, Ann. d. Physik 81, 281 (1926).
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Since /s 10~ this exponential vanishes very rapidly with increasing r .(The
same applies to the terms of the sums in Eq. (32)). On the other hand the
radial parts of the functions y(E') have as a factor an exponential e"'" where

p is purely imaginary. They vanish therefore only slowly with growing r.
It follows that for the values of r great compared with the atomic dimensions
(and it is these values that are to be considered for the photoelectric effect)
only the integrals in Eq. (32) are to be taken into account.

According to Sommerfeld' the integrands of these integrals can be sepa-
rated into three factors

.4+(E')
s)

(E/, + hv+eV)' (E'+e—V)'
and e) e 2~/(—Egkhv& t/h

In the factor (a) only Vdepends upon the coordinates, but, as V is equal
to e Z//r it can be safely omitted in the computations. The factor (a) then be-
comes a constant, i.e. it depends only upon E'.

The factor (c) gives the dependence of p upon the time. The expression
E+ hv in the exponent can be interpreted as the energy of the photoelectron.
The kinetic energy of the photoelectron is

6 =EIe + kP —PIC .
If the + sign is taken this can be written in the form e = A,v —J where
J=mc~ —E~ is the ionization potential. The corresponding expression with
the —sign becomes negative. Hence there cannot be given a physical inter-
pretation to the corresponding parts of f unless the possibility of existence
of states with negative total energy is admitted. The existence of these
states has already been admitted to obtain an expansion of the right side of
the perturbed Eq. (25) into a series of the proper functions of the undis-
turbed problem. The factor E& —hv could then be written in the form
—(—Eq+hv) and the negative kinetic energy of the photoelectron, which
evidently has no physical significance would be e'= —( —E&+hv) —( —mc')
or e'= —(hv —J). This forms an analogue to Einstein's photoelectric equa-
tion.

According to the above considerations these parts of P which correspond
to the —sign in the expression EI, + hv can be omitted, the more so, that the
parts with the + sign will be incomparably greater than the parts with the
—sign on account of the expression (E/, +hv+e V)' —(Z'+e V)' in the denom-
inator of the integrands, which tends to zero with E tending to E~+hv.

The factor (b) is the really interesting one for the determination of the
spatial distribution of the photoelectrons. Moreover it must be added that
only the radial parts of the functions P have the continuous spectra. The
directional parts have only the discrete proper functions. Therefore on ac-
count of the foregoing considerations the following expressions are properly
to be used in the subsequent calculations (because AP and A(+&') should
be explicity written as A;q and Aq (E'))

~ A. Sommerfeld, reference 3, p. 209.



S. E. SZCZENIOR"SKI

hciea /' A/, (E')if//, (E')dE'
/,
—2~i /sg+Av) t/5 40

2ir i ~ & (Eg +h/+eV)' (E'—+/:V)'

To avoid the divergence of the integral in (40) the integration can be per-
formed according to%entze1" along a path which extends slightly around
the pole B' =BI,,+he into the positive part of the complex plane E'.

Darwin" has shown that the solutions of Dirac's equations for a central
electrostatic field can be written in the form

and

(1) . tn

/km, — &~kPk+1
(2) . m—1

fI ——&~~Pk+1

(1) m
imp„= —i(k+m)F /, ip/, i

(2) m+1= —i( k+m+1)F—g ipse i

(3) = (k+m+1)Gyp' +'
(4)

ik/i = (—k+m)Gd'a"+'

(3) =G g 1PP
(4) =G I 1Pg +'.

(41)

(42)

The functions I'I, are spherical harmonics defined in the following way

d "+ cos' 8—1
P/, " (k —m)! sin ——8 .eim$

d eos 6I

It can be shown that
p —m ( 1)mp m4

(43)

(44)

so that only the values of I'&" for positive m need to be known. Furthermore

p 2%' 4x

J Pi P~ *sin 8d8dg = (k+m)!(k —m)!.
2k+1

The functions F& and 6& depend upon the radius r only and satisfy the
relations

2x E+eV dGk k
+mc FI+ ——Gk ——0

h c dr r
(46)

— ——mc Gk+ -- + Ii],=0.

For a hydrogen-like atom with the nuclear charge Ze the potential V is
equal to eZ/r and so, if the following notation is used

2m E 2x E 2m e'Z—+fÃc = A i
———SEC =8 — --- —-=')/= ZA2 ~ 2

h c h c hc

where n is the Sommerfeld fine structure constant, then instead of (46)

(
dGI, k2'+—I' I + ——Gp =0

r dr r

(
dI'I, 0+2

&2+— I
—— — ~a =o.

r dr r

(4&)

"G. %entze1, Zeits. f. Physik 40, 574 (1926)." C. G. Darwin, reference 6,
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The solutions (41) and (42) correspond to different values of the inner
quantum number j. For the solution (41)j=k+q, for (42) j=k ——,'. More-
over, for the solution (41) —k —1&m& k which leads to 2k+2 different solu-
tions, whereas for the type (42) one has —k~ m~k —1 i.e. 2k different solu-
tions. In each case there are 2j+1 solutions as it should be.

In the subsequent calculations the normalizing integrals for the proper
functions (41) and (42) are used. These integrals were given by Darwin"
For the solution (41)

Cp = j" yg Pi,„dr=4s(k+m+1)!(k —m)! jf (Fg'+GI, ')r'dr
0

and for the solution (42)

(49)

Ci, = j' gp QI, dr=4s(k+m)!(k —m —1)! !I' (F i. f+G Q g)—r'dr. (50)
4 p

It is also to be noted that the solutions (41) and (42) form an orthogonal
set of functions, i. e.

jl pj, (E)P~ ~
(E')dr=0 (51)

except for E=E', k=k', m=m' and j=j' (j—inner quantum number).
Darwin has also shown that for E&mc' a hydrogen-like atom has a set

of discrete proper values of E, which correspond to the solutions (41) and
(42). For E)mc' there are solutions for each value of E. This last condition
corresponds to the existence of a continuous spectrum. It can be shown that
in this latter case Ii~ and GI, are complex functions, which to the first approx-
imation correspond to spherical waves diverging from the nucleus (or con-
verging towards the nucleus).

To find the approximate forms of F& and G& for r—+~ all terms in Eqs.
(48) with r in the denominator can be omitted in the first approximation.
This leads to

A'F+dG/dr =0; B'G dF/dr =0—
with both A' and 8' positive. Hence

(52)

d'F
A'Il+ ——= =0;8' dr'

1 d'G
B~G+— =0

A' dr' (53)

P ~eiABt ~ G

These values of F and G substituted into Eqs. (52) give

a= —ibB/A = —ibp (55)

p is a small quantity and so P&" and/&" are small compared with/&" and f&".

~ C. G. Darwin, reference 6.
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In the second approximation u and 0 can be considered as varying slowly
with r and so all terms with /2/r2, /2'/r and (2" and analogous terms for 7/ are
to be omitted. If the values (53) and (54) are substituted into Eqs. (48) the
above assumption leads to

a ip A B
a'+—j. ———+— =0

r 2 B A
(56)

and the same equation for b

If one puts

—+— (57)

then the Eq. (56) takes the form

whence

Therefore finally

(2'+—(1—2b) = 0
r

(2
—Cgzg logr/r

7r o= 2pggi(ABr+glogr)/r

G —Cgf (ABr+2 logr)/r

(58)

(59)

(60)

On the basis of the notations (47) it can easily be found that AI3 is usually
of the order 10', whereas 5 is, for high speed photoelectrons and low atomic
numbers, small compared with unity. As the log r varies much more slowly
than r it follows that 5 log r =7 can be considered to this approximation as
a constant.

All is now prepared for the actual calculation of the coefficient A~+
(E')

in Eq. (40). These coefficients are given by Eq. (37), which, written in the
developed form is

—(I )
P —(1) ~plr0

Cg„(E')Ag (E') =
Jl 42„(E') ' e2 '*'"dr

l9x

~pk0
(Er) o ggoiz/x(fr

l9x

(3) (4)
(3) ~pk0 —(4), ~QI0

(Er) &2rriz/id&+
l @ (Er) &2oiz/)dr

dx Bx

(I)
~

(&) f (&) I (&)
2

J~ y (Er)y &2rriz/)rdr + 2
~l @ (E )p Bggiz/)zd&

(3)
~

(4) (4) I (3)
42 (E')A gg '*/"~r+2 J' 42-(E')42 &' '*/"d~

(61)
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(l) I (4) (2)
q

(3)
it/2~(P )1//2 e2aiz/1dr+ I r//2~(E, )p2 e2aia/Xdr

f (3)
q

(&) (4)
~

(l)
(gr)p e2aia/1dr+

~~
y„(Pr)p„e2riz/Xdr

The Eq. (61) follows from (37) if it is remembered that, according to
Dirac"

0 —i 0 0

i 0 0 0
0'y,

0 0 0

0 0 i 0

and

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

(62)

To simplify the calculations it will be supposed that the hydrogen-like
atom considered is initially in the normal unexcited state. According to
Darwin two possibilities are then to be considered".

Either

(1)
plor~e / o

1+(1 ~2) I/2

(2) Z7
p Iree—&/rso

1+(1 ~2) 1/2

(3) = r&e-"/"
0

(4)
(63)

{l) '7
Pl-Iree —r/a

22 1

(&) '7 —Pl'r&e "/«
1 + (1 ~2) 1/2

(4)
P/„———r/'e-"'o

(64)

In the equations above p denotes (1 —y2)'/2 —1 and /2, is equal to /2/Z

where a is the radius of the 6rst Bohr orbit.
Accordingly either

(l)
Oi/r/ra —2'r

Bx 1+(1 —y2)'"
(2)

o

Bx 1+ (1 —y2) "'
(3)

W'22
(ree—r/ao)

Bx Br
(4)

o =0
8x

(rP '=s)

(re 'e "'a) P1'r —sin e cos g
z7

rP —le—r/ao

1+.(I ~2) 1/2

(65)

(r P1
' ——x+ 2y)

8—(re 'e 'ao)P, 'r sino cos Q
Br

"P. A. M. Dirac, Proc. Roy. Soc. 11'7, 680 (1928).
~4 C. G. Darwin, 1. c.
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or

8 s'Y—(r/' 'e "'&)P, 'r sin 8 cos P+ &P
—1~—rfc

1+(1—7') "/2 Br 1+(1 72)1/2

(2)
~/Ihip

(3)
~faro =0

Bx

z )/' 8—(r/' 'e ' o)Pi'r sin 8cosg
1+(1—7')'/2 /7r

( rP, '=—x —iy)—

(66)

(4)
4'ao a= ——(r//e ~/oo)

ar

These two possibilities will be considered separately.
The integrals in Eq. (61) differ from zero only for certain definite values

of k and m. The next step of the computations consists in determining these
values.

On account of the appearance of the factor e' ""in the integrands there
are two possible ways of performing the computations. Either as Sommerfeld
has done, one can develop the function e' '""~'" into a series of powers of
"""'"and then can calculate the possible values of the coefFicients Ai (E')
on the basis of this expansion or one can start from the function e' '"""'"
itself. This last method was used recently by Carrelli. " Both these methods
lead to the same results on account of the absolute and uniform convergence
of the series

X X2 X3

1+ ~+ ~+ ~+1.'2! 3!
(67)

for all points of the x plane. The series (67) can be therefore integrated term
by term, which gives the same result as the integration of the function e
itself. The same applies to the products of the exponential by various spheri-
cal harmonics and the products of the expansion (67) by these harmonics.

Carrelli finds the coefficients A/, (E') in the form of the functions of a
quantity 8 equal to

X/2m. (1/ao+iAB)
and then develops these functions into series of R. Sommerfeld's method
leads immediately to the power series of R as the value for A/, (E'). It is
obvious that both these power series are identical.

Carrelli has computed only the coefficients A»(E') and A»(E') on the
basis of the Schrodinger equation and in his calculations took into account
only the first two terms of the power series expansions for each of these
coefficients. These terms were of the order of 1/R' and 1/R' for the coeffi-
cient A»(E') and of the orders of 1/R' and 1/R' for the coefficient A»(E').

'6 A. Carrelli, Zeits. f. Phys. 55, 694 (1929).
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To be consistent Carrelli should also find the first term of the expansion,
which corresponds to the coefficient An(E'), whose order is 1/R' and the
first term of the expansion for A4i(E') which is of the order of 1/R'. These
last two terms were neglected by Carrelli and this invalidates his result. To
appreciate the inRuence of the above mentioned terms one has to consider
that in Carrelli's case the perturbed wave function can be written in the form

if =AiiQi' cos P+AmiQ, ' cos g+AeiQeP cos y+A4iQ4' cos P (68)

where Qi denote the spherical harmonics used by Carrelli. The values of
the harmonics in (68) are

ii =sin 8

Qe' =(3/2) sin 8(5 cos'8 —1)

Q2' = 3 sin 8 cos 8
(69)

Qi' =(5/2) sin 8 cos 8(7 cos '8 —3)

15
p= sin 8 cos @ A ii+3A2i cos 8+—A3i cos' 8

2

3 35 15——A 3(+—cos' 8A 4i ——A 4i cos 8 . 70
2 2 2

It follows, that the terms omitted by Carrelli were

3 15——A 3i and ——A 4i cos 8.
2 2

In the present paper Sommerfeld's method of computation will be used.
To obtain the degree of approximation comparable with that of Carrelli the
exponential e ' '""'""will be developed into a power series, whose first four
terms will be retained. Thus

2~jr 2' 2r2 4~'ir'
e'~'«"/» =1+ cos g — — cos' g — — cos' g.

X ) 2 3X3
(71)

To find the values of k and m for which Eq. (61) differs from zero it is
sufficient to take into account the orthogonality relations for the functions
I'y, , as Sommerfeld has done. Those relations are

f 0' f 2%' kWl
I'I, I' ~"* sin gdgd@ = 0

0 0 ns/n
(72)

Furthermore in Eqs. (65) and (66) —,'(e'&+e '&) can be written instead of
cos P. The values of the functions I'k for those values of k and m which enter
into consideration in this paper are given below

jP 0

Ij =cosg
E'20=3 cos'8 —1

I']' = sin ge'&

I' ' = 3 sin 8 cos ge'&

P~' ——3 sin 8(5 cos' 8—1)e'&
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P44= 3(5 cos' e —3 cos e)

P,'= 3(35 cos4 e —30 cos' 8+3)

P4i = 15 sin e(7 cos' 0—3 cos //) e'&

(73)

I' '=3 sin' e"&

I'3'=15 sin' 8 cos ee"&

P,'= l5 sin' 0(7 cos' //
—1)e"&

It will be supposed now that the initial state of the atom is given by Eqs.
(63) and (65). The two types of the solutions, given by the Eqs. (41) and (42)
have to be considered separately. The reasoning quite similar to that of
Sommerfeld shows that for the solution (41) the coefficients A'4 (8') (the
accent is used to denote the first type of the solution) are different from zero
for

m=+1
m=+1

k=3 m=+1
k=4 m=+1

Similarly for the solution (42) the coefficients A4» (8') (two accents de-
note the second type of solution) are different from zero for

k=2 m=+1
k=3 m=+1

(75)

It is to be noted that for the term 47»'4»' cos' 0//3—V in the expansion (71)
only the integrals in Eq. (61) with the greatest absolute value were taken into
account.

For the sake of brevity the following notations are used in the subsequent
calculations (/4 is equal to AB).

ie

j (r//
—le—v/ao) e isr»2d» —Qi-

Bf
(76) t ree "'oe ""r'dr=Q4

0

(81)

r" 8

J
(re 'e "/' )e "—"»ed»-= Q-,

-
o 8r

(82)
oo

(77) (r//e
—v/uo)e ixrrdr Q&—

Br

CC

(re 'e "/~o)e ""r4dr—=Q4
o Br

00

(78) (ree '/")e "'rid» =Q//—
o Br

(83)

rPe—r/a« —'~rdr g (84)
00

(79) (»ee r/aa) e i ~r»4dr =Q4- —

o ~r

rPe —z'/aoe —i xrrdr—
a

(8O) ~
(»ee

—r/ao) e
—ixr»4dr —

Q///
&p Br

(85)

If the values (73) of the spherical harmonics and the normalizing integrals
(49) and (50) are taken into account then with regard to Eq. 61 it follows
after some easy calculations that
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'p
Ao, 1(E') =~a i+ —+—— Qs(2P+ip)

X 6 3X'

ipP zaa . Qz 2.2 iw'
A 1,1(E') = — Ql+ zVpQa+ —— Qg+ VPQs M—s

12 30K' 6 iSX' iSX' 6X

ayp az'-Qz 2 2 22za
A 1,—I(E ) Ql zVpQa + Qg Qs+ Qa

30)P 6 15/2 3/2

~ = vp ' " 2'"
Aa, l(E') = ——Qa+~8 — zvQs — Qlo

30) X 15K' 105) '
%2

Aa, l(E') =— iyPQ8 ——
Qg

210)' 105)'
vp ' " 2i"

A 2,—l(E ) Qa Qs+ zVQ6+ ~10
30K 'A 15K' 105) '

1r2
A, 1(E')= — iyPQa+ Qg

210K' 105) '
2 jÃ3

(86)

(89)

(91)

(92)

A4, 1(E') =—
2835Xa

(93)

2 jm3
A 4,—1(E ) Qlo

2835K'

ipP gaa zyP Qz 2n' 22za
Al, 1(E)=~1— zVPQa+ Q4 ——+ Qg+ Qs

6 15) ' 2 3 15)' 3) ~

(94)

(95)

7p i~ vp x' 2i"
A, , 1(E') = Qa+ Qa+ Qs — iyA 6

—Qlo30) 15K 6) 15K' 105K'

vp vp i 2" 2i"
A2,—l(E ) = —

Q2 Qs Q8 Q6(p+zv)+ Qlo
30) 6X 5) 3X' 35K'

~ =""p 2"
A a', 1(E') = ——

Qa
—— Qg+ zyPQ6

105) ' 105K' 15K'

2K' . 4x'
A 6,—1(E ) zVPQ8+ Qg

105K' 105K'

2ilr3
A 4, 1(E ) Qlo

94SX'

2igs
A 4,—1(E ) Qlo

567) 3

A,",1(E')= 0

As, 1(E')=0

(96)

(97)

(98)

(99)

(100)

(101)

(102)
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If it is taken into account that
pP

(rpr rla~—) — pr3 —& 3—rlao

Bf ao
and

f3 p8—1

(r—P &g
—"t&o—) = (p —1)r3 3 ———3

—~l&o

Br an

then with the notation q = 1/r33+ix and

5 = I r~e '"dr
0

it can be shown by integration by parts that

(103)

(104)

(105)

S
Qi = — (1+soy)

aoq

2S
(106) Q3=-

q2
(111)

S
Q, = — (2+upq)

a g2

2S
Q.=——,(5+ o~)

q3

Q4 ——s

S
5

q

(107)

(108)

6S
(109)

24S
(110) Q33

———
aoq

(114)

(115)

S ia p IW|

Q3= — 1+ r3 (112)
aoq 2

2S iy' . ao&
Q3 = ——1+ i+ (113)

aoq 2 2

The expressions (106) (115) were simplified by taking into account the fact
that P is equal to (1 —y3)'" —1 or approximately to —y3/2 and is therefore
very small. Accordingly it was put equal to zero in all the Q's with the excep-
tion of Q3 and Q3 whose values, on the evidence of the expressions (86)-(102)
are the most ™portantones. Therefore in the expressions (112) and (113) P
was put equal to —y3/2.

On the basis of Eqs. (41) and (42) together with (40) one can write if the
radial parts of the functions $3„(E') which are common to all terms on
account of the expressions (60), are omitted

1('3~A 3,—3(E') (0 1+1)P3 +A 3,—3(E')(1—1+1)PI

+A3,3(E')(1+1+1) P, '+A
, (E3'3)(2+1+1)P +3A 33(E')(2—1+1)P3 '

+A3, $(E')(3+1+1)P3'+A3 3(E')(3—1+1)P3 '+A4, g(E')(4+1+1) P4'

+A3,—3(E')(4—1+1)P4 '+Ay, 3(E')P3 '+A3, 3(E')P3' (116)

+A3, ,(E')P3 '+A3, ,(E')P3 +A3, ~(E')P3 '+A3', (E')P4'—
+A3, ,(E')P4 ' P3' 3Ag, g(E')+P——3 '[A, , 3(E')+A3, g(E') J

+P3'[4A3, 3(E')+A3, 3(E') ]+P3 '[2A3,-i(E')+A3, r ir(E') ]
+P3 [5A3,$(E')+A3, ~(E)]+P3 [3A3, 3(E)+A3, 3(E')]
+P4'[6A (E3')+A4, (E')]+P. '[4A3 „(E')+A3, 3(E)].—
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1P4 A 0,—1(E )(0 1)P0 +A 1,l(E')( —1+1)P '+A 1, 1(E') ( —1 —1)P1

+A2, 1(E')(—2+ 1)P2'+A 2, 1(E')(—2 —1) P2'+A 3,1(E')(—3+1)P,'

+A 3,—1(E')(—3—1)P3'+A 4, 1(E')( —4+ 1)P4'+A 4, 1(E')(—4—1)P4'

+A 1, 1(E')P1'+A 2, 1(E )P2 +A 2,—1(E )Pp +A 3,1(E )P3 +A 3,—1(E )P3'

+A 4, 1(E )P4 +A 4,—1(E )P4 Pp A p.—1(E )+Pl [A 1.—1(E )
—2A', ,(E') ]+P2'[A2, 1(E')—3A2, 1(E')]+P,'[A, ,(E') —A, ,(E') ]

yP, P[A",
, (E') —4A, (E')]+P '[A, (E') —2A, (E')]

+P4' [A,",(E') —5A,', (E') ]+P4' [A 4, 1(E') —3A 4, 1(E') ] .

(117)

With regard to 1P„and P, it is to be remembered that they are small, of
the order of p, when compared with $3, 1{}t~. Therefore it is sufficient to com-
pute for them only the terms with the greatest absolute values and hence
only the terms with the coefficients A'1, 1(E'), A'11(E') and A "1, 1(E') are
considered. Thus

$1= —p {P2Al, l(E )+P2 Al 1(E )+Pp (1 1)A1, 1(E)}
= —p j Pp'Al, l(E')+P2 'A, ,(E') I

(118)

q 2
———p j Pp'A 1,1(E')+P2'A, ,(E') +Pp'( —1 —1+1)A1, ,(E') }

p {P2 Al, l(E )+P2 Al, —1(E ) Pp A 1,—1(E ) }
(119)

If Eqs. (86) (102) and (106) (115) are taken into account and substituted
into Eqs. (116) (119) then after some calculation

t}I &
= —p sin 0 cos 8 cos @ (120)

p&
———p sin' 0 cos Qe'& (121)

ZCOK imp ~&prov
I/3 1+ r' sin 8 cos p — (1+apq) sin 8 cos p+ —sin 8e

2 2 2

4m i CpK 7f +P+ sin 8 cos 8 cos P 1+ i+ + (2+apq) sin 8 cos 8 cos P
Xq 2 2 )q

X'PQ o 12m'—sin tI} cos 8 cos Q
— sin 0 cos '8 cos Q

X'q'

2%2 2K Go+ (3+apq)imp sin 8 cos'8 cos @— imp sin 8 cos' 8e'4—
Xg X' q

KQO 2' 8 p+ sin 8(ye'4+2ipe '&) — —sin 8 cos 8(2pe '& ice'4)—
2X X'-

q

32 j~'
sin 8 cos' 0 cos Q

X'q'

(122)
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xiap iyPapq
f4= cos 0.

2
(123)

In the Eq. (123) only the terms with the greatest absolute values were
taken into account, the rest can be safely omitted to the present approxima-
tion. Moreover in all the four Eqs. (120)—(123) the common factor —5/aoq
was omitted.

The Eqs. (120), (121), (122) and (123) represent a spherical material wave
diverging from the considered atom, whose amplitude depends upon the
direction in space. This can be seen at once if one takes into account the
neglected common radial factors. Therefore the spatial distribution of the
photoelectrons (whose kinetic energy and velocity do not depend upon the
direction of emission as can be seen from the foregoing discussion) is given
by the intensity of these waves or by the density of electric charge emitted
in a considered direction, which is equal to

&(4'l4'1+4'24'2+ 434'3+444'4) ~ (10)

It is to be remembered that p is conjugate complex with regard to lt'.

According to the relations (120)-(123)

K ap p P x'ap
p' sin'8 cos' $+ + a qOq*co s8

— pP(q+q*) cos 8
X' 4 2X

16m' 4~i
+sin'8 cos' Q+ sin' 8 cos' 8 cos' P — —(q —q*) sin'8cos8cos'Q

2mapky' 2 '7'
+ (q+q*) sin'8 cos 8 cos' Q+ (q —q*)

)qq~ Xqq*

gp apK 12~'
(q+q*) sin' 8 cos 8 cos' Q — (q'+q*') sin' 8 cos' 8 cos' QX'q'q*'

apiyp 2~p q+ q
(q*—

q) sin' 8 cos' g+ a, + sm' 8 cos 8 cos' p
qq*

2Ãap+ 1+Pap
sin' 8 cos' 8 cos' p+ (qe '4' q*e'4') sin—' 8 cos $

2

(124)

Rap 6m'i
+ (y cos p+2p sin p) sin'8 cos P+ (q' —q')yP sin'8 cos'8 cos' P

X ) 2q2q42

2~' apipp 4~' apP
(q —q~) sin' 8 cos' 8 cos' Q

— (qe'4'+q*e '&) sin'8cos'8cosg
X' qq* X' qq*

2~~ apsy+ (q~e'& qe '4') sin—' 8 cos' 8 cos QX' qq*

32
+ i '(q' sq*') sin' 8—cos' 8 cos' P

&8(qqs) 3
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2+2aosyP
sin' 8 cos' 8 cos $(e e/q e—&/q*)

X2

48ix3 1 1
+—— ———sln2 8 cos' 8 cos' p

Xgg g g

If on the other hand the initial state of the atom is described by Eqs.
(64) and (66) then it is found that for the solutions of the type (41) the co-
efficients A 'q (E') are different from zero for

k=o
k=1
k=2

m=0

m=0, —2

m=0, —2

k=3 m=O, —2

k=4 m=0, —2 (125)

whereas for the type (42) A "&„(E')differ from zero for

k=1
k=2
k=3

m=0

m=0, —2

m=0, —2

k=3 m=O, —2

k=5 m=0, —2 (126)

After some calculations quite similar to the ones given previously for the
foregoing possibility it follows that in this second case

Pj=p sin28 cos Qe '&

f2 = —P sin 8 cos 8 cos Q

g Mo 4"fPQ pg
cos 8

2

P SapK ivP z+Paog1+ sin 8 cos p — (1+aeq) sin 8 cos p+ sin 8ef'&

2 2 2

(127)

(128)

(129)

4xi zp apK gpp+ sin 8 cos 8 cos P 1+- i+ + (2+aeq) sin8cos8cosg
Xg 2 2 Xq

myao 12" 2%2
sin 8 cos 8 cos p — sin icos' 8 cos p+ (3+aoq) iypsin8cos'8cosg

X X2q2 ) 2q2

Z~ ao mao
imp sin—8 cos~ 8e '&+ sin 8(ye 'e+2pie'e)

X2 q 2X

27/ Qp 32i~' .—(~p. ~ —v*- ~) . s - s — * e -"e - s. )X2 q $3q3

Therefore in this ease

ao2 y2p2ao2qq ~ ~ao2pp
Qq =P' sin' 8 cos' $+ + cos'8 — (q+q*) cos 8

4 2)
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16m 2 4m i
+sin' 8 cos' Q+——sin"-8 cos' 8 cos' Q

——(q —q*) sin'8 cos8cos'$

2&apK+ 2 '7'
+—— (q+q*) sin"- 8 cos 8 cos' P+ (q —q~)

Xqq Xgq

XP apK 12x2
(q+q*) sin'8 cos 8 cos' g — (q'+q~') sin'8 cos'8 cos'P

~qq' — ~'(qq*) '

api& p 2vryp q+ q*
+ (q*—q) sin' 8 cos' P+ ae+ sin' 8 cos 8 cos' &

2

2%pap 'ZPPa p
sin' 8 cos 8 cos' Q+-- (qe'—& q*e —'&) sin' 8 cos Q

2

~ap 6~2i
+ sin' 8 cos P(y cos P—2p sin g) + (q*'—q') yP sin'8 cos'8 cos'P

X ) '(qq*)'

(131)

2m2aoiyp 4~2 aop
+ (q*—q) sin'Hcos'8cos'Q — (qe ' e+ qe'4') sin'Hcos'Hcosqt

X2qq* ) ' qq*

2x' apzQ+ — (q*e '& —qe'&) sin' 8 cos'8 cos Q
g2

32jvr3
+— (q' —q*') sin' 8 cos' 8 cos' Q

v(qq*) '

2Ã apzpp
sin' 8 cos' 8 cos P(e &/q e&/q*)—

)2

48im' 1 1
+—————sin' 0 cos' 0 cos' P.

) 3qqg

According to G. Wentzel" the average of the expressions (124) and (131)
is to be taken to 6nd the real spatial distribution of the photoelectrons.
Therefore this distribution is given by

~2a 2 ~2P2a 2qq+ ~a 2ryP
P' sin'8 cos' f+ +— cos'8 — (q+q*) cos 8

4 2X

16x2
+sin' 8 cos' p+ sin' 8 cos' 8 cos' P — (q —q*) sin' 8 cos 8 cos' Q

X'qq

T'a pK+ 2 '7'
+ (q+q~) sin'8 cos 8cos'P+ (q —q*) sin'8cos 8 cos'g

Xqq~ Xqq*

apzyP 12m-
+ (q*—q) sin'8 cos' $— (q-"+q*') sin'8cos'8 cos'Q

) 2(qq4)2

"G. Vientzel, 1. c.
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2%' ygg
(1—p) sin'8 cos 8 cos 'g

2~p q+ q zppco+ sin'8cos8cos'Q+ (q —q*) sin'- cos 4
X qq 2

(132)

s gay 6s'i(q*' q—')
+ sin2 8 cos2 Q+ yp sin2 8

2 X'(qq*) '

4~2 q+ q* 2m 2

aop — sin' 8 eos '8 cos' p+
qq~

32ix3
+ (q' —q*') sin' 8 cos' 8 cos' 4

x'(qq*) '

4Sim' 1 1
+ sin 8 cos tl cos

X'qq* q q~

COS 8 COS" P

CgZQ
(q~ —q) sin'8cos'8cos'Q

qq

If the notations used by Sommerfeld are adopted, then

ao ——a/Z; q=Z/a+i»; y=nZ
and so

(133)

q+q*= 2Z/a; q q*= 2—i»; qq~ = Z'/a'+»';
(134)

q' q*' —4f»Z=/a; q'+q~'=2(Z'/a'- —»');q' —q*'=2i»(3Z'/a' »') )—

Moreover, according to Eq. (55)

j8 g —mc» l2 z ffh

p
A E'+mc' 3 ' 4mmc 2

(135

but 8' —mc2 is equal to the kinetic energy of the photoelectron, E'~mc2 and
therefore

(4mc2 2c
(136)

Substitution of these values into Eq. (132) leads

7!QCL Sex
@/~sin' 8 cos' p 1+p'+ +sin' 8 cos 8 cos' f

X(Z2/a'+»')

2gaZ2 P 2mxp2 27f aa
+ (~ —~)}+ "~-"t-"~

g(Z2/g2+»2) g ) (Z2/g2+»2)

48m'~2 S+2 47r2g~» 24' 2pg~»Z~/ g2

+
g2(Z2/g2+»2) 2 $2(Z2/g2+»2) ) 2(Z2/g2+»2) $2(Z2/g2+» )

'2

S+2p 256+'f~' 967r'» (137)
+sin'0 cos'8 cos' P

V(Z'/a'+ r ')

m'a2 ~amp a2~2p2 g2
+ — COS 8+ —+ f~ Cos 9.

Z9.2 4 a2
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According to Sommerfeld and to the Eqs. (47)

2gmv

h(1 —v'/c') "'
h2

0=
4x-'mc'

(138)

furthermore

Z Sm'mv
+K

a2 h

p"- —e/2mc' = (hv —I,)/2mc' (I,—ionization potential)

(139)

7raa/X = h v/2mc'.

If these values are substituted into Eq. (137) then

hv Io 2'V A 2 Zl flv
Pf=sin2 0 cos' p 1+ — +—1 — — +—+

mc' 2m c' c S c' 4mc2

hv 3v2 hv
sin2 8 cos 8 cos' ~I5+ 1 — sin'0 cos'8 cos2 Q

c mv c 3mv

4Z) 3hv x' a hv lt

+ 1 — — — sin 0 cos 0 cos $+ ' cos 0
c3 4mz)2 Z9 ' 4mc2 c

$2v

+ —cos2 8.
Smc' c'

(141)

(142)

The term n'Z'/—4 in the parenthesis after 3v'/c' was omitted, because
other terms of the same order have been also omitted for the present approxi-
mation.

If the right side of the Eq. (142) is divided by 1+hv/mc' —Io/2mc' then
to the same degree of approximation

2 v &2Z2 Eo &2 3hv 1 hv
Qlkt = sin'icos'p 1+—1— + + — —— — cos 8

C S 2mc2 2c- 4mc2 2 cmv

+ 1— cos" 8+ 1 — —cos 9

m'a2 hv zl hv zl2

+ — ——cos 0+ ——cos' 0
Z9 '- 4mc' c Smc' c'

(143)

On the basis of Eq. (143) one can calculate, as Sommerfeld has done,
the angle of the cone surrounding the s axis inside of which half of the
electrons are emitted. Then to Sommerfeld's degree of approximation

0= v/2 —v/2c. (144)

This result agrees with the elementary calculation of the basis of the
quantum hypothesis. t' Sommerfeld's result differs by the factor 9/5 before

"A. H. Compton, X-rays and Electrons, London, 1927, p. 240.
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—v/2c which is due, as can be seen by repeating his calculations, to the neg-
lecting of the normalizing factors for the spherical harmonics. Thus, instead
of the harmonics

P~ "(cos 8) (145)

in the formula (4) on the 210th page of the "KVellenmechanisches Erganz-
ungsband, " the functions

(k —m)! 2k+1

(k+m)! 2
Pq™(cos8) (146)

ought to be used, otherwise the formula (7) on the page 212 is not correct.
The same remark applies to the result of Carrelli.

To calculate the angle 0 with a higher degree of accuracy one can start
from the equation given by Sommerfeld

f

�2'
ft

PP sin Od&d@ = I
'

PP sin Odom.
0 0 O ~0

(147)

To simplify the notations the relation (143) can be written in the form

//=sin'8 cos-' p(1+8 cos 8+c cos'8+d cos'8)+A 73 cos 8+C co—s' 8. (148)

Eq. (147) leads then to
2 cos'8 b d

2 cos 0+4A cos 0+b cos' 0— =—+——28.
3 2 6

(149)

If it is supposed that 8 is equal to m/2 —x, then from (149) it follows that

b d Sb' Ab
sin x=—+——8—

4 12 192 2
(150)

whence, on account of (143)

n n~Z~ I0 3~' 7 hv 1 hv 2x'u'
Sln S=- + +

2c 8 282C 4c 4ggc 2 cy@v Z g
(151)

If it is supposed that the photoelectrons are emitted from the K-level
only, which conforms with the initial assumptions in this paper then

Io ~hZ' n'Z'

2nzc' 2mc' 4
(152)

and so Eq. (151) can be written in the following form

So."-Z' hv 1 hv 2 m
'-a'

sin x=—1—
2c 8 4mc' 2 ense Z9 '

According to Hirge" a=7.283&&10—' and k/me=0. 02428A. If moreover
the value of X is given in Angstrom units, then finally

'8 R. T. Birj,e, Phys. Rev. Suppl. , July 1929.
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0.006 5.50
sin x =—1—3, 53.10 ~Z' ———

2G 4c ) Z9' (154)

Eq. (154) shows that the increase of the frequency of the incident radia-
tion causes a decrease of sin x from the value t)/2c. However, this effect
becomes appreciable only for very high frequencies such as correspond to
very hard x-rays, and y-rays. This does not apply to the last term in the brack-
ets, namely 5.50/Z942, which becomes of importance even for ordinary x-rays in
the case of low values of Z. Therefore for helium and especially for hydrogen
the value of sin x should be markedly less than s/2c. For both these gases
and for x-rays of the order of 1A the coefficient A in Eq. (149) becomes of
the order of unity and so instead of Eq. (159) it follows that

whence Anally

f) d 48 f)' (5+12A)
sin x= 1+

412+24) 26 6 411 (1+24)'I (155)

'V v 0.002 v'- 5+ 12A
sin x= 1—3.77X10 'Z' ——— (156)

2c(1+2A) 4c l4 12c' (1+2A)'

where

~~a, 2 2 75
A=

Z~) ~ Z~) 2

The formulas (154) and (156) do not agree with the results obtained
recently by williams, Nuttall and Barlow" but they represent fairly well the
results of other authors. " However, the experimental methods used to
find the spatial distribution of photoelectrons cannot as yet claim a high
degree of accuracy and it seems therefore well to wait for a Anal decision till
more experimental data are available.

It is to be noted that the angle of the maximum emission of photoelec-
trons does not coincide with the above computed 8=2r/2 —x. This angle
can be calculated from the formula

(158)

In the erst approximation this leads to the value

82 ——2r/2 —2)/c

which differs from the corresponding value of Sommerfeld

82 ——x/2 —9s/5c

by the disappearance of the factor 9/5.

(159)

(159')

"E. J.williams, Nature, 121, 134 (1928). E, J. Williams, J. M. Nuttall and H. S. Barlow,
Proc. Roy. Soc. 121, 611 (1928).

"A. Sommerfeld, l.c. p. 225, fig. 20.
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In the second approximation it can be found that according to Eqs. (158)
and (148)

where

b cb 5b' 8/cos' y
sin sy= +

2 2 16 2
(160)

or according to Eqs. (148) and (143)

11he 5o.'Z' 1 hv
S1Il XI = 1 + +

c 4mc' 8 2 cmv

hv
0

Smc' cos' P
(161)

Hence finally by using the formerly given values of b/rnc and n

v 0.067 0.003
sin xI =—1+3,53. 10—'Z' ———

c 4c ) X cos'P
(162)

It can be readily seen from this formula that for very hard x-rays the
value of sin x& begins to be appreciably smaller than v/c, but for the same
values of v and X the values of sin xI increases with the increase of Z.

The independence of the maximum of photoelectric emission from the
value of A can be readily understood with regard to the fact that Eq. (148), if
coef6cients 8 and C are neglected represents a superposition of an emission
given by the term

sin' 0 cos' P(1+b cos 9+c cos' 8+d cos' 0)

which shows a pronounced maximum and an emission independent from
the direction in space, represented by the term A.

The values of the angles of maximum photoelectric emission which fol-
low from the data of Loughridge" agree fairly well with the formula (162).
This formula ceases to be valid for P nearly equal m/2 or 3ir/2.

The author wishes to express his gratitudes to the International Educa-
tion Board for the granting of a fellowship.

¹teadded during the proof. The a~erage forward momentum of the
photoelectrons can be calculated readily from the Eq. (148). It appears
to be equal to bmv/5 or, if the ionization energy is neglected, so that

equal to 0.8hi/c. According to Williams (Proc. Roy. Soc. 121, 611, 1928)
an average momentum 0.8ki/c of photoelectrons in the direction of the
x-ray beam corresponds to a constant momentum 5/4 (0.8hi/c) in the direc-
tion of the x-ray beam, superimposed on the radial momenta of the photo-

» D. H. Loughridge, Phys. Rev. 30, 488 (1927).
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electrons distributed proportionally to sin'0 cos' P. It follows that this
additional component of momentum is equal to the momentum of the photon.

It is to be noted that all the results of this paper were obtained by neglect-
ing the term i—5 log r in the exponential of the formula (56). The value of 3

is according to Eq. (57)

1 8 c
+ 9

2 8 .0 z
(163)

The smaller the value of 5, the smaller the effect of its neglect. It follows
that the results of this paper are more exact, the greater the velocity of the
photoelectrons and the smaller the atomic number.

The calculations of this paper can be repeated taking 5 into account,
which causes the wave functions representing the photoelectrons to take the
form

P~r ~"e fr'/r— (164)

The calculations are easy but rather long; they lead to the result that to
the first approximation

2v 6Z
@/~sin 0 cos Q 1.+—1+—— cos 8

C 28K
(165)

It follows that for 5Z/2am« I or (v/c)'»(aZ)'/2 the terms with 6 can be
neglected and the formula (143) is then valid.

Thus for comparatively slow photoelectrons and high atomic numbers
the formula (165) is to be applied instead of (143), whereas this latter
formula is valid for high speed photoelectrons and low atomic numbers.
Eq. (165) ceases to be valid for very slow photoelectrons, because the use of
the asymptotic formula (164) is then not justified.


