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ABSTRACT

In recent papers by Bridgman, Langmuir and Tonks, and the author, the de-
viation of the constant A of thermionic emission from the theoretical value has
been linked with the surface heat of charging and the temperature variation of the
photoelectric threshold. In the present paper, at least a part of this effect is explained
by the heat expansion of the material together with the dependency of the work
function on the volume. Numerical calculations both for the deviations of 4 and
for the temperature change of the threshold are made and compared with experi-
ments. Before deciding whether the explanation given here is complete it will be neces-
sary to calculate the space-charge effect of the electrons in the transition layer on
the surface of the metal.

I. INTRODUCTION

HERE is considerable interest shown in the discussion of the formula for
the thermionic emission, to which Richardson gave the form

i=BT%T, (1)

Equivalent to this, but better suited for our pupose, is the formula for the
equilibrium density of 'the electron gas.

c=AT?3/2%a/*T (2)
in which 4 should be a universal constant!:?
A=Q2mmk)*¥*/ Nhd. 3)

Here the exponent 3/2 of T comes about by putting the specific heat of the
electron gas equal to 3R/2, the specific heat of the electrons in the metal
zero.?

Independent of this assumption, one can give general formulas connecting
vapor pressure and heat of evaporation.*:5® For example Lane? and Schottky’
write in generalization of (2)

1 0. W. Richardson, Proc. Cambr. Phil. Soc. 11, 286 (1901); Phil. Mag. 28, 633 (1919);
Proc. Roy. Soc. A91, 530 (1915); Phys. Rev. 23, 153 (1923).

2 M. v. Laue, Jahrb. d. Rad. 15, 205, 257 (1918); S. Dushman, Phys. Rev. 21, 623 (1923).
The same formula had been found by K. F. Herzfeld, Phys. Zeits. 14, 1119 (1913) but he had
made no applications of it.

3 A. Sommerfeld Zeits. f. Phys. 47, 1 (1928).

4 0. W. Richardson, The Electron theory of Matter, Cambridge, 2 ed., 1916 p. 445.

5 W. Rodebush, Phys. Rev. 23, 774 (1924); H. A. Wilson, Phys. Rev. 23, 38 (1924).

6 C. Davisson and L. H. Germer, Phys. Rev. 20, 300 (1922); 30, 634 (1924).

7 W. Schottky, Handb. d. Experimentalphysik, Vol. XIII, Leipzig 1928, p. 30.
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c=AT32¢wsl kT (4)

where u, is the chemical potential of the electrons in the metal instead of their
potential energy (in other words, the assumptions leading to (2) are equiva-
lent to say u,=¢g) and then proceeds to allow for u for example a linear varia-
tion with 7. This procedure is thermodynamically quite correct but leaves the
question why w is a linear function of 7" unanswered.

As a next step, one can introduce the specific surface heat of charging as
the specific heat which enters into the thermodynamical equations.®:8-® It has
been shown that such an effect might change the apparent value of 4, the
value of which agrees well experimentally with (3) in many cases but by no
means always.

One can on the other hand consider the fact that the mutual potential
energy which holds the electrons in the lattice will depend on the lattice dis-
tance and if heat expansion occurs will accordingly depend on the tempera-
ture.!® This is closely connected with the temperature variation of the long-
wave-length limit of the photoelectric effect. How to treat such a case has
been discussed in a short paper!! but no formulas have been given and some
remarks there seem now incorrect.

Bridgman,? in a paper that appeared before the one last mentioned has
shown quite clearly how the two effects of a variation of the photo-electric
stopping potential with temperature and the surface heat of charging are con-
nected and will modify 4.

The present paper, while using a different scheme of thermodynamical
calculations than Bridgman because it seems simpler, is intended to supple-
ment it by showing just what values the surface heat of charging must have.

We propose first to give the calculations for a somewhat simplified case,
in the second part we will discuss a few subtle points to justify our method of
procedure.

II. CALCULATIONS FOR A SIMPLIFIED CASE
1. The free energy.

Consider a piece of metal, insulated and surrounded by vacuum. Call the
number of electrons the metal contains in excess of the neutral state z, the
free electrons in the vacuum #n’. Let p be the pressure, V the volume of the
metal, V, its normal volume when neutral and at zero pressure,

A= (V— V())/Vg.
We then write the formula for the free energy F of the whole system.

1 h -
F=U(V)—nq(V) —szp— T<1><k—;>—— Tnd+n'(ue—kT).

8 I.. Tonks and I. Langmuir, Phys. Rev. 29, 524 (1926); L. Tonks, Phys. Rev. 32, 284
(1928).

® P, W. Bridgman, Phys, Rev. 27, 143 (1926).

100, W. Richardson, Phil. Mag. 23, 594 (1912).

1 K, I. Herzfeld, Sommerfeld Festschrift, Leipzig, 1928, p. 143.

12 P, W. Bridgman, Phys. Rev. 31, 90 (1928).



250 KARL F. HERZFELD

Here U (V) is simply the (elastic) energy of the neutral metal. On account of
deviations from neutrality, there is additional energy, an unelectric part!®
—nq(V) and an electric part (—1/2)en¢. In contradiction to Schottky*® but
in accord with Eckardt we call electric only the part of the field due to
excess charges and having accordingly a long range. This part can be changed
by connecting the plate with outside sources. Accordingly ¢ =0 means that
there is no field of long range present. The energy then necessary to remove
an electron is called the unelectric part ¢(V). & is the integral

hy TdT T
¢<—)= f — f C.dT (5)
kT o IT? Jy
for the specific heat of the metal and will be usually a Debye function Through
v, it will depend on the volume. We assume, (for the discussion of this as-
sumption see under III) that » does not depend explicitly on the charge.
n® would be the corresponding integral taken over the specific heat of the
electrons in the usual sense, as calculated by Sommerfeld.? 3(n®)/dn corre-
sponds to the part variable with temperature in Sommerfeld’s expression of
2kTInA (which has as physical meaning just the electron part of our dF/dn)
and is negligible up to 3000° (2-10~3 compared with 1, although it accounts
for Thomson- and thermoelectric effects).
Finally, ug is the usual expression for the chemical potential of the elec-
tron gas

pe=kTInc+(3/2)kTIn T+kTInA. (6)

2. Equilibrium formula.

In equilibrium, F will be a minimum in respect to the possible variations,
namely of n(electron emission) and of volume. The first condition will give
the equilibrium concentration, the second the equation of state of the charged
metal (in making this latter variation, we neglect the fact that an increase of
the volume of the metal will decrease the volume of the electron gas).

(BF) V) +—ept—end 4 T2 (n )+ ™
= — —— — — ——n— pR—
an ), 2 2O T g ) ke

0=

F\ oU dg 1 ¢ h _ov _ 0%
- =( ) (8)

-) =——t———en———P'——
n 2

av). av oV vV k& av oV

As at least in first approximation nd¢/dn=¢ and as we have decided to
neglect ®, we get from (7)

—ue=q(V)+ep 9)

13 W. Schottky, Handb. d. Exp. Phys. Vol. XIII, 2 half p. 14 Leipzig 1928.

1 C. Eckardt, Zeits. f. Physik 47, 38 (1928).

1 In this we include the part of the internal electron pressure effect which does not
depend on temperature, namely — W; (Sommerfeld) so that ¢=W,— W;.
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or
c=AT312%@V)tes) | kT (10)

which for constant volume of the metal, is identical with the usual form (2).

The problem is then to find ¢(V). Here we use the following approxima-
tions: As U refers to the neutral metal, we introduce the common compressi-
bility x and write, using a familiar development in powers of A

U(V)=U¢+ VoA 2. (11)
Furthermore, we assume
(V) =q1— A (12)
with the expression
g2=—Vodq/dV.

This gives
hy
—t———een—+—3&'y=0 (13)

using Gruneisen’s result,!ss that
—y=(Vo/v)0u/dV (149)

is a constant, namely about 1-3 for many metals.
Using the expansion coefficient o for the uncharged metal (z=0), which
is according to Gruneisen given by

fTadT= —K —}E’—'yfl)' (15)
0 kV,
we find
A=fTadT—nq2i+—1—enx—q?—- (16)
0 Vo 2 aV

For the approximately neutral metal, =0, ¢ =0, we have

g 7
c=AT3e~0/*T exp| —— adT |. 17
RT J,

The last factor is the deviation from the formula (2). It is simply the
change in g due to the total expansion of the metal up to 7.
Equation (17) can be written for sufficiently high temperature

c=A'T3/2¢—alkT (18)
: ¢ (7
A'=A exp|— | adT |=Aenel* (19)
kT J,

12 E. Gruneisen. Ann. d. Physik 39, 257 (1912),
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3. Calculation of g, and numerical value of A’.
It is possible to get an estimate of ¢s. We have first to remember that ¢ is
a difference between the potential energy of an electron in the metal (Som-
merfeld’s W,) and the effect of the internal pressure. (W, according to Som-
merfeld.) Therefore
_p WO
BTy T Ty
Bethe!® attempts a theoretical calculation of W,; it is composed of a con-
tribution from the positive ions, which is, for a given size of the ions, propor-
tional to their numer per unit volume and which we call therefore

WAV V

and a contribution from the electrons, inversely proportional to the distance,
or

W (Vo/V)V5.
Finally, W; is proportional to the 2/3 power of the number of electrons per
cms,
If we assume that compression does not change the total amount of elec-
trons per atom, we have (W,*, W,~, W,° constants)

L —(VO)”3 W 0<V°>2/3 (20)
qg=Wa v 'V a v i v .

Then
Qo=W W =20, (21)

According to Bethe’s calculations for nickel, W,* is about 13 volts, W-
6 volts, W,;° 15 volts, which would make gs~$ volts.
If we write a=a’ X 1075, go = +¢." volt, we have

gQZa/k=100.059qz'a’ (22)

From this it follows: A is always apparently increased A’ >A4. For ¢.'a’ <
10 the factor multiplying the theoretical 4 is not larger than 3, which is with-
in the limits of the experiment. If the above estimate of ¢; is correct, this means
for metals with low expansion coefficient (a’ <2), that the theoretical value
of A can be made to fit the results.

But we have to expect much higher 4’s if o’ is larger. o’ =9 (linear ex-
pansion coefficient 3), ¢.'=5 means already A'=4 - 10*?~1804; o’ =15,
g2’ =6 means 4’ =30.000 4.

While this is in the right order of magnitude, **'!° we can give no reason
why a large 4’ should always go with a high g..

16 H, Bethe, Ann. d. Physik 87, 55 (1928).

17 The factor exp|—(1/k) 8(nd)/dn] which is responsible for the thermoelectric effects
has been neglected.

18 C. Zwikker, Proc. Amst. Ac. 24, 1 (1926); A. L. Du Bridge, Phys. Rev. 31, 236 (1928);
32, 961 (1928).

19 A, L. Du Bridge, Proc. Nat. Ac. 14, 788 (1928); I. Langmuir and K. H. Kingdon,
Phys. Rev. 34, 129 (1929).
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4. Temperature change of the heat of evaporation.

We are first going to calculate the heat of evaporation of the electron and
show that the deviation can be interpreted as a contribution of the specific
surface heat of charging, not to C,, but to C,—C,.

The heat of evaporation of an electron at constant volume of the metal
would be

q(V)+3RT/2+ep (23)

the middle part coming from the specific heat of the electron gas. The con-
tribution of the specific heat of the electrons in the metal has been neglected.
At constant pressure, we have to add to (23)

G %))
T2 —_ P
aV T T,n aT p.n

or take simpler

7(% ﬂﬁ—%T—))p'"+—z—R r. (24)
This is, with
M(P=0,7‘)=‘f11—ﬁf12—‘y"<q" (25)
kT

from (7) for the uncharged plate, n =0, leads after a short calculation to the
following formula in which the value of ® has been introduced

v T 3
q1—qo K <C,,T - f C,,dT>+——RT. (26)

Instead of the last 3R7'/2, 2RT or 5RT/2 might have to be introduced,
depending on which heat is actually measured.$

The interesting point is that for moderate temperatures, C,T— [4C.d T is
a constant or, in the presence of zeropoint energy in the vibrations of the
solid, even zero. The exponent —¢;/RT in (3) gives therefore at moderate
temperatures the real heat of evaporation (apart from the member 3R7/2,
which is due to the electron gas).

In making this statement, we have again neglected the increase with
temperature of the kinetic energy of the electrons in the metal as too small
to detect. We can expect to find a change of the heat of evaporation with
temperature:

(a) at high temperature, where C, increases

C,=C4C'T
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This increase will not modify greatly the last factor in (17) because it oc-
curs at high temperatures (1/7).

(b) at low temperatures, where quantum effects appear in the specific
heat, there will be an increase in the heat of evaporation (apart from 3R7/2)
with decreasing temperature up to the amount

qaykN hy/ V.

The value of the specific surface heat of charging at constant pressure
follows from (26) to be
vk aC,
¥, aT

q

(C. specific heat of the metal at constant volume.) Bridgman®!* has shown
that if (2) is valid and 4’ different from A4, the specific surface heat of
charging must be 0 and there must exist an entropy difference between the
charged and the uncharged surface at zero temperature contrary to Nernst's
heat theorem. In the case considered here the specific surface heat of charging
is zero at zero temperature, takes then positive values and decreases to zero
again for high temperatures. Accordingly (2) is valid at very low tempera-
tures with the theoretical 4, ceases to be valid afterwards and becomes valid
again at high temperatures with 4’>4. This hump of the specific heat at
low temperatures is then responsible for the deviation of A’ from 4. If one
would exterpolate formula (2) with A’ different from the theoretical value to
zero temperature one would find an entropy difference. A very similar situa-
tion is present in a number of chemical reactions. The whole situation is
bound up with the fact that the expansion coefficient disappears at zero
temperature which fact itself is again connected with Nernst’s theorem.

Numerical calculations for the case of potassium give the following result:
We use

y=1.3420 ,21=35.6X10"12 V,=45 hy/k=99%

and for C,—(1/T) [5C.dT tables given by Simon.?
If we take ¢go =5 volt we find

CT—JfCdT

T Bv/T (cal/Mol) Ag(millivolts)
495 0.2 0 0
198 0.5 8 1.7

99 1 36 7.8

49 2 92 20

20 5 170 37

10 10 196 43

20 E, Griineisen, Handb. d. Phys. X p. 29, Berlin 1926.

2 Reference 20, p. 38.

22 A, Eucken, Handb. d. Exp. VIII, Leipzig 1929, p. 245.
2 F, Simon, Handb. d. Physik X Berlin, 1926.
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5. Photoelectric threshold.

Offhand, one could be doubtful whether the photoelectric threshold is
determined by the energy or the free energy of the electrons in the metal.
But Bridgman has proved the connections between threshold and contact
potentials, and there is no doubt that the contact potentials are determined
by the free energy or, more exactly, the chemical potential .

The temperature variation of the threshold is then given by

v v T T
91+92“K—¢"=Q1—Q27Kf CvdT=q1——q2f adT .
Vo Vo Jo 0

That means, that for an increase of 100°C and ¢,~35 volts, the change in
the photoelectric threshold is as follows.

K Al Mg Zn Cu Ag Au Fe Ni Pt Pb Sb
125 36 39 43 25 29 21 17 23 15 43 18 millivolts.

Comparing this with experiments, it seems reasonable that such a change could
not be detected in the work of Millikan and Winchester? who heated Al, Mg,
Zn, Cu, Ag, Au, Fe, Ni, Pb, Sb 100° and of Varley and Unwin? who varied the
temperature of Pt 300°, corresponding to changes of less than 50 millivolts. It
is more astonishing that Millikan and Winchester?! found no change for Al be-
tween 50 and 350° (110mv) and Ladenburg? for Au, Pt, Ir up to 860° (150mv)
and that Dember?’ could not detect any effect on K on heating it to 67°, but
it is difficult to estimate how much a change in the long-wave-length limit
would affect the current measured by these investigators.

Recently Du Bridge?® detected a change in current upon heating platinum
to 1200° and narrowed down the wave-length shift to a region between 1943-
1973A;30A would correspond to 90 whileg.~5V would lead to 180mv. Measure-
ments of Suhrmann?® give a few percent shift in Ag, Au, Pt between room tem-
perature and liquid air. Finally Ives®® has found a shift for K in the same in-
terval of 220mv while ¢, =35 would give 250 (actually it should be less on ac-
count of the smaller coefficient of expansion at low temperatures). It seems
therefore that the present theory gives the right order of magnitude.

It should be mentioned in conjunction with the fact that the oxide-coated
cathodes have a particularly high 4’, that Koppius® found a very strong varia-
tion of their threshold with the temperature.

2 R. A. Millikan and G. Winchester, Phil. Mag. 14, 188 (1907).

2% W. M. Varley and F. Unwin, Proc. Roy. Soc. Edinburgh 27, 117 (1907).

2 R. Ladenburg, Verh. d. D. Phys. Ges. 9, 165 (1906).

27 H. Dember, Ann. d. Physik 23, 957 (1907).

28 L. A. DuBridge, Phys. Rev. 29, 451 (1927).

29 R. Suhrmann, Zeits. f. Physik 33, 63 (1925); see also A. Becker, Ann. d. Physik 78,
83 (1924).

30 H. E. Ives, Journ. Am. Opt. Soc. 8, 551 (1924); H. E. Ives and A. L. Johnsrud, Journ.
Am. Opt. Soc. 11, 565 (1925).

% 0. Koppius, Phys. Rev. 18. 443 (1921).
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III. JusTiFiCATION OF METHOD OF PROCEDURE

1. We have made our calculations as if the evaporating electron were taken
from the interior and have not said anything in particular about the surface.
Here we have to distinguish two steps in the equilibrium condition (7) we
have put the expression for the thermodynamical potential of an electron deep
in the interior of the vessel equal to one in the gas. But as Schottky pointed
out, this is justified as the numerical value of u (not the form of u) must be the
same for an electron in the interior as it is in the surface on account of the
internal equilibrium of the electrons. On the other hand, the particular ex-
pression for the potential energy (¢) in the interior, as calculated by Bethe,
might be wrong; this value might be influenced by the surface. But it seems
reasonable that this would not change the order of magnitude of ¢,, and our
calculation does not claim more.

2. We did not include, “electrical contributions,” as we defined the Volta
potential ¢ as being due to the total charge and we assume this to be zero (com-
pensation for Volta potential in the actual thermionic experiment). The dif-
ference between this case and the usual case, for example in the thermody-
namics of gases where differentiation at constant pessure (analogous to ¢) and
constant volume (analogous to en) makes a difference even for »=0, comes
from the fact that

pV=nkT

and therefore d(pV)/dn =kT even for n=0 while here ne¢ is proportional to
#n? and therefore [3(neg)/dn],—,=0.

The reason we have deviated from Schottky’s® definition, which amounts
here to saying that the non-electric part in the differences of the (total and
free) energy is the one remaining, if the two places to be compared were brought
to the same potential, is the following: With this definition all differences in
potential energy of the electron would belong to the electrical part. Indeed,
the electrical potential of a place is defined only by the work necessary to
bring a test charge (electron) there. Accordingly the difference in potential
energy ¢ inside and outside of the metal would belong entirely to the electrical
part, which does not seem advisable. On the other hand, it is always possible,
by measuring at a sufficient distance, to state whether a (large) body is
charged. We define as the non-electric part of the (free or total) energy of an
electron in respect to a (large) body the part which would be alone present if
the body as a whole were uncharged.

In passing, it may be said that this together with the emphasis that in
measuring thermionic currents one has always to correct for the Volta poten-
tial, that is one always takes care to have ¢ =0, gives a clear view of the situa-
tion in the presence of surface layers.

3. We have assumed that ® or the specific heat C, of the metal at constant vol-
ume depends upon 7 only indirectly through the volume. If we now drop this
assumption, (8) and (13) remain unchanged, but in (7) we must add
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d ho Oy
—7(— q>> =

on T k on

which then produces finally on the right hand side of (17) another factor
l: h @IGV}
BT on

Now we can write, for a plate containing N atoms, at sufficiently high tem-
perature

h ,611__ h kT 61/_ dlnv
kR*T on k2T o on
or better
—93(Zlnv)/dn

where the sum is to be extended over all the vibrations which make up the
heat movement of the plate. Therefore?

oo [5G0, J- e -(50) )

If we would assume that the removal of an electron affected only three vibra-
tions (in a primitive picture the vibrations of one atom), we could say safely
that the new frequency would lie between half and the double of the original
frequency, or

aln Vi

an

1>3.

alnui .
<1l =1,2,3

an

Then, the additional factor in (19) woud lie between e~ and ¢, 1/20 and 20.
If, as will be the case, the change affects all vibrations, it still seems reason-
able that

Za 1nu,
an

will be not much larger than 3 and therefore, a direct influence of a removal
of electrons on the specific heats at low temperature will probably not in-
fluence A’ as strongly as the indirect effect through the volume.

4. The most important assumption however that we have made is the omis-
sion of a part of ¢ which would be explicitly dependent on temperature.
Now the part in the potential energy of an electron which is due to the sur-
rounding charges, as calculated by Bethe,! is not dependent directly on tem-
perature (the heat movements of the positive ions will upon averaging have
no effect of the first order). But there might be another contribution?® due to

32 W. Schottky, reference 13, p. 96f. See also E. D. Eastman, Jour. Am. Chem. Soc. 48,
552 (1926), C. Zwikker, Physica, 9, 321 (1929).
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an electric double layer or space charge, which might be formed on the surface
of the metal where the electron density drops gradually off. This might de-
pend on T, not in the part farther in, where the electron density is still high,
the electron gas degenerate and therefore its u independent of T, but in the
outside layers. How much these contribute, can not be estimated until a cal-
culation has been made.

The only thing to be said is that the part discussed previously gives the
right order of magnitude.

IV. OTHER APPLICATIONS

The method which we have devloped here can be applied similarly to an
ordinary solution, in which the mutual potential energy between the solvent
and the dissolved molecules depends on the distance between them and ac-
cordingly varies indirectly with the temperature on account of the heat expan-
sion of the solvent.



