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ABSTRACT

Further consideration is given to the problems which arise when the continuum
of one electronic state of a diatomic molecule occurs in the same range as the discrete
states of another electronic state. In the finding of electronic states and the potential
curves which go with them certain approximations must be made; a better approxi-
mation can then be obtained by quantum mechanical perturbation theory. The dis-
crete states are broadened, and this will appear, inasmuch as spectral lines involving
these states are broadened. In this paper the shape of the broadened spectral lines
is found, certain properties of the perturbation matrix are considered, and a wave
packet is set up or rather one such as would be set up by nature is used to give all the
details of a radiationless transition from a discrete state to the overlying continuum.

SHAPE OF A SPECTRAL LINE IN CASES OF PREDISSOCIATION

i &HE simple result obtained in the preceding paper' for the shape of the
absorption line in the case of radioactive decay and other similar pro-

cesses, suggests that it would be well to try to obtain an explicit result for the
shape of the line in the case of predissociation, for purposes of comparison.
The shape of line could of course be calculated from the expressions in the
first paper with the above title' (hereafter referred to as (I)), but it turns out
that these can be somewhat simplified.

In this paper it was shown that the absorption coe6cient over a broadened
spectral line (see Abstract above) as a function of 8 Ei (called E in—(I))—
where E is the energy of the light absorbed and E& the energy of the center of
the line, is proportional to X', where

1 1E' —+ + a ~ ~

(p/2 + P) ' (3e/2 + P) '
1 1 —i

+ + + (&)
(e/2 —P)' (3e/2 —P)'

where s is the distance between unperturbed continuous levels' (the system
being in a box) and where p is a parameter given by the equation~

' National Research Fellow.
Rice, Phys. Rev. preceding paper in this issue.

' Rice, Phys. Rev. 33, 748 (1929).
4 e can of course be varied arbitrarily by varying the size of the box, but in any given

problem can be regarded as a constant. None of the results depend on it in any essential
particular, and it will always cancel out of expressions for things which are experimentally
determinable. Nevertheless it has been found very convenient to treat the system as if con-
tained in a box, so the continuous levels really become a very close-spaced set of discrete ones,
and we shall continue to do so.

' (I), Eq. (26), since e,z =v«(see Rice, Phys. Rev. , 34, 1459 (1929), especially footnote 19).
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(2)

where A = (x/2') [2 cot(2s.P/e) —cot(s.P/a)] and v, ~ is the component of the
perturbation matrix giving the interaction between the discrete level and
the continuous levels. Now A is easily reduced to the form —(vr/2sP) tan
(7rP/e), hence (2) becomes

E Zl ('V d 1I'/E) tan (7I p/f) (3)

Eq. (1) can also be further reduced as follows. A was originally expressed as
an infinite series, '

which is equal to

1 1 I—+- + \

2P e/2 + P 3c/2 + P r/2 —P 3e/2 —P

From this and (1) we see that K ' is equal to —2d(PA)/dP = (s./e)'sec'(s P/s).
Disregar'ding the constant factor, the absor ption coefficient is given as a func-
tion of p/e by (Ks/r)' = [sec'(harp/e) ] ' = [1+tan'(s.p/s) ] '. By (3) this
becomes

(K7r/e)' = 1/[1 + 4(E —8,)'w-'] (4)

where w = 2s.v, ~'/c is the width of the line. Hence the shape of the broadened
discrete line is the same in the case of predissociation as in the case of radio-
active decay or dissociation by rotation.

SOME PROPERTIES OF THE EIGENFUNCTIONS AND PERTURBATIONS

In previous work on the rate of predissociation' it has never as yet been
possible to follow the wave of dissociating molecules in the same way as
in the preceding paper we have followed the wave of departing alpha par-
ticles in the case of radioactivity or the dissociating molecules in the case
of dissociation by rotation. We are now in a position to do this in the case
of predissociation. First we must consider certain properties of the eigen-
functions and perturbations involved.

To get the unperturbed eigenfunctions we first hold the distance, r, be-
tween the nuclei fixed, and solve the wave equation for the electrons and
the rotation of the nuclei. We can write this equation in the following form

(He —U)O =0
FI is the Hamiltonian' with respect to the electrons and the rotation, 0„

' See (I), Eq. (23)„and text just after (23).
Wentzel, Phys. Zeits. 29, 333 (1928); Kronig, Zeits. f. Physik 50, 360 (1928); Rice, Phys.

Rev. 34, 1451 (1929).
' We use the following system of coordinates. We refer everything to a set of axes which

pass through the center of gravity of the system as a whole. But in the case of the nuclei we use



PER 7URB A TIONS IN WOLF C ULE5 1553

is an eigenfunction, U an eigenvalue with quantum numbers designated
collectively as m. V'e then set up arbitrarily the following wave equation
for a function F„, ~ of r:

d'F„,i/dr'+ ~'(F-„,k —U„)F„,I, = 0

z' = gm'M/h'

where M is the reduced mass, h Planck's constant E, I, an eigenvalue of
(6), U„being the eigenvalue (a function of r) previously found from (5).

instead of the six rectangular coordinates, the three coordinates of the center of gravity of the
nuclez, the two coordinates @ and 0 giving the direction of the line joining the nuclei, and r,
The coordinates of the center of gravity of the t~ o nuclei are counted among the electronic and
rotational coordinates. Now if r is so large that interaction between the two atoms forming the
molecule is negligible (a case which will later be of importance) then the potential energy func-
tion for any given @ and 8 will depend on x& —arl, y&

—arm, z& —am, x& —arL, . ~, where l, m,
and n are the direction cosines of the line joining the nuclei, a is a constant depending on the
relative masses of the two nuclei and on which nucleus the electron in question is (ar being the
distance to the given nucleus from the center of gravity of the nuclei), and x&y&z&x2, ~ ~ ~, are
the coordinates of the electrons, and also on the coordinates of' the center of gravity of the
nuclei, but not otherwise on r than as noted above, provided the coordinates of the system have
values at all probable. Therefore the eigen-function 0 will depend upon r only in like manner.
From this we see that any function of 0 and its derivatives when integrated over all coordi-
nates except r, ttj, 8 will very approximately be independent of r. For we can always substitute
the variables x~ —nrl for the original variables, and d(x& —arL) for dx~ for constant r. Further
integration over @ and 0 of course leaves the expression independent of r.

¹teadded in proof: Since Footnote 8 may not be clear it may be well to explain it in
more detail. The reason that 0 involves r only in the form x~ —farl w'hen r is large is as follows.
A partial differentiation with respect to xi is the same as a partial differentiation with respect
to x~ —arl. So if in finding our eigenfunction we first hold p and 8 fixed as well as r we get an
eigenfunction depending only on x& —nrl, etc. , and the coordinates of the center of gravity of
the nuclei. Ke call this eigenfunction N and will omit subscripts. For the dependence on

@ and 8 we multiply by a spherical harmonic, Y. The NY form a complete orthogonal set in

terms of which the 0 can be expanded. The perturbation matrix components are found in
much the same way as the others (v„and v, &) in this paper, and are due to the fact that the
terms

1 8 r3 1 8'
sin 0 —+r'sin'0 89 88 r' sin'8 8@'

in the Hamiltonian must operate on the whole expression NY instead of just on Y, since l

m, and ri, which are involved in N depend on @ and 9. Ke have

8E/89 = —ar {al/09) 8.V/8 (x —arl),

and correspondingly for the second derivative, etc. wherever the second partial derivatives
of N with respect to x~ —nrl, etc. , occur a factor r' cancels the r ' in the perturbation operator,
and subsequent integration over x&, etc. , removes the dependence on r in the way discussed
near the end of footnote 8. The terms in a perturbation matrix component involving only a
first derivative of N will contain r to the minus first power, hence will be small for large r.
Therefore, for large r, the coefhcients of the of NY's in the expression for 0 will not involve
r and 0 will depend on r only as stated.

Another remark we should like to make is this. The coordinates of the actual distance of
an electron to its nucleus (if X0, etc. , are the coordinates of the center of gravity of the nuclei)
are x& —farl —X0 and the potential energy depends more directly on this quantity than on
x~ —arl, but this does not matter for our purposes.
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As the unperturbed eigenfunction we use O„F„,I/r. This is the usual pro-
cedure for molecules, it being generally conceded that it gives the energy
levels of molecules to a good approximation. '

The unperturbed eigenfunction obviously obeys the equation:

(F,y/r) (He —U )0 x'(0—/r)d'F, a/dr' (0 —/r)(E, J, U)F—, g = 0 (7)

Since H~ and E, I, and U contain no derivatives with respect to r we may
write

He(O~~„, t/r) —a '(0~~/r)d2F~ q/d'r —E»(O~~, k/r) = 0 (8)

The actual Hamiltonian for the system, however, is

2 8
H=He —~' + ——

The actual wave equation, therefore, if it operates on 0 F„,&/r contains
the extra terms"

K [(F,z/r) (8'0 /Br') + (2/r) (BO„/Br) (dF I,/dr) j . (10)

Now to get the real solution of the wave equation we can expand in terms
of the O„F,~/r which form an orthogonal set." We can treat the 0 F„,I/r
as solutions of equations like (8) and use the extra terms in setting up a
perturbation matrix, (10) being considered as the result of an operator acting
in a special way on 0 F, I/r.

Now in the case of predissociation we expand the perturbed eigenfunction
in terms of a 0 Fq/r belon, ging to a discrete state, " which we will call
simplyfd, and a set of continuous ones, which belong to another electronic
level, and which we designate as O, F„;/r where i runs over the set of con-
tinuous states. It is to be noted that the continuous property arises from
the F, s, as 0, for all r's is a discrete eigenfunction of (5).

The perturbed eigenfunction, lf'„may thus be written as a linear func-
tion of the unperturbed, thus:"

For large values of r the first term of (11) gives no appreciable contri-
bution, hence for this case

P
' = 0, P;S;„F,;/r = OP'„'/r (12)

9 Born and Oppenheimer, Ann. d. Physik 84, 457 (1927)."Perturbations of this nature were hrst set up in practically this form by Slater, Proc.
Nat. Acad. Sci. 13,423 (1927), which should be seen for details. Our formulation diRers only in
that we have put the r part of the eigenfunction in the form F,f/r."Only one discrete state is to be considered, for we assume as throughout that any other
discrete states which interact with the set of continuous states we are interested in are so far
away in the term spectrum that their eRect may be neglected. Also, of course we consider that
the given discrete state interacts with only one set of continuous ones. See (I) pp. 7S1-2." (I), Eq. (29) It has been, unfortunately, necessary to change the notation somewhat.
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where F„'=g;5;„F,,;. The perturbed wave equation may be written

(H —E„')P„' = 0

where E„' is the corresponding eigenvalue.
This gives, for large r, using (9) and (12)

1555

(13)

&s(0 F~'/r) —« 2(O, /r)d-2F '/dry E'(O.F'/r) —« '(F '/r)8'0 /Br'

—« '(2/r)(80, /Br)(dF„'/dr) = 0. (14)

We now proceed to reduce (14) to an equation in F„'. To do this we
first multiply through by r, then by 0, and integrate over all values of the
electronic and rotational coordinates. (We call the volume element dr'. )
We remember that f0~,HsO' dr'= U, and note that" 2fO, (80,/Br)dr'=
f(&O.'/Br)dr' = (d/dr) fO, 'dr' =dl/dr =0, since the 0 are an orthogonal set.
Further we set « 'f 0,(8'0.—/Br').dr'=I. . Eq. (14) thus becomes

d'F '/dr' + «'(E„' + I, —U,)F„' = 0

For large distances, r, the integral I, must be independent of r, because
for large distances r the molecule is separated into atoms which do not
interact appreciably. 0, will always be aA'ected the same way by a dis-
placement, dr, regardless of what r is, provided it is large enough (see foot-
note 8). Eq. (15) shows us that F„' satisfies a wave equation of the usual

type for a problem of one degree of freedom, and hence is a sinusoidal
function of the usual type.

CONCERNING THE PERTURBATION MATRIX AND THE PERTURBATION PROBLEM

Before we proceed further we must introduce some considerations about
the perturbation matrix. The diagonal matrix component for a given con-
tinuous state is by (10) remembering that the r part of the volume element
is r'dr (we substitute c for m in (10)—also we write s for k to correspond
to the notation used in previous papers —unfortunately we cannot make
the correspondence complete, as in this paper it has been necessary to use
two subscripts):

= —« '
I F 'dr Og(a'0" /Br')dr

—2« ' t F, ,r(dF„,/dr) dr J~ O~, (BQ~,/Br)dr'
0

For the method of setting up this expression Slater's article" can be consulted.
The last term vanishes since fO, (80,/Br)dr' =0 as noted above. Remember-
ing the definition of I, we find

'3 Kronij„1. c., p. 355.

F, ,,'I,dr.
0
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Now I. approaches a constant value for large r. Let us call this value I,I.
Then I.=I,'+I,

& where I, ' differs from zero only for small r, and there
will be of the order of I,I. From the orthogonal properties of the F, ,, we
see that

(16)

In similar manner, for two different continuous states s and 3 belonging
to the same electronic-rotational state c, we get, remembering the orthog-
onal properties of the I'. ,

Therefore the contributions to v, & come from a range in which r is sma11,
and our previous deductions that v, & is small enough to be neglected are
valid. " The same deductions hold for the first term of the right of (16).
Hence, very approximately

The method of handling cases where v„ is not small has already been in-
dicated. In fact, it consists simply in adding v„(which is practically inde-
pendent of s) to the corresponding energy E, , and proceeding exactly as
before. Now suppose instead of (6) we write (for the case m =c and k =s)

O'F, ,/dr'+ «'(E-, „—U, —v„)F... = 0 (18)

Then E,,+v„ takes the place of E... (m =c, k =s) as eigenvalue in
Eq. (6). We could therefore take (18) as the unperturbed equation for the
electronic-rotational state c, and otherwise disregard v„. This is the most
convenient way of handling the problem, for the relations between the eigen-
values of (18) and the perturbed eigenvalues E„' will be just the same as
the relation between the eigenvalues of (6) and the E„' would kave been were
o., actually 0, and this relationship has been deduced in the previous work.

The relationship is as follows. Between every two eigenvalues of (18)
lies a value E„'. Let us denote as E„ the eigenvalue of (18) which is
just above the particular value E„'. Then from the original definition"
of the quantity P which appeared earlier in the paper

E, „—L„' = P + e/2.

THE WAVE PACKET FOR THE DISSOCIATING MOLECULES

Now it has been shown" that the wave packet for the dissociation from
the discrete state into the overlying continuum is given by

" (I), Appendix I. Correction, Phys. Rev. 34, 1462.
"(I), p. 755.
'6 Rice, Phys. Rev. 34, 1451 (1929),
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g„Sd„f„' exp (—2xiE„'L/h)
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(20)

where 5« =X/v, «. For values of r large compared to atomic sizes, we have
from (12), (4), and (20)

eO, F„' exp ( —2xfE 't/h)

xv, «r [1 + 4(E„' —E,)'/(a']"'
(21)

We shall now And the relation between the F„' and the eigenfunctions
F.„of Eq. (18). The latter may be written in the following form for large r

F, , = sin I «(E, , —U, —v„)'"r + g, } (22)

where f, is a phase constant. The condition that F, , =0 at r = r~ where r,
is the largest value r can take (the system being in a box) requires

sin I «(E„, —U, —v„)'"rg + g, } = 0.

But the quantum condition in the neighborhood of r=0 requires that f.
should be the same' for all s. At any rate this will be practically true over
a range of energies greater than the small breadth, w, of the broadened dis-
crete state It would always be exactly true if U, were constant for small r,
as well as large, (i.e. if (22) actually held for small r), and the smallest value
r could take were 0. Now since F„'obeys the equation (15) we have for large r

F„' = sin I«(E„' —L', —n„)'"r + f„'}

F„' must be 0 at r =r& so

sin I«(E„' —U, —v„)'"rg + f„'} = 0

Eq. (25) will obviously be satisfied if

f' ' = i. + «(F.. —U, —V,.)'"rg —«(E„' —U, —vr )'"rg

(24)

(25)

(26)

(see Eq. (2&) and see also just before Eq. (19) for definition of E, , „). Now
as the difference between the quantities (E, , „—U, —v„)'" and (E„'—U,
—v„)'" is very small" we may write it as s(E, ,

—E„') (E„„—U, —s„) "'
by (19) as —', (P+s/2) (E, , „—U, —v ) '" Now s=2x« "(E,,

„—U,
—s )'"ri '. So we see that

1"„' = f, + xp/e + x/2 = f', + x/2 + tan 'I (E„' —Eg)e/xn, «'}

= f', + x/2 + tan '
]2(E„' —E,)/w } (27)

by (3) and remembering that w=27rv, d-'/e. We thus get an expression for

P
' which can be used in evaluating F„'. Now

sin Ix+tan 'y} =(sin x+ycos x) (1+y')

"Or dier only by multiples of 21-. We can choose that they should be all the same.
It may be made as small as we please by making r& large.



Using this formula we get from (24), (27), and (21)

[sin[~(E, ' —r/, —'„,}'~r'r+g, +rr/2) + [2(E.„'—E,l/n];o~[ r(E„'—tr, —n„l'rV+i', +rr/2) ]exp( 2rr/—F, tg

1 + 4(E, ' —E ]'//" "-

The sum over n can be converted to an integral with respect to 8 ',

and then, except for the factor 1/r, which merely means that here we have
taken all three dimensions of space into account, and so have a spherical
wave, the part which involves r has exactly the same form as Eq. (23) of
the preceding paper. We thus have a wave of dissociating particles of
exactly the same type as before, with exponential decrement with time
bearing the same relation to the width of the discrete state, in fact the same
in all details. There is thus a complete analogy in results between these two
different types of decompositions. Also the part of the wave for small r
can be handled as in the preceding paper, since for small r the eigenfunctions
will not vary appreciably over a small range of energies.

I wish to express my thanks to Professor Heisenberg for his interest
in this work, and helpful discussion.


