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ABSTRACT

The perturbation of a hydrogen-like atom by a plane polarized electromagnetic
wave is considered on the basis of Dirac’s equation, and perturbed wave functions
are obtained. These functions lead by a method similar to that used by Sommerfeld
in his “Wellenmechanisches Erginzungsband” to a formula for the spatial dis-
tribution of the photoelectrons. To the first approximation this formula differs
from that given by a factor 5/9 in the second term. The angle between the average
direction of the emission of the photoelectrons and the electric vector of the incident
wave appears therefore to be equal to hv/cmv instead of the value (9/5) (hv/cmv) given.
The factor 5/9 follows from the consideration of the normalizing factors for the
spherical harmonics, which were not introduced by Sommerfeld. A second approxi-
mation has also been obtained showing the influence of electron spin. This approxi-
mation differs from that obtained by Carrelli in that the spin and some other terms not
considered by Carrelli and also the factor 5/9 appear.

HE photoelectric effect has been treated theoretically on the basis of the
wave mechanics by G. Wentzel,! G. Beck? and by A. Sommerfeld,® who
gave a better approximation than the first two authors. However, all these
authors have started either from the ordinary form of the Schrédinger equa-
tion (Wentzel, Beck) or from the form which takes into account the magnetic
field but does not consider the relativity and spin effects. It is therefore of
some interest to make the corresponding calculations on the basis of the wave
equation given by Dirac. By means of this equation the relativity correc-
tions and the spin influence can be found.
The computations in the present paper will proceed in a manner closely
similar to the one used by Sommerfield in his book.

I. PERTURBATION OF A HYDROGEN-LIKE ATOM BY AN
ELECTROMAGNETIC WAVE

Dirac has shown* that the Hamiltonian expression for one electron can
be written in the form

H=(po+edo/c)+pi(o,p+ed/c)+psmc. (1)

In this expression p1, p; are four-row matrices, ¢ is a vector four-row mat-
rix, whose components ¢, 03, 03 are ordinary four-row matrices which satisfy
the following relations

* Fellow of the International Education Board.

1 G. Wentzel, Zeits. f. Physik 40, 574 (1926); 41, 828 (1926).

2 G. Beck, Zeits. f. Physik 41, 443 (1927).

# A. Sommerfeld, Atombau und Spektrallinien, Wellenmechanisches Erginzungsband,
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0102 =103= — 090
0903=101= — 0302 (2)
0'30'1=i(72=“"0'10'3

a’=1; og’=1; g32=1. 3)

Similar relations are valid for pi, p3; moreover all ¢'s are commutable with
all p’s.

The parenthesis (o, p+ed /c) stands for a scalar product of the two vec-
tors ¢ and p+ed/c. A is the vector potential, 4, the scalar potential.

To the Hamiltonian (1) correspond two mutually adjoint functions, ¥
and ¢, each of which has four components.

To obtain Dirac’s equations it is to be assumed that

ih 9

= — 4
27c ot @

o

and p is to be interpreted as a vector operator, whose components are given
by the relations

ih 9 th 0 ith 9 )
wor T oy T T

E2

Then simultaneously

(potedo/W+pi(o, p+ed/c)y+psmcy =0 (6)
&(—potedo/c)+¢pi(a, —p+ed/c)+dpsmc=0. 0

In the Egs. (6) and (7) the following notation has been used. If uis a
four rowed matrix, then

4

w= D s (i=1,2,3,4) (8)
k=1

¢,U-= E‘bk”’ki (l=1y2)314) (9)

k=1

If the matrices p and o -are hermitian, as, for instance, those given by
Dirac,* ¢ is the conjugate complex function to ¥. This will be the case in
the present paper. The operators p, and p in Eq. (7) operate backwards.

Dirac has shown, also, that the electric charge and current densities are
given by

p=—epy (10)

and

J=€C¢p101l/. (11)

In these expressions ¢y stands for Y_s— ¢l and ¢y for Zﬁk=1¢>iu;k¢k.
It will be convenient to use the equations of second order, which corres-
pond to the Egs. (6) and (7) and in the present case will be equivalent to
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them. These equations were also derived by Dirac and can be written in the
form

th 9 eV\? ih eA\?
(2 oo
2wc ot ¢ 27 c

eh ieh
+—(o,H)Yy+—pi(o, E)}y=0 (12)
27c 2mc

( ith 9 eV\? ih eA\?
(- —+—) + —v+—> +mict b
2wc 9t ¢ 2r c
eho ieh
+—(o,H)——¢pi(s, E)=0 (13)
2wc 27c

In these equations V stands for a vector operator with components d/dx,
d/0y, 9/9z; H and E are the magnetic and electric field intensities which cor-
respond to the scalar potential V=4, and the vector potential 4, whereas
(¢, H) and (o, E) are scalar products of vectors ¢ and H or ¢ and E respective-
ly.

The point of departure for the following considerations will be an undis-
turbed hydrogen-like atom in the k-th quantum state, consequently V will
be equal to Ze/r, where Ze is the charge of the nucleus. The corresponding
initial proper functions will be denoted by ¥ and ¢,. As in the present case
¢ is always the conjugate complex function to ¥ it will be sufficient to con-
sider only the functions y.

Accordingly the initial conditions are described by the equations

th 9 eV\? ih \? ieh
(2 24V (2 ot P om0 19
2w¢ At ¢ 27 ) 2wc
where E, designates the intensity of the electrostatic field of the nucleus.
Eq. (14) can be written in the form
1 9% dmieV Yy 4m2eV: 4dwimic? 271

€
@ T Te e VT e Bne=003)

It will be now supposed that the atom is disturbed by a plane polarized
electromagnetic wave, whose field can be derived from the vector potential

A=A.=acos 2w <t-—i)
It is known that ‘
H=curlAd; E=—gradd,—A/c (16)
and therefore
H,=H,=0; Hy=a (27v/c) sin 2mv(t—2z/c)

E,=E,=0; E.=a (2mv/c) sin 2mv(t—2z/c). (1
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Egs. (17) correpond to an electromagnetic wave, which proceeds in the
direction of the z axis and is polarized in the yz plane.
If the values (17) are applied to Eq. (12) it assumes the form

1 0% 4r2*V?  A4xieV oy 4riea 2 \0
)— cos 2xv

dx

t——
c

¢z 9t h%c? v he?  at he

4m2ea? z\ 4n'm%?  4dnlvea 2z
+—hz—;—¢ cos? 2rwl t —— )+ Y+ sin 21rv(t——- oy (18)
¢ ¢ ¢

h? hc?

2T 472ieav

o, B
hc piRa S hc?

It is convenient to introduce exponentials instead of sines and cosines
in Eq. (18). Moreover the term with a? as a factor can be neglected, since
usually the amplitude a of the disturbing wave is very small. Then

+

2z
p1o1y sin 27y (t - —-—) =0.

2

1 0% 4r2%2  ArieV 9y A¢+41r2m262 +21rie o By
- - - -y 7,
c? at? hc? he*  dt h? he P ’
2wiea 61//[2 i(msle) . gtein (sl | 21r211iea[2 sl (19)
pu— —— e xmwl(i—z/c e"‘ mwl(i—z/c — e mwv(t—z/c
he dx hc?
. 2m2eva . .
— g2 (t=210) | gt — [e“”’(“zm—6‘2’”(“”")]p101\[/=0.
c
Eq. (19) can be simplified by the introduction of a perturbation parame-
ter x=—2miea/hc. On account of the factor a this parameter is a small

quantity, so that all the terms, which have a power of @ larger than unity as
a factor can be neglected. Therefore it can be assumed that

y=v¥rtxvt+ - - (20)
In the expression above Y, denotes the proper function for the initial
state of the atom and therefore
¢k=$ke‘“"E’=”" (21)
where E; is the proper energy of the atom in the initial state and 1;;‘ is a
function of the spatial coordinates only. On account of Eq. (20) the sub-
stitution of (21) into Eq. (19) leads to

1 0% 4x%V?  A4gmieV dv d72m2c®  2rie
'L‘+‘;—PI(U;E0)'U
c

—_— - ——Av

¢ o ke het ot Iz

a\—bk 271 .2
+— { exp[ ——(Ex+ m)t+ 27rw——:l
dx h ¢

2w z
—}-exp[ -——h—(Ek- hv)t— 27riv——:]}

4

v 27 2
+—{exp|: ——(Ex— hv)t— 21riu~—]
c h c

(22)
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2mi .z
— exp[ — 7<Ek+ hv)t+21rtu7:| }02\[/

iy 27 R
+——{ expl: ———h*(Ek — hv)t— 27rw——:]
c

c
2w 2 3
- exp[—T(Ek-?' hv)t‘*‘z‘n'i’/—] }Pl”ﬂp: 0
4

The terms with the squares of x were omitted, according to the former
assumption.
The form of Eq. (22) suggests that

1=0,€" (27i/ k) (Ex+hv) t+v_e—(27ri/h) (Ek-—hv)t' (23)

If z/\ is written instead of vz/c then, on account of (23) Eq. (22) takes the
form

47 , 4722V 871'2er
- e (Eki hV) V+— e v+ — ne? \Ek i hV)Y);t —A’Ui
4mim3c? 2mie e
vy +——pi(0, Eg)vy +——et2m (24)
h? he dx

_ ) —~ _twy ) -
+__ej:2rzzl)\o,2¢k+ ____eiZ‘rul)\pla,ltl/k=0-
c c
All upper signs in this equation belong together; the same applies to the
lower signs.
Eq. (24) can be written in the form
472 Bt b , . s 2rie
(Bt ey —mtetfoy — =
6;[—1 ) T . - _ 1:1l' R -
=___e:i:27|zl)\ +_e:t21rzzl)\a2‘l,k+ —eiz‘"zl)‘l)lal‘l’k' (25)
ox A A

Avy + pi(c, Eo)vs

Since
(Ext hv+eV)2—m2ct=(Ey+ hv+eV+mc?)(Er, T hv+eV —mc?) (26)

and, except for very great values of », the expression E;+hv+eV is nearly
equal to mc?, it follows that the Eq. (25) differs from that given by Sommer-
feld® only by the terms connected with the electron spin.

However, it is to be remembered that in Eq. (25) the functions v; and v_
stand for four components each. Furthermore in Sommerefeld’s equations e
is the electron charge, whereas in the present paper e denotes the absolute
value of the electron charge. This explains the difference of signs, since eV
stands for Sommerfeld’s— U.

The solution of the Eq. (25) can be assumed in the form of an infinite
series of the proper solutions of the undisturbed problem. However it is to

8 A, Sommerfeld, reference 3, p. 195, Eq. (8).
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be taken into account, that the hydrogen atom has a continuum of proper
functions for electron energies greater than mc? in addition to a discrete set
of proper functions for electron energies less than mc?. Accordingly

w= LB+ [ BHE)HEE. (27)

However, the expansion of the right side of the Eq. (25) into a corres-
ponding series of proper functions meets a difficulty pointed out by Darwin.6
Darwin has shown that the proper functions of the hydrogen atom form an in-
complete set of orthogonal functions and that therefore it is not possible to
develop an arbitrary four component function into a series of these proper
functions. To do this the number of orthogonal solutions must be doubled.
It means that in order to go through the calculations the existence of the solu-
tions which correspond to the negative proper energies of the electron must
be admitted. These solutions are obtained if the sign of the electron charge
in Dirac’s equation is changed from negative to positive and it is clear that
they have no physical meaning. Therefore it is to be remembered that only
those terms of the above mentioned series expansion which correspond to
positive proper energies are to be taken into account in further considera-
tions.

According to these considerations the series expansion can be written in
the following form

6¢k ) T ) _ i ) —
—eFITEA T —e22ri gy F —e= 2T R p oY
dx A

= Tasut [ aEiEiE. o)

The integrals in the equation above are to be extended from E’ =m¢? toE'— ©
and from E' = —mc? to E'— — o, but only the integrals within positive limits
have a physical meaning.

The functions ¥;, $(E’) are solutions of the undisturbed Eq. (14) and
therefore

472 - _ 8nr? _ Axn%V?_
Ty EX;— A‘[’i“_};;;EieV\l’i——;l;CT—\l‘i
41rzm2627 2mie _
h2 vit+ e pi(o,Eo)y;=0. (29)
Similar equation is valid for Y(E’)
The Eq. (29) leads to
_ 2mie _ 472 _
Ai———pi(o, E¥i= = [(EiteV) —mict]y,;. (30)

¢ G. Darwin, Proc. Roy. Soc. A118, 654 (1928).
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If Eqgs. (27), (28) and (30) are substituted into (26), then it is found that

ke A
Bit=
4r? (Ert hv+eV)2—m2ct (31)
h2c? AX(E")
Bi(E)= .
4n? (Exthv+eV):—(E' +eV)?
On account of these relations Egs. (20) leads to
¢,=¢ke—2rmwh _ hciea{[ Z Aty;
2T i (E)c+ hV+eV)2— (E]'+8V)2
+ f A+(E ),’L(E )dE ]e—2ri(Ek+hv) t/h
(Exthv+eV)2—(E' +eV)? 32)

+[ 7 A7 y;

i (Ex—hvteV)*—(E;+eV)?

f A=(E"Y(E"dE' :l . }
+ e-—21’1(Ek-—hV) t/h .
(Ex—hv+eV)2—(E'+€V)?

From Eq. (10) the electric charge density is

_ _  hciea _ A%
—_— —_— 2Tivt
p= et {e [Z,: (Ext hvteV)2—(E,+eV)?

Aiowd; o
5 i :|+e_2m[ 5 A% 4

] (Ek—hv+6V)2—(Ej+8V)2 i (Ek*hv+6V)2—(Ej+8V)2

> A oud; ]} (33)

7 (ExthvteV)?—(E;+eV)?

According to the former assumptions the terms whose coefficients are
proportional to a? were neglected, furthermore the integrals, which corres-
pond to the continuous spectrum are not written out.

From Eq. (33), which is very similar to the one given by Sommerfeld’
the dispersion formulas could be obtained in the usual way.

As long as hv<<mc?

(Ext hv+eV)?—(E;+eV)> 22mc(Ex— E; + hy) (34)

because the energy values include the energy mc?, so that on the one hand
eV is negligibly small with regard to E; or E; (except for the K-levels of the
heavy elements) and on the other hand each of these terms differs only neg-
ligibly (with the same exception) from mc? (the energy mc? in electron-volts
is of the order of 5 -10%.

With that simplification the Eq. (33) leads to the usual dispersion for-
mula. Only when A begins to be comparable with mc? and especially for the

7 A. Sommerfeld, reference 3, p. 197.
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heaviest elements does Eq. (33) give results differing appreciably from the

usual dispersion formula. As hv is equal to mc? for A 224X U it follows that

the difference begins to be appreciable for X-rays of the order of 0.1A.
According to Eq. (28) the value of 4% is given by

A]-i=i{ f$ja‘—/;kei2,izl)\d7.$_1r_fei21iz/)\$jo.2$kd1_
C]' dx A

: (35)
T _ _
i; f eﬂri’/)‘d’imdﬂhdf} .

Eq. (35) is obtained if Eq. (28) is multiplied by ¢; on the left-hand side
and integrated over the whole space. Furthermore the normalizing integrals

f‘;i@;‘dT:ci (36)

are to be used. The integrations in the expressions (36) extend over the whole
space.

II. TuE PHOTOELECTRIC CURRENT

The photoelectric current excited in a given direction by an electromag-
netic wave incident on a hydrogen like atom can now be found on the basis
of Eq. (32). Only the photoelectric emission from a single atom will be con-
sidered here. To calculate this emission, those excited states of the atom
which belong to the continuous spectrum are to be considered. Therefore
in the present case the sums in Eq. (32) can be omitted as irrelevant. The
values of the coefficients A*(E’) are given by the formulas

Ai(E/)=_£_{fa(El)a_‘/z"eizﬁz/xdT;f_fa(El)o,zikeizﬁzlxdT
C(E") dx A
. (37
i _ - .
?-)\—f ¢(E')P161¢k6ﬂ"‘/xdf}
where
AG(E)AW(E ) dr
n _ limit
C E = 7 38
(E) = a 50 AE (38)
(the integral extends over the whole space) and
Ap(E) = G(ENAE'; AW(E)= V(E)AE (39

AnE AnE

(see Fuess?).

In Eq. (32) the term y,e~27fx/» can be also omitted. This term re-
presents the initial k-th quantum state of the atom and therefore its radial
part contains an exponential of the type e *, where u is a real positive number.

8 E. Fuess, Ann. d. Physik 81, 281 (1926).
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Since u~10° this exponential vanishes very rapidly with increasing r. (The
same applies to the terms of the sums in Eq. (32)). On the other hand the
radial parts of the functions ¢(E’) have as a factor an exponential e*'* where
¢’ is purely imaginary. They vanish therefore only slowly with growing 7.
It follows that for the values of 7 great compared with the atomic dimensions
(and it is these values that are to be considered for the photoelectric effect)
only the integrals in Eq. (32) are to be taken into account.

According to Sommerfeld? the integrands of these integrals can be sepa-
rated into three factors

a) AE) ;D WE)  and ) emEEM
(Ext hv+eV)2—(E'+eV)?

In the factor (a) only V depends upon the coordinates, but, as V is equal
to e Z/r it can be safely omitted in the computations. The factor (a) then be-
comes a constant, i.e. it depends only upon E’.

The factor (c) gives the dependence of y upon the time. The expression
E, + hv in the exponent can be interpreted as the energy of the photoelectron.
The kinetic energy of the photoelectron is

e=FE;,+h—mc.

If the + sign is taken this can be written in the form e=hv—J where
J=mc?—E, is the ionization potential. The corresponding expression with
the — sign becomes negative. Hence there cannot be given a physical inter-
pretation to the corresponding parts of ¥ unless the possibility of existence
of states with negative total energy is admitted. The existence of these
states has already been admitted to obtain an expansion of the right side of
the perturbed Eq. (25) into a series of the proper functions of the undis-
turbed problem. The factor E;—hv could then be written in the form
—(—Ex+hv) and the negative kinetic energy of the photoelectron, which
evidently has no physical significance would be €’ = — (= E,+hv) — (—mc?)
or € = —(hv—J). This forms an analogue to Einstein’s photoelectric equa-
tion.

According to the above considerations these parts of ¢ which correspond
to the — sign in the expression E; + kv can be omitted, the more so, that the
parts with the + sign will be incomparably greater than the parts with the
— sign on account of the expression (Ey+hv+4eV)?—(E’+eV)? in the denom-
inator of the integrands, which tends to zero with E’ tending to Ex+hv.

The factor (b) is the really interesting one for the determination of the
spatial distribution of the photoelectrons. Moreover it must be added that
only the radial parts of the functions ¥ have the continuous spectra. The
directional parts have only the discrete proper functions. Therefore on ac-
count of the foregoing considerations the following expressions are properly
to be used in the subsequent calculations (because 4;t and A (fE’) should
be explicity written as 4, and A%,(E"))

* A. Sommerfeld, reference 3, p. 209.
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hciea

+ T, / ’
Y 2B ) t/h{ Z 2 f Akm(E Wim(E")dE
k m (Eko

} . (40)
2 +hv+eV)2—(E +eV)?

To avoid the divergence of the integral in (40) the integration can be per-
formed according to Wentzel'® along a path which extends slightly around
the pole E’=E; +hv into the positive part of the complex plane E’.

Darwin!* has shown that the solutions of Dirac’s equations for a central
electrostatic field can be written in the form

Vim=—iF Py1 Vim=(k+m+1)GyPym+! (41)
Vin=—iFiPrn Vin= (—k+m)GPym+t
and
l;(l) z(k—l—m)F P m ;(3) G Pm
km = — —k—1L k—1 km = U—k—1Lk
~@ - (42)

Vin=—i(—k+m+1D)F 1Py Yim=G_y 1 Py,

The functions P,™ are spherical harmonics defined in the following way

P (k )i 9( d )k+m<cos2 60— 1) m (43)
m=(k—m)!sin™ ——]-e'"®,
* d cos 6 2k. p!
It can be shown that
Pk—m=(___1)mpkm* (44)

so that only the values of P;™ for positive m need to be known. Furthermore

s 2T 41I'
j; j; P;mPym* sin 0d0dp = E:-—i (k+m)(k—m)!. (45)

The functions F, and G depend upon the radius 7 only and satisfy the

relations
rfE+eV dGy k
—{— +mc )Fr+———G=0
h c dr r

2rf(E+eV dF, (k42
——< ——mc>Gk+—-+( )~F,,=O.
h ¢ dr r

For a hydrogen-like atom with the nuclear charge Ze the potential V is
equal to eZ/r and so, if the following notation is used

2n/ E 2r/ E 2we’Z
—\ —+mc)=4?; —|——mc)=B =y=Za (47)
h\c h\c he

where « is the Sommerfeld fine structure constant, then instead of (46)

(46)

% dG, k
(A 2+—)Fk+——~——Gk= 0
r dr

r

dFy k42
(32+1>(.k-——'°— Fi=0.
r

dr r

(48)

10 G. Wentzel, Zeits. f. Physik 40, 574 (1926).
I C, G. Darwin, reference 6.
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The solutions (41) and (42) correspond to different values of the inner
quantum number j. For the solution (41)j=k+%, for (42) j=k—1. More-
over, for the solution (41) —k—1<m<k which leads to 2k+2 different solu-
tions, whereas for the type (42) one has —k<m=<Fk—1 i.e. 2k different solu-
tions. In each case there are 2j+41 solutions as it should be.

In the subsequent calculations the normalizing integrals for the proper
functions (41) and (42) are used. These integrals were given by Darwin®?
For the solution (41)

Cim= f Genimdr =41 (k+m—+1)1(k—m)! f (Fi2+ G rdr (49)
0
and for the solution (42)
Cim= f SemVimdr =41 (k4+m) (E—m—1)! f (F e +G o )ridr . (50)
1]

It is also to be noted that the solutions (41) and (42) form an orthogonal
set of functions, i. e.

f‘;kmi(E)Jk‘m',"(E’)dT=0 (51)

except for E=E’, k=k’, m=m' and j=j' (j—inner quantum number).

Darwin has also shown that for E<m¢? a hydrogen-like atom has a set
of discrete proper values of E, which correspond to the solutions (41) and
(42). For E>mc? there are solutions for each value of E. This last condition
corresponds to the existence of a continuous spectrum. It can be shown that
in this latter case Fy and G, are complex functions, which to the first approx-
imation correspond to spherical waves diverging from the nucleus (or con-
verging towards the nucleus).

To find the approximate forms of F; and Gi for r—« all terms in Egs.

(48) with 7 in the denominator can be omitted in the first approximation.
This leads to

AF+dG/dr=0;  BG—dF/dr=0 (52)
with both 4% and B? positive. Hence
AP+ 1 dF 0; B G+ &G 0 (33)
BXdr2 ' Ardr?
and
F=qe4Br ; (G =pheBr, (54)

These values of F and G substituted into Eqgs. (52) give
a=—ibB/A=—ibp (59)

p is a small quantity and so ¢ ® and¢® are small compared withy® and y@.

2 C. G. Darwin, reference 6.
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In the second approximation ¢ and b can be considered as varying slowly
with 7 and so all terms with a/7?, a’/r and a” and analogous terms for b are
to be omitted. If the values (53) and (54) are substituted into Eqgs. (48) the
above assumption leads to

2 [1 ”(A +B>] 0 (56)
Ty 2\B  4/]
and the same equation for b
If one puts
(242 )-s (57)
2\B 4/
then the Eq. (56) takes the form
a
a+—(1—1i8)=0 (58)
r
whence
a=Ce®loer/y (59)
Therefore finally

F=— iPCei(ABrHHogr)/r

. (60)
G =Ce’(AB'+“°g’)/f.

On the basis of the notations (47) it can easily be found that 4 B is usually
of the order 10?, whereas & is, for high speed photoelectrons and low atomic
numbers, small compared with unity. As the log 7 varies much more slowly
than 7 it follows that & log =7 can be considered to this approximation as
a constant.

All is now prepared for the actual calculation of the coefficient 4 (E’)
in Eq. (40). These coefficients are given by Eq. (37), which, written in the
developed form is

—(1)
Com(E)Am(E') = f ¢£1,3(E') Wi, emﬂdf

—(2)

e21rul)\d,r

+jkmw)

(3) "( )

+ f ](i,),(E’ ez:-u/)‘d,r_*__ f ¢22(E ) e2rul)\d,r

“_[_’f ¢§§3(E')¢ e2misNr + i f Gin(E W, e75<0dr
(61)
@ @
~1f¢k"‘(E,)‘Pk 62”‘“d7+1»f¢km(E')lllk errizdr ]
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i L
"TWU Gim(E Wiy P dr 4 f Sin(E Wiy 75 dr

RS

| ¢km<E')JéZ’ezrizﬂdr]

The Eq. (61) follows from (37) if it is remembered that, according to
Dirac?®

0 —72 0 0 0 0 01
i 00 0 0 010

oy= 0 0 0 —i and p101= 0 1 0 (62)
0 0 0 1 000

To simplify the calculations it will be supposed that the hydrogen-like
atom considered is initially in the normal unexcited state. According to
Darwin two possibilities are then to be considered™.

Either
—(1) — 1y 3)
s S Sl
-

. (63)

L o PylrBerla0 =0
EEREACEEOIE “
or )

~() - —®3)
e S ATy T e =0

. (64)
—(2) -y , 4
Vi, =PI = —rferla

(1)

In the equations above 8 denotes (1 —%2)Y2—1 and a, is equal to a/Z
where a is the radius of the first Bohr orbit.
Accordingly either

ne

a‘bko —_— 'l:'y a3 .
o TR a—(rﬂ-xe—r/ao)Plor sin 6 cos ¢ (rP0=2)
x - r
617/(2) ; ) i
— iy )
ko _ oy o (rPTtemT ) Pylr sin 6 cos ¢ —————————rF"l¢7r I
I, THmmT e 14 (1= (65)
Wiy |
Py =5‘r‘(7ﬂe“rlu0) (,P11= x+1y)
@)
ey
ox

13 P, A, M. Dirac, Proc. Roy. Soc. 117, 680 (1928).
u C. G. Darwin, L. c.
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or
=1 . .
d 2 (i) 1y
Ve =— Y — (r8-1¢=7130) P;~ly sin 0 cos ¢+ ————————rF~1¢g"/00
dx 14+(1—y2)'2 oy 14+ (1—q2)12
() .
Wk, @ d —rPil=x—1iy)
::k - 1+(1 : 2)1/2 5"("’“6"’“0)P1°r sin 0 cos ¢ ( ' Y
x —y r
ne (66)
Wi, -0
ax
~(4)
W, d

= ——(rfe~/a0),
dx ar( )

These two possibilities will be considered separately.

The integrals in Eq. (61) differ from zero only for certain definite values
of k£ and m. The next step of the computations consists in determining these
values.

On account of the appearance of the factor ¢2**/* in the integrands there
are two possible ways of performing the computations. Either as Sommerfeld
has done, one can develop the function e?*ir°®¥/X into a series of powers of
ros0/X and then can calculate the possible values of the coefficients 4. (E’)
on the basis of this expansion or one can start from the function e2=ircosé/
itself. This last method was used recently by Carrelli.’® Both these methods
lead to the same results on account of the absolute and uniform convergence
of the series
x x? %P

1+ l!+z+:3—!'+ s (67)
for all points of the x plane. The series (67) can be therefore integrated term
by term, which gives the same result as the integration of the function e*
itself. The same applies to the products of the exponential by various spheri-
cal harmonics and the products of the expansion (67) by these harmonics.

Carrelli finds the coefficients 4;,(E’) in the form of the functions of a
quantity R equal to

N/ 27 (1/ao+14B)

and then develops these functions into series of R. Sommerfeld’s method
leads immediately to the power series of R as the value for A(E’). It is
obvious that both these power series are identical.

Carrelli has computed only the coefficients 4,,(E’) and Ax(E’) on the
basis of the Schrodinger equation and in his calculations took into account
only the first two terms of the power series expansions for each of these
coefficients. These terms were of the order of 1/R? and 1/R* for the coeffi-
cient A (E’) and of the orders of 1/R? and 1/R® for the coefficient A4 (E’).

18 A. Carrelli, Zeits. f. Phys. 56, 694 (1929).
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To be consistent Carrelli should also find the first term of the expansion,
which corresponds to the coefficient 45 (E’), whose order is 1/R* and the
first term of the expansion for 44 (E’) which is of the order of 1/R5. These
last two terms were neglected by Carrelli and this invalidates his result. To
appreciate the influence of the above mentioned terms one has to consider
that in Carrelli’s case the perturbed wave function can be written in the form

Y=A1101" cos ¢+ A21Qs" cos ¢+ A510s1 cos p+A41Q4t cos ¢ (68)

where Qr™ denote the spherical harmonics used by Carrelli. The values of
the harmonics in (68) are
Qi =sin 6 Qs =3 sin f cos § (69)
Qs =(3/2) sin 6(S cos? 6—1) Q4 =(5/2) sin 6 cos 6(7 cos 09— 3)
whence

15
Y =sin 6 cos ¢{A 11+342; cos 0+—2—A31 cos? @

3 35 15
—7A31—|-—2—cos"0A41-—?A41 cos By . (70)

It follows, that the terms omitted by Carrelli were

3 15
——A3; and ——A4 cosé.
2 2

In the present paper Sommerfeld’s method of computation will be used.
To obtain the degree of approximation comparable with that of Carrelli the
exponential e 27ircos8/X will be developed into a power series, whose first four
terms will be retained. Thus

2wir 2wt 4m3ird

etricosd/r — 1 | cos 60— cos?f—

cos3 4. (71)

RZ

To find the values of £ and m for which Eq. (61) differs from zero it is
sufficient to take into account the orthogonality relations for the functions
P,™, as Sommerfeld has done. Those relations are

L oL . k1
f f P;™P,"* sin 6dfde =0 ( ) (72)
0 0 m#

Furthermore in Eqgs. (65) and (66) 1(e‘¢+e~%) can be written instead of
cos ¢. The values of the functions P;™ for those values of £ and m which enter
into consideration in this paper are given below

Pyt=1 P! =sin fet¢
P,’=cos @ Pyl =3 sin 0 cos fe®

Py9=3cos?f—1 P3t =3 sin 6(5 cos2 §—1)ei®
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P32=3(5 cos?® 86— 3 cos 6) P =15sin6(7 cos® 6—3 cosf)e®
P,°=3(35 cos*6—30 cos? §+3)

Py%=3 sin? ¢%#

P32=15 sin? f cos fe?i®

P2=15sin?0(7 cos? §—1)ei¢.

(73)

It will be supposed now that the initial state of the atom is given by Eqgs.
(63) and (65). The two types of the solutions, given by the Eqgs. (41) and (42)
have to be considered separately. The reasoning quite similar to that of
Sommerfeld shows that for the solution (41) the coefficients A’x.(E’) (the
accent is used to denote the first type of the solution) are different from zero
for

k=0 m=-—1 = m=+1
k=1 m=+1 k=4 m=+1 (74)
k=2 m=+1

Similarly for the solution (42) the coefficients Ay, (E’) (two accents de-
note the second type of solution) are different from zero for

k=1 m=-—1 k=4 m=4+1
k=2 m=+1 k=5 m=+1 (75)
k=3 m=+1

It is to be noted that for the term —4w3:r® cos® 6/3\ in the expansion (71)
only the integrals in Eq. (61) with the greatest absolute value were taken into
account.

For the sake of brevity the following notations are used in the subsequent
calculations (x is equal to 4 B).

0 a 0
f -é—(rﬁ‘le_’/"n)e—i"'rzdr=Q1 (76) f rBe=mI%emixmy2dy =g (81)
0 r 0

ar

*® 9 *® 9
f b—(rﬁ—‘e"/%)e"'”radr=Q2 (77) f —(rfe=rla0)eixrrdr =y (82)
0 r 0

* 9 ® 9
f —(rflemr/80) e ixpidr = (78) f —(rBe=r/20)e~ixy2dr = Q4 (83)
0 ar 0 a3

r
0 . 0 a .
f rBe=r/ag—inrdy =, (79) f —(rBe=r/e0) e ixry3dr =y (84)
0 0 ar
0 . 0 a .
f rﬂe—r/aoe—urrdr,:Qs (80) f __(7ﬁe~rlao)e—1xrr4dr=Qw_ (85)
0 0 ar

If the values (73) of the spherical harmonics and the normalizing integrals
(49) and (50) are taken into account then with regard to Eq. 61 it follows
after some easy calculations that
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Ay ()= ﬁgﬁ(wf )+—06<2p+w>

3\2
auB) ==t i+ Z- ot 0T
L 12 Ot g 1P 1512 15)@7 P\

AoB) = T g T {)+-——Q
PP 30 =t % 3)\26
Al (B ™Y w? 05— 2in?
Bt _30>\g _Q Tone 79 T o
2 7I'2
Ay (B = -
sa(E)= S10w Y2 10'>\2Q9
i
Ay _(E)=—"2%9,— “ 0w
2~(E) @2 KQ”Jﬂsx2 79”105)\3
Ay _A(E)=— ——Q,
1 E) 21002 ”’Q“Llosv
W () 2im3
e 2835)&9“’
A _ /
(B = 2835>\32
A” (E[) ’Yp 7T2 PQ + j) Q7+ 7rZ +27I'
Pt 6 O e 120t 0 3T I T
m™ . Y
oo
A5 = ot Zou 4 o Tt 200,
i 3007 1SN 6N 1s>\2 105\3
AL a(B) =~ 202, —3’0 Q( i+ 0
T T T T P I
4" (E) = 274 27"2Q+ Ll 20
1 05>\223 10502 <" 15)@” ¢
2
A”_. E)= —
1) 105\ 7PQ3+105>\29
AL () = 2¢mw3
4,1 - WIO
Ay _(E ——Q
(B = 56723

454(E) =0 }
A;,.~1(E’) =0

363

(86)

(87)

(88)

(89)

(90)

(1)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)
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If it is taken into account that

d i
B;(r"‘e"”‘o) = (Brﬂ“‘ - :)e"/“ﬂ (103)
0
and
i) A1
5(7’5_‘8—'/“0) = ((ﬁ — l)rﬂ"z——a~>e_'/“° (104)
0
then with the notation ¢=1/a¢+7k and
S= f rBe—a7dr (105)
0
it can be shown by integration by parts that
S 28
= —;—q(H‘do(I) (106)  Qo=— (111)
0 q
S ( 1aok
S
=— =——147" ) (112)
e aog? (2+ag) (107) @ aog 2
28 i'yz< aok)]
28 =—— 14—\ it+— 113)
Or= > (tag)  (108) O aoq2[ 2 2 )]
(loq3
Qo= ——> (114)
Qs=S (109) =75 y
S 248
Qs=— (110) Qloz"a . (115)
q g

The expressions (106) (115) were simplified by taking into account the fact
that B8 is equal to (1 —¥?)"2—1 or approximately to —+2?/2 and is therefore
very small. Accordingly it was put equal to zero in all the Q’s with the excep-
tion of Q7 and Qs whose values, on the evidence of the expressions (86)-(102)
are the most important ones. Therefore in the expressions (112) and (113) 3
was put equal to—~2%/2.

On the basis of Eqgs. (41) and (42) together with (40) one can write if the
radial parts of the functions ¥in(E’) which are common to all terms on
account of the expressions (60), are omitted
Ya~Ao, 1(E)(0—14+1) P+ 41, 1(E)(1—1+1) Pyt

+A1(E)(14+141) - Pl + A4, ((E) 2+ 14 1) P+ Ay 1(E)(2—141) Py
+A431(E)(3+1+1) P+ A5 1(E)(3—1+1) P 1+AL((E)(4+1+1) Py
+A451(EN4—141) P4 A7 1(E) Py 4 A3 1 (E') Pyt (116)
+ A3, (E") Py i+ A5 ((E) P+ A5 _((E) Py '+ A (B Pyt

+ AL A(E) P =Pyt 345 1(E)+ Pyt AL () A7 (B |

+ Pot[445 ((E) A 1(E) |4 Pyt (245 1(E) 445 _1(E)]

+ P3t[545 ((EN+ A5 (E) |+ Py [345, _1((EN+ A5 _1(E) ]

+ P [6451(EN+AY (BN ]+ P [444, (EN+AL(E)].
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and
Vi~ Ao (E) (0= 1) P+ A11(E) (= 1+ 1) P2+ 41 1(E) (= 1= 1) Py

+45 1(EN(=24+1) P2+ A5 1(E)(—2—1) Py"+A45,1(E)(—3+1) P2

+45,1(EN(=3=1) P+ A y(E)(—4+1) P2+ A{ (E)(—4—1)P

+AY (B P+ A2 (E) P2+ AY (E') P+ A5, ((E') P>+ A5 _1(E') P§?

+ AV (BN P2+AY ((E)PL=—PA¢,1(E)+ P, [AT _1(E') (117)

~ 241 i(E) [+ Po2[A 1 (E") = 342 1(E') |+ Po? A2 1(E)) — 42 1(E) ]

+ P[4 1(E) — 445 (E) |+ P [45.1(E") =245 1((E)) ]

+PO[AsA(E) =541 (E) |+ PR[ALA(E) 345 1(E)].

With regard to ¢, and \;2 it is to _‘t_)e iemernbered that they are small, of

the order of p, when compared with 3, ys. Therefore it is sufficient to com-
pute for them only the terms with the greatest absolute values and hence

only the terms with the coefficients A’y _(E’), A"11(E") and A""; _(E’) are
considered. Thus

Yi=—p{ Pa' AL (E)+ P4 _(E)+Pet(1—1)A7 _(EN}

118
= ”P{ P21AII,I(E')+P2_1A’1 —1(E") } (118)

and
Vo= —p{ P2AL1(E) + PoA} (E)+Po(—1—1+1)A7 _1(E') }
= —p{ P24’ ((E")+ Po*A _(E) — Py0AY _(E)}.

If Eqgs. (86) (102) and (106) (115) are taken into account and substituted
into Egs. (116) (119) then after some calculation

(119)

Y1=—psin 6 cos § cos ¢ (120)
Y2= — p sin? 0 cos pe™® (121)
_ 1@ ok iy typa . .
Y= <1+*r2 20 )sin 6 cos ¢——2—P(1+aoq) sin 6 cos ¢+ Paog sin fe—i¢
4ri 1YY ack TP .
+—sin 6 cos 0 cos ¢p| 14+— i+—) | +——(2+4aoq) sin 6 cos 6 cos ¢
\g 2 2 Ag
TYdo 1272 .
- sin @ cos 0 cos ¢ — sin @ cos 20 cos ¢
A2
2x? . . 27% ao .
+ (34-aoq) ivp sin 6 cos? @ cos ¢ ——— —iyp sin 0 cos? fei® (122)
Nig? A2 g

LCIN . . 2mtao L
+——sin 6(ye*+2ipe~%) ——— — sin 0 cos 0(2pe~ " — iyei®)
2\ A g

3248
N3g3

sin @ cos? 6 cos ¢
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widy  1ypaog
A

4=

cos 6. (123)

In the Eq. (123) only the terms with the greatest absolute values were
taken into account, the rest can be safely omitted to the present approxima-
tion. Moreover in all the four Egs. (120)-(123) the common factor —S/aoq
was omitted.

The Eqgs. (120), (121), (122) and (123) represent a spherical material wave
diverging from the considered atom, whose amplitude depends upon the
direction in space. This can be seen at once if one takes into account the
neglected common radial factors. Therefore the spatial distribution of the
photoelectrons (whose kinetic energy and velocity do not depend upon the
direction of emission as can be seen from the foregoing discussion) is given
by the intensity of these waves or by the density of electric charge emitted
in a considered direction, which is equal to

—edp=—e(dWr+d¥atdpstdabs). (10)

It is to be remembered that ¢ is conjugate complex with regard to y.
According to the relations (120)-(123)

1‘.20 2 ,‘,,2 2 02
dY~p? sin? @ cos? o+ + ao%qq™* cos?0— yp(g+q*) cos 6
A2 4 2\
. 1672 4
~+sin2 6 cos? ¢+ sin? 6 cos? § cos? p— (g—q¢*) sin?0 cosfcos? ¢
Nqq* Agg*
2mwaoky? . 27 iy?
+———(g+¢*) sin?@ cos 6 cos® o+ (g—gq*)
Ag* Agg*
— a0k (g+ *)] sin2 @ cos 6 cos? ¢ — 127 (¢®+q*?) sin?6 cos? 0 cos? ¢
)\qq* q q x2q2q*2 q q
aoty 2wy +q*
+ 02 P(q*—q) sin? 6 cos? ¢+Tp(ao+ ? Z > sin? @ cos 6 cos? ¢
. “ (124)
2mayy 1Ypao

sin? @ cos? 6 cos? ¢ (ge ¥ —g*e™®) sin? @ cos ¢

9.

Ta
—{———;E('y cos ¢+2p sin ¢) sin? @ cos ¢+ (g%* —g»)vp sin?0 cos? 0 cos? ¢

x2q2q*2
21"2 aOi‘YP . 47!'2 aop . . .
- (g—¢*) sin? 6 cos? § cos? p——— —- (ge®+g*e~"¢)sin%0cos?fcose
Az gg* A2 gg*
272 aoi’)’ X X .
+— —(g*e®*—ge~**) sin® 6 cos® § cos ¢
A gq
32

+———i7%(g3—q*?) sin? @ cos® 0 cos? ¢
Mgy 4T
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2m2agly ; ;
_—)\—:—P sin? @ cos? 6 cos ¢p(e*/qg—e /%)

4873/ 1 1 .

- ———-—) sin? 6 cos® 6 cos? ¢ -

Ngg*\ ¢ g¢*

If on the other hand the initial state of the atom is described by Egs.
(64) and (66) then it is found that for the solutions of the type (41) the co-
efficients A’;,(E') are different from zero for

E=0 m=0 E=3 m=0, —2
E=1 m=0, —2 E=4 m=0,—2 (125)
k=2 m=0,-2

whereas for the type (42) A"yn(E’) differ from zero for
k=1 m=0 k=3 m=0, -2
k=2 m=0, -2 k=5 m=0,-2 (126)
k=3 m=0,—-2

After some calculations quite similar to the ones given previously for the
foregoing possibility it follows that in this second case

Y1=p sin? 0 cos pe~i#

{/72=—p sin 8 cos 6 cos ¢ 127
_ iay  1ypa
3=1r)\ o_pag cos @ (128)

1ypaoq

- yiaok ivp e s
Y= —{(1+ 5 >sin0cos ¢———2-—(1—|-aoq) sin 6 cos ¢+ sinfe®®  (129)

4ri vy . ac TYp .
+~);— sin 8 cos 6 cos ¢[1+—E—<z +T>]+>\—(2+aoq) sin @ cos 6 cos ¢
q

q
TYao | 127% 272 L.
- sin @ cos 6 cos p— sin 6 cos? 6 cos p+——(3+aog) ¢y psin fcos 20 cos ¢
x2q2 k2q2
27% ao, . . wao ) .
——— —1vyp sin 0 cos? e~ +— sin 6(ye~*+2pie'?) (130)
A g 2\
272 a0(2 — iye=#) sin 0 o 32im3 | 2 cost s }
——— —(2pei®—iye~¢) sin 6 cos 0— sin 8 cos® 6 cos ¢.
XZ q P v x3q3 ¢

Therefore in this case

) w202 ,yz 2,200 * 1ra2’y
oY = p? sin? 6 cos? ¢+ )‘20 + ? 40 i cos?f— 20)\ 2 (g+g*) cos b
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16w
+sin? @ cos? ¢+ .

sin?6 cos —q*) sin?6 cosf cos?¢
Nqg*
2maoky? miy?
——0——(q+q*) sin? @ cos 6 cos? ¢+[
Agq* N\gq
1r’)’2(l0 2
- (g+g*) |sin®6 cos 6 cos? ¢ — (g2 +q*?) sin%6 cos?f cos?
)\qq )2( *)2
(131)
Qo 'YP 2myp

+ *
(g*—¢q) sin? 6 cos? ¢+ <a0 +q Z > sin? @ cos 6 cos? ¢
99

27!")’(10

. iypao, .
sin? 6 cos 8 cos? ¢+ 5 (ge*—g*e~) sin? § cos ¢

721

+——51n26cos¢('y cos¢p—2psing) +

( *)Z(Q’”—q"’)'ypsm?Ocos?()coszdz
2r2aoivp Ar? a

———(g*—¢q) sin?@ cos?f cos? p—— —(ge ¢ in20 c0s20.Cos
Nigg U@ sintcostBcosTe == 2 (g +q¥e) sin*Bcostcoso

27% @iy
+F ——(q e~ —ge™) sin® 6 cos? 6 cos ¢
32iw?
A¥(gg*)?

2 7r2a0i‘yp

(g®—¢*?) sin? § cos® 0 cos? ¢

sin? 0 cos? 6 cos ¢p(e~®/q—e*/q*)

48imd/ 1 1\ |
b —~——) sin? 6 cos® 6 cos? ¢-
Ngg*\ g ¢*

According to G. Wentzel® the average of the expressions (124) and (131)
is to be taken to find the real spatial distribution of the photoelectrons.
Therefore this distribution is given by

w2ag 2a4® TaoXy
¢y~ p?sin? 0 cos? ¢+ + ' 40 9’ 082 f—— ?

A2

(g+g*) cos 8

2
" sin? 6 cos? 6 cos?

16
+sin? 8 cos? ¢+ ;

—g*) sin? 6 cos 6 cos® ¢
Nqq

1rdgx‘y
+ . (g+g*) sin?6 cos 6 cos? ¢ —q*) sin?6 cos 6 cos? ¢
q9*
aoivp 1272
+— 5 (g*—q) sin? 6 cos? ¢— Nag")? (g2+g*?) sin? 6 cos? 6 cos® ¢

16 G, Wentzel, 1. c.
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27y ay
——:——(1 —p) sin? 6 cos @ cos %

2 +q*
_,__”113(4 !
N\ g

ypao
2

) sin? @ cos 6 cos? ¢+ (g—g¢*) sin* cos ¢ (132)

6 21: *2 __ 52
—T——(q———q——)'yp sin? 0 cos? 6 cos? ¢
k?(qq*)2

4 * 272 aoty

———aoP<q a ) sin? @ cos 20 cos? ¢+—— 0

XZ qq* }\2

n 32in3
x3(qq*>3
48imt 1 1Y |
A\ T T sin? 6 cos? 8 cos® ¢-
Ngg*\gq ¢

If the notations used by Sommerfeld are adopted, then

TaoY
+

sin?f cos? ¢+

o (¢* —¢)sin2dcoshcos?p

(g®—¢*3) sin? 6 cos® 0 cos? ¢

aw=ao/7 ; q=2/a+ix; y=aZ (133)
and so

g+g*=2Z/a;  q—gq*=2ik; 9q* =2+« ;
P—g*2=4ikZ/a ; *+q*?=2(ZYa*—«?) ; @3 —q*3=2ix(3Z%/ a?—«?) ;
7—q q°T4q
Moreover, according to Eq. (55)
B E —mc\'? « kh aka
p=—=(= ) —e = (135
E' +mc? A?

A 4amec 2
but E'—mc? is equal to the kinetic energy of the photoelectron, E’~mc? and
therefore

(134)

mv? 1/2 v
= = 136
? (4mc2> 2¢ (136)

Substitution of these values into Eq. (132) leads

¢y ~sin? 0 cos? ¢<1 -i—pz—i—zrgg)—l—sin2 0 cos 6 cos? ¢{__§7_r_x_
A MZ¥ a2 +«?)
2ralZ? P 2mry? 2raa
—— — (1—p)}+sin20coszﬁcosz¢
NMZ¥Y a4+« a NZ¥Ya?+«%) N

{ 487m%? 8r? + 4drlaax 24w2paaxZ?/ a?
)\2(22/(12 +K2) 2 )\2(Z2/02+K2) )\2(Z2/(12+K2) )\2(Z2/(12+K2) 2

8m2p 25633 963k (137)
——~—}+sin20cos30c052¢{ — }
)\2(22/02_{_,(2) )\3(Z2/a2 +K2)3 7\3(22/02+K2)2

m2a? waap alalptl/ 72
+————— cos 6+— — 4«2 ) cos? 4.
Z2\? A 4 a?
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According to Sommerfeld and to the Eqs. (47)

21wmy h?

L LA (138)
h(1—22/c2)1/2 472mc?

Zz+ . Swtmy (139)
a? =T h

furthermore

prze/2mc?= (hv—1,)/2mc? (I,—ionization potential) (140)

and

Taa/N=hv/2mc?. (141)

If these values are substituted into Eq. (137) then

. hv I 2v a?? vt
¢y =sin? @ cos? d><1+—— >+—<1 — _}__2_|_

mc?  2mc? c 8 ¢t dmc?
hv . 302 hy .
— sin? @ cos  cos?p+—| 1 — sin? 6 cos?f cos? ¢ (142)
cimy c? 3moy?

493 3hv\ | w2 v v
+—A1- )sxn'~’t9cos3t9cos2 o+ —————cos @

el 4my? Z\r 4dmce® ¢
hv  0? .

— cos® 6
8mc? ¢?

The term—a?Z%2/4 in the parenthesis after 3v%/c? was omitted, because
other terms of the same order have been also omitted for the present approxi-
mation.

If the right side of the Eq. (142) is divided by 14hv/mc?—I,/2mc? then
to the same degree of approximation

. 29 aZ? I, v 3w 1
oY =sin?fcos?¢p< 14+—( 1— + cos @
c

8 2me*  2¢? _4mc2 2 cmy

392 hv 493 3l
+—{1- cos? 9—}——~<1 — > cos® @ }
c? 3mo? c? 4mv?
m2a?® h v h  2?

——— — cos$ 0+—— — cos? 0 (143)
Z2\r 4mce? ¢ 8mc? c?

On the basis of Eq. (143) one can calculate, as Sommerfeld has done,
the angle of the cone surrounding the z axis inside of which half of the
electrons are emitted. Then to Sommerfeld’s degree of approximation

6=m/2—1v/2c. (144)

This result agrees with the elementary calculation of the basis of the
quantum hypothesis.}” Sommerfeld’s result differs by the factor 9/5 before

17 A, H. Compton, X-rays and Electrons, London, 1927, p. 240.
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—u/2¢ which is due, as can be seen by repeating his calculations, to the neg-
lecting of the normalizing factors for the spherical harmonics. Thus, instead
of the harmonics

P™(cos ) (145)

in the formula (4) on the 210th page of the “Wellenmechanisches Erginz-
ungsband,” the functions

(k—m)! 2k4+17712
[(k+7n)! —5——] P (cos 6) (146)

ought to be used, otherwise the formula (7) on the page 212 is not correct.
The same remark applies to the result of Carrelli.

To calculate the angle 6 with a higher degree of accuracy one can start
from the equation given by Sommerfeld

2r ] 2r T
f f oY sin 0dOde = f f &Y sin 0d0dé . (147)
0 0 0 0

To simplify the notations the relation (143) can be written in the form
oY =sin?f cos? ¢p(145 cos 0+c cos? 0+d cos®*6)+A — B cos 0+ C cos? 8. (148)
Eq. (147) leads then to

2 cos® 0 b+d . (149)
3 26 ’

2 cos 0+4A4 cos 0+b cos? 86—

If it is supposed that 6 is equal to 7/2 —x, then from (149) it follows that
. b d 568 Ab
sin g=—+——B———"— (150)
4 12 192 2
whence, on account of (143)

. 0 < a’Z? Iy 32 Th 1 21r202>
sin x=—{ 1— .

8 2me®  4¢* dmce? 2 cmo __Zz)\2

> (151)

If it is supposed that the photoelectrons are emitted from the K-level
only, which conforms with the initial assumptions in this paper then

I, RhZ* o%Z7

= = (152)
2me®  2mc? 4
and so Eq. (151) can be written in the following form
2 Sa’Z? hv 1 2mw2a?
sin x=——<1— — - — ) (153)
2¢ 8 dme®> 2 cmv  Z°N?

According to Birge!® «=7.283X1073 and &/mc=0.02428A. If moreover
the value of \ is given in Angstrom units, then finally

18 R, T. Birge, Phys. Rev. Suppl., July 1929.
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, v v 0.006 5.50
sin x=—( 1—3,53.10"322 - — ————— . (154)
2¢ 4 N I\

Eq. (154) shows that the increase of the frequency of the incident radia-
tion causes a decrease of sin x from the value v/2¢. However, this effect
becomes appreciable only for very high frequencies such as correspond to
very hard x-rays, and «y-rays. This does not apply to the last term in the brack-
ets,namely 5.50/Z2\%, which becomes of importance even for ordinary x-rays in
the case of low values of Z. Therefore for helium and especially for hydrogen
the value of sin x should be markedly less than v/2¢. For both these gases
and for x-rays of the order of 1A the coefficient 4 in Eq. (149) becomes of
the order of unity and so instead of Eq. (159) it follows that

b d 4B b? (5+124)
na= -{1 —————————-} (155)
4(1424) 36 6 48 (1+24)3
whence finally
v v 0.002 2 54124
sin x=—————{1—3.77><10"5Z2——— — } (156)
2¢(1+24) 4c A 12¢2 (14-24)3
where
w2a? 2.75
A= = . (157)
Z?)\Q Z?x‘l

The formulas (154) and (156) do not agree with the results obtained
recently by Williams, Nuttall and Barlow!?® but they represent fairly well the
results of other authors.?* However, the experimental methods used to
find the spatial distribution of photoelectrons cannot as yet claim a high
degree of accuracy and it seems therefore well to wait for a final decision till
more experimental data are available.

It is to be noted that the angle of the maximum emission of photoelec-
trons does not coincide with the above computed §=m/2—x. This angle
can be calculated from the formula

d
E(W):O' (158)
In the first approximation this leads to the value
O=m/2—1/c (159)
which differs from the corresponding value of Sommerfeld
01=m/2—9v/5¢ (159"

by the disappearance of the factor 9/5.

19 E. J. Williams, Nature, 121, 134 (1928). E. J. Williams, J. M. Nuttall and H. S. Barlow,
Proc. Roy. Soc. 121, 611 (1928).
20 A, Sommerfeld, l.c. p. 225, fig. 20.
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In the second approximation it can be found that according to Egs. (158)
and (148)

91 = 7I"/2 — X1
where
b ¢b 5b® B/cos®¢
SiIl n=-—rT——""—""""" 160
P RIEIT 2 (160)

or according to Eqgs. (148) and (143)

. v 11y Sa2Z% 1 hy hy 1
sin x1=——{ - + — — } (161)
c 4mc? 8 2 cmyv 8mc? cos?o
Hence finally by using the formerly given values of %#/mc¢ and «
v v 0.067 0.003
sin x;=~—<1+3,53.10‘522————-———-——~ > (162)
¢ 4c A X\ cos? ¢

It can be readily seen from this formula that for very hard x-rays the
value of sin x; begins to be appreciably smaller than v/¢, but for the same
values of v and N the values of sin x, increases with the increase of Z.

The independence of the maximum of photoelectric emission from the
value of 4 can be readily understood with regard to the fact that Eq. (148), if
coefficients B and C are neglected represents a superposition of an emission
given by the term

sin? 6 cos? ¢(14b cos -+c¢ cos? 4d cos? §)

which shows a pronounced maximum and an emission independent from
the direction in space, represented by the term 4.

The values of the angles of maximum photoelectric emission which fol-
low from the data of Loughridge® agree fairly well with the formula (162).
This formula ceases to be valid for ¢ nearly equal 7/2 or 37/2.

The author wishes to express his gratitudes to the International Educa-
tion Board for the granting of a fellowship.

Note added during the proof. The average forward momentum of the
photoelectrons can be calculated readily from the Eq. (148). It appears
to be equal to bmy/5 or, if the ionization energy is neglected, so that

4hy
b=—/mv
Cc
equal to 0.8kr/c. According to Williams (Proc. Roy. Soc. 121, 611, 1928)
an average momentum 0.8ky/c¢ of photoelectrons in the direction of the
x-ray beam corresponds to a constant momentum 5/4 (0.8%»/¢) in the direc-
tion of the x-ray beam, superimposed on the radial momenta of the photo-

2 D, H. Loughridge, Phys. Rev. 30, 488 (1927).
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electrons distributed proportionally to sin? 6 cos? ¢. It follows that this
additional component of momentum is equal to the momentum of the photon.

It is to be noted that all the results of this paper were obtained by neglect-
ing the term —28 log 7 in the exponential of the formula (56). The value of §

is according to Eq. (57)
5 72(‘1+B> 2 (163)
“o\B4) )

L v

The smaller the value of §, the smaller the effect of its neglect. It follows
that the results of this paper are more exact, the greater the velocity of the
photoelectrons and the smaller the atomic number.

The calculations of this paper can be repeated taking 6 into account,
which causes the wave functions representing the photoelectrons to take the
form

Y~ iein [y (164)

The calculations are easy but rather long; they lead to the result that to
the first approximation

2axk

29 67
¢Y~sin? cos%{ 1+—<1+———> cos 8 } - (163)
c

It follows that for 6Z/2axk<1 or (v/c)*>>(aZ)%/2 the terms with § can be
neglected and the formula (143) is then valid.

Thus for comparatively slow photoelectrons and high atomic numbers
the formula (165) is to be applied instead of (143), whereas this latter
formula is valid for high speed photoelectrons and low atomic numbers.
Eq. (165) ceases to be valid for very slow photoelectrons, because the use of
the asymptotic formula (164) is then not justified.



