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ABSTRACT

A simple method is described by which one may construct wave functions
for the case of (jj) coupling. The wave functions for (2p)? so determined, agree
with those given in a previous paper, when one sets the electrostatic interaction
equal to zero. It is shown how the ordinary multiplet intensity formulae may be
modified to give the relative intensities in a super-multiplet for (jj) coupling. The
modified formulae, applied to the transition (2p)2—2p3s, give relative intensities
in agreement with those found in the above paper, for this limiting case. The sum-
rules hold quite generally for non-equivalent electrons, and it is shown to what degree
they hold for a transition such as (2p)2—2p3s.

N THE basis of the Darwin-Pauli theory of the spinning electron it

has been found possible!'?: to calculate the relative intensities of super-
multiplet lines for certain transitions, such as (ds—fs) and (2p 2p—2p 3s).
The intensities so found are dependent upon the strength of the electro-
static interaction between the electrons, as compared with that of the magne-
tic interactions between spin and orbital angular momenta. In the limiting
case of strong electrostatic interaction, or (1s) coupling, these intensities
agree with those calculated from the formulae for relative intensities within
an ordinary multiplet. In the other limiting case, that of (jj) coupling, where
the spin-orbit interaction is predominant, analogous formulae can be set
up and the intensities so obtained would agree with those found from more
general formulae when the electrostatic interaction is set equal to zero.
The difficulties involved in obtaining these general formulae for any degree
of coupling have already been mentioned in a previous paper.? Accordingly,
it seems expedient to calculate the theoretical intensities for the two limiting
cases and to use some suitable method of interpolation when comparing
with experiment.

1. THE Wave FuncrioNs AND ENERGY VALUE FOR (Jjf)
COUPLING
For simplicity, we shall at first deal with only two electrons. For (j7)
coupling, we are to consider as a perturbation the magnetic interaction be-
tween each electron and its own orbit. Each electron can be considered

1\W. V. Houston, Phys. Rev. 33, 297 (1929).

2 J. I. Bartlett Jr., Phys. Rev. 34, 1247 (1929). A sign error in the matrix components
of the intercombination lines should be corrected. Both ¢; and ¢s should have the opposite
sign. None of the conclusions of the paper are invalidated, to our degree of approximation.
Furthermore, in the roots e; and e, one should substitute +8 for —8.
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separately during this perturbation calculation and then the product func-
tions, or a linear combination thereof, will represent the total system. As
usual, we group those functions together which have a common m=y.
mi+m,, where m,; and m, refer to the projections of / and s, the azimuthal
and spin quantum numbers, on a preferred axis. For an externally undis-
turbed system, terms with different #'s cannot combine, since m represents
a constant of the motion. The wave functions are written

‘pamlen(r)le_UQ Su ) ‘I/ﬁmlen(r)le_H/Z Sﬂ-
The two possible values of the spin variable are S, and S, respectively, and

d >’+ml(—sin20)l.
d cos 6 22]! 0

Pymi=(l—my)!sin ml()( mig,

Let
ht  Ze? 1
Yin= f Rln2_dT and e=—-"
1672 my2c? r3 Yin

For the perturbation arising from the interaction between spin and orbit,
the secular equation is:

m—i—e (=mt D Qmtd) e |
A—m+3) 20 mHH —m—}—e '
The roots are ¢ =I and &= —/—1, and the corresponding wave functions

are:
Y= (17204 1) [0+ mA ) Y+ (I —m5) 12 g7
Yo =1/ 24+ 1) [ = (U =m+3) 2 Yo+ UHm+3) 12 gm]

One sees that, for the state I, j=#max=[4+% and for the state 2, j=
Minax =1 — 3.

The calculation thus far deals with coupling of the type (si/;) =ji. In
order to treat coupling of the type (jij:) =j one must construct antisym-
metric wave functions from products of functions such as ¢;™ and ¢¥,™. For
instance, set?

vim(1) 5 ¥, m(2)
¥i,™(1) 5 ¥i,(2)
If now, for a given m, the vectors j; and j» combine to give only one j, then
the state is not degenerate for (jj) coupling and will be represented, except
perhaps for a sign factor, by a function of the above type. Just as frequently,

however, one finds a degeneracy and the correct wave functions for a given
value of j are found by taking linear combinations, the coefficients being

m
‘l’ili2= (%)”2

3 In the more general case of more than two electrons, the antisymmetric functions will
have the determinant form. See J. C. Slater, Phys. Rev. (being published). The notation used
above is similar to that of the paper to which reference is here made.
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determined from a perturbation calculation, the electrostatic interaction
between the electrons being the perturbation. This degeneracy is for a
given set (j,72) combining to give different j's. If one should take the wave
functions for the same j, as determined by this process, but for different sets
(jij2), and repeated the process, this would give the correct wave functions
for (Is) coupling. This is to be expected, since it should make no difference
in which order the various perturbations are applied. In the previous paper,*
the reverse order was employed, and the results agree, both for energy
values and for wave functions.

The total energy of the two-electron system for (jj) coupling is given by

E = E(nib) +v1yme(f1) + E(nal) +v1m,e(f)
This agrees with the work of Goudsmit* if we make y=a/2.

2. SELEcTION RULES

Let us denote the set of quantum numbers (zljm) by p. Then the matrix
element for a transition involving two electrons will be a linear combination,
in the zeroth approximation, of matrix elements of the type

2(prp2 ; pspa) ~O(papa)z(p1ps) +6(p1pa)z(paps) —6(paps)s(prps) —8(prpa)z(peps). (1)

Thus, whether the coupling be of the (Is) (jj) type, as long as the wave
functions are formed by the linear combinations of functions of the unper-
turbed system, then two-electron jumps are not permitted. This is true
for any number of electrons, but only as a first approximation. According
to Pauli’s exclusion principle, no two electrons can have the same p and so,
for any transition, we have only one term on the right-hand side of equation
(1). Let this term be the first, i.e. po=p4. That is, for one of the two elec-
trons, all four quantum numbers remain the same, and for the other, the
ordinary selection rules hold. In the (jj) coupling case, therefore, j; can
change by 0,+1 and j. does not change. If p;=p; instead, then Aj;=0
and Aj,=0,+1.

3. INTENSITIES

Consider the transition (n,']i/j1'm1"; nolajams)—(ni''L"5) ' my"’ ; naly joms).
The z-matrix will be a linear combination of a number of ‘“‘unperturbed’” z-
matrices, which have the form [[Ry,.,(2)1%:2d7: Riyny (1) Reyronyr (1712
drifP*(1)2: Py, (1)dw; corresponding to the term z(pips) in Eq. (1).
Thus, the radial integration gives a common factor and, since this is the only
way in which the principal quantum numbers can enter, they have no in-
fluence on the relative intensities in a super-multiplet. It makes, therefore,
no difference in the relative intensities as to whether the electrons are or
are not equivalent. The equivalence is manifested, however, in the dis-
appearance of certain states with the result that certain intensity sums are
not proportional to statistical weights of the corresponding states.

¢S, Goudsmit, Phys. Rev. 31, 946 (1928).
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For (jj) coupling, j. plays the same role as s, and j, the same role as /,
respectively, in (Is) coupling. We can introduce a notation analogous to the
Russell-Saunders notation, namely, 7(j1);, where r=27,41. The j, labels
the valence electron, and 7 is the multiplicity. Even when the two electrons
are equivalent, there is no ambiguity as to which is the valence electron,
unless j; =j.. In this case one must double the intensity as calculated from
the formulae to be given, to allow for the two possibilities.

The ordinary multiplet formulae can now be rewritten in terms of j,
and j, instead of / and s. In the ordinary multiplet theory the statistical
weight of an 7(l) state is 7(ll+1), e.g. a 3D state has a degeneracy of fifteen.
For (jj) coupling, the statistical weight of an 7(j,) state is 7(27,41), except
for equivalent electrons with j; =j,, where it becomes 277,. The degeneracy
of a ps 4(1/2) state is eight, that for a (2p)% 4(3/2) stateis twelve, and that
for a (2p)? 4(1/2) the same as for (2p)? 2(3/2), namely eight.

The formulae in terms of j; and j, follow:

j l. C . . . -
Aj=41  Jo=Gdi, io=—P(3,j)P(i—1,5)
477,
- ¢ 2j+1
Jo=GAl = = FT pra ..
1=Gilligm = o S (770071

=15

Cc
Ju=G;a4; 1 =—00)00—1,5)
477,
_ o 2541 2541
Aj1=0 Jo=GA] i =— —]“‘— LRz(]')
47, J+1 51+l
. c 2+t
JH1=G AL =G =
477, 51i+1

P(j,j0Q(—1.71)

where
P(j)=0G+i)G+i+1) —j:(2+1)
—Q(N) =G =70 —71+1)—72(2+1)
R()D=7G+1D+71(1+1) —j(ja+1).

The A’s are the squares of matrix elements. For any super-multiplet, or group
of lines belonging to a transition such as sp—pp, the value of C is the same
for all lines. The sum of intensities form any state with equivalent electrons
over all the states (with non-equivalent electrons) to which transitions can
be made is, for a given super-multiplet, proportional to the statistical weight
of the initial state. If these sums be taken horizontally, then in general the
vertical sums will not be proportional to the corresponding statistical weights
due to the exclusion of certain states which would be possible if the elec-
trons were not equivalent.

As examples of applications of the formulae we give below the results
(1) for a case with two non-equivalent electrons, and (2) for two equivalent
electrons.
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TaBLE 1. Relative intensities in the super-multiplet dp—ds, for (jj) coupling.

~._ b
\ 4(9) 43 6(3) 6(3) Sums
ds—
j 2|1 3 21110 3 2 4 3 21
4(3) 2 515 14/ 5|10 0 0 0 0 0|0 30
1 511 0 51512 0 0 0 0 0|0 18 48
2 00 0 010|077/ 22/9] O 6% 77/| 6 30
6(%) — 72
3 0|0 0 0| 0| 0| 6% 7/s| 18 | 77/s| 22/| O 42
10/ 614|106 2|14 10| 18| 14| 10| 6
Sums —
16 32 24 48
T 48 72

TaBLE I1. Relative intensities in the super-multiplet (2p)*—2p3s for (jj) coupling.

293
\“ 4(3) 2(3) Sums
(2p)?
j 1 2 1 0
4(3) 0 2:2= 4 0 0 0 4
24
2 | 2-5=10 | 2-5=10 0 0 20
40
2 5 5 0 0 10
4(3) 16
1 1 5 0 0 6
2 0 0 10 0 10
2(3) 16
1 0 0 2 4 6
20
2(3) 0 0 0 2-2=4 0 4 4
20 20 16 4
Sums
40 20

It is seen that the total intensity in a given system is proportional to
the multiplicity of that system. For non-equivalent electrons both hori-
zontal and vertical sums are proportional to the corresponding statistical
weights, e.g. 4(1/2):4(3/2):%(1/2):5(3/2) =8:16:12:24. For the equivalent
electrons, the sums from the (2p)? states are likewise proportional to the
statistical weights, e.g. 4(3/2):4(1/2):2(3/2):%*(1/2) =12:8:8:2.

However, this is not so for the sums from the 2p43s states, but would be
true if the two p electrons were not equivalent. It should be noted that the
4(1/2) and 2(3/2) states of the (2p)? configuration have the same energy,
but differ in the value of j which the valence electron has. (In the one case,
j1=1/2, j2=3/2 and in the other case j;=3/2, jo=1/2 where j, denotes the
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valence electron). The intensities given above for the transition (2p)2—
2p3s agree with those found from the general formulae of the previous paper,?
when one sets the electrostatic interaction equal to zero.

As to the comparison with experiment, the observed intensities vary
greatly from observer to observer, perhaps due to the excitation conditions.
Furthermore, in some cases the identification of terms is in question. How-
ever, the intensities given by Mack® for the super-multiplet d*p—d% in Ge
V and SnV are not in any marked disagreement with what one should ex-
pect from Table I. Where (jj) coupling is not realized, it may sometimes be
possible to interpolate between this case and that of (Is) coupling. This
question, as well as the allied ones of term-crossing and co-ordination to
series limits, is beyond the scope of the present paper, but in all probability
can be treated by obtaining the general formulae for a few simple cases and
by then applying the method of induction. The calculations involved are
not impossibly complicated for two electrons.

In conclusion, I wish to thank Professor Slater for helpful suggestions,
and Harvard University for the renewal of my Parker Travelling Fellowship.

5 J. E. Mack, Phys. Rev. 34, 17 (1929).



