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ABSTRACT

In the recent theory of radioactive decay, and also, as is shown, in the theory
of dissociation of a diatomic molecule by the acquisition of rotational energy, there
occurs a potential energy curve which has the following shape, as we go, say, from
left to right. At the left the potential energy is very high, it then comes down to a
minimum, increases to a maximum, and again falls off to an asymptotic value. The
problems connected with such a curve are of two types. First, we may be given
a particle in the region near the minimum, in an energy level which lies below the maxi-
mum, and wish to find the chance that it appear by a quantum mechanical process
in the region on the other side of the maximum. Second, we wish to find how the
"discrete states" in the neighborhood of the minimum are "broadened" by the
continuum on the other side of the maximum. To solve these problems we first find the
stationary eigenfunctions. By means of them the width and shape of the "broadened
discrete levels" are found immediately. Ke then use these eigenfunctions to set up
a wave packet, or, rather, we show how nature may set up a wave packet, which
enables us to solve the first of the problems mentioned, The result justifies the use of
complex eigenvalues for the solution of the problem.

INTRODUCTION

'HE theory of radioactive decay, recently proposed by Gurney and Con-
don, ' and independently by Gamow' makes use of a potential energy

curve of the type shown in Fig. I (solid curve), the wave equation being of the
form

O'P/dx' + (8)r'M/h' )(E —U)P-= 0.

The alpha-particle is supposed to be originally in some energy level such as 8
between x~ and x3 ~ There is then a finite probability of its appearing to the
right of xi which gives the chance of disintegration of the radioactive atom.

Curves of much the same general characteristics also occur in the case of
molecules, and can be used to explain the phenomenon of dissociation by
rotation; i,e. one can use them to show how rotational energy can cause a
diatomic molecule to dissociate. This explanation was given by Oldenberg,
but as his work was not put into quantum mechanical form, and as alittle
more information may be obtained when this is done, it seems worth while to
devote a paragraph to indicating how this may be done.

' National Research Fellow.
' Gurney and Condon, Nature 122, 439 (1928); Phys. Rev. 33, 127 (1929).
' Gamow, Zeits. f. Physik 51, 204 (1928),
4 Oldenberg, Zeits. f. Physik 56, 563 (1929).



Q UA N TU.V THOR 7 OF RA D IOA CTI VIT V 1539

One begins with the wave equation of a rotating and oscillating diatomic
molecule, and, in the usual way, separates out the variables which give the
orientation of the molecule. One thus obtains a wave equation in r, the dis-
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Fig. 1.

tance between the two nuclei. If we let I' = rR, where R is the part of the ei-
genfunction which depends on r, this equation is'

O'F/Or' —j(j + 1)F/r'+ (Ss'M/h')(E —UD)F = 0

where j is the rotational quantum number, 3II the reduced mass, E the eigen-
value, and U0 the potential energy, which is a function of r. The term

j (j+1)/r' when multiplied by h'/Ss'M acts exactly like an addition to the
potential energy' and we may replace UD+(h'/Sn'M)j( j+1)/r' by an effec-
tive potential energy U, getting an equation like (1). When j=0 the curve has
the usual form of the potential energy curve for a molecule (lower dotted
curve in Fig. 1). As j increases the curves become like the solid curve of Fig.
1, and finally when j is quite large they are like the upper dotted curve of
Fig. 1, the valley becoming shallower and finally disappearing altogether. '
Now, as we shall see, we can in a certain sense speak of discrete states in the
valley, corresponding to an oscillation of the molecule in this region, and we
see that the number of discrete states in the valley grows less and less until at
last there are no more. Thus if a molecule is in a certain vibrational state, this
state will disappear, and the molecule will dissociate, if j exceeds a certain
value. This is the phenomenon observed in the case of mercury hydride, and
the explanation does not diAer greatly from that given by Oldenberg.

For energy levels such as E between the top of the mountain and the level
of the plain, the problems which occur in the case of radioactivity will have an
analog in the case of molecules. In the case of radioactivity what we observe
is that a system starting in the valley goes through the mountain and appears
in the plain. In the case of molecular spectra we actually observe another
phenomenon. %'e find that the discrete states in the valley will be broadened

~ Fues, Ann. d. Physik 80, 371 (1926).
' See Gamow and Houtermans, Zeits. f. Physik 52, 509 (1928).
' The curves of Fig. 1 are quite schematic. For curves drawn to scale see Oldenberg, l.c.
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in the same sense as in the case of predissociation, and one in fact observes
diffuse rotation lines.

The problem which concerns the rate at which particles appear on the
plain, and which, as noted, is of particular interest in the case of radioactivity,
has been considered by a number of investigators. In the original papers of
Gurney and Condon, and Gamow, no attempt was made to put this calcula-
tion on a rigorous basis. Numerous articles have appeared since, attempting
to do this. ' Among the various methods used the introduction of complex
eigenvalues oAers to my mind the most elegant solution of this problem which
has appeared so far. This very ingenious procedure gives very reasonable
results. Still the idea of a complex eigenvalue is a rather unusual one. The
method also includes the assumption that the decomposition is proceeding in

just the same way as if it had been going on for an infinite length of time.
This is also not an unreasonable assumption but it can be avoided; at the
same time the use of complex eigenfunctions can be justified, and new light
thrown on the significance of the whole process by the method we propose to
use.

METHOD OF ATTACK

First of all we shall consider the entire system to be enclosed in a large box,
to avoid the necessity of considering a continuum. Then we shall find the
stationary eigenfunctions. In general it will be found that the part of the ei-
genfunction on the plain wi11 be great compared to that in the valley. As we

pass through certain energies, however, the relative size of the part inside will
increase, reach a maximum and fall off again. To avoid circumlocution we
shall refer to these energies as "discrete levels. " They will in general occur
near an energy where we would expect a discrete level to be if the curve rose
continuously to the right of the valley. Since there is a finite energy range
over which the part of the eigenfunction in the valley has a relatively large
size these discrete levels are "broadened. "

Ke wish now to investigate how our system can appear in a "discrete
state, "' and what it means to say that we start out with our system in the
valley, and calculate the probability that it will get out on the plain. To do
this we suppose that the system was originally in some real discrete state
which might or might not be part of the system of states belonging to the
potential energy curve of Fig. 1, but from which no escape from the valley
into the plain is possible. KVe will call the eigenfnnction of this state $0 and
its energy Eo. Now our system is subjected to a perturbation which causes it
to appear in one of the states belonging to the curve of Fig. 1. There is a cer-

' Rice, Phys. Rev. 33, 748 (1929). And see Schrodinger, Sitzungsber. Preuss. Akad.
Kiss. , {1929) 668.

9 Kudar, Zeits. f. Physik 53, 61, 95, 134 (1929);54, 297 (1929); Gamow and Houtermans,
Zeits. f. Physik 52, 496 (1928); Gamow, Zeits. f. Physik 53, 601 (1929); Fowler and Kilson,
Proc. Roy. Soc. A124, 493 (1929). See also v. Laue, Zeits. f. Physik, 52, 726 (1928); Sexi,
Zeits. f. Physik 54, 445 (1929);56, 62, 72 (1929);Born, Zeits. f. Physik, 58, 306 (1929);Atkinson
and Houtermans, Zeits. f. Physik 58, 478 (1929);Sexi, Zeits. f. Physik 59, 579 (1930). Relativ-
ity treatment, Mufller„Zeits. f. Physik, 55, 451 (1929),
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tain probability that it will land in some one of these states, of energy E, say,
which is near some discrete energy, 8&. The eigenfunction of energy E
(not including the exponential time factor) will be called P(E). The wave

packet which is formed by systems jumping from the state to the states lt (E)
will be of the form

Qa(E)P(E) exp ( —27riEt/h)

where a(E) is a constant coefficient for any E, and the sum is taken over all

allowable values of E, which form a continuous set within the limits allowed

by the box.
As a typical example, we shall consider the case where the perturbation

which sets up the wave packet P for us is due to the action of monochromatic

light, "of a frequency somewhere near E&—Eo which diA'erence we will sup-

pose great" compared to the "breadth" of the discrete state at E~. Now we

have said that we will have the wave packet produced by monochromatic
light. But if light is to be strictly monochromatic we have to shine it in for an
infinitely long time. There would be no sense in making any calculation for a
process which occurs after such an excitation. In fact there would be no

process to calculate. The system after the excitation by light would simply be
in one of the stationary

stateside(E).

We can, however, shine in light of a given
frequency for a short time. It is of particular interest to have it shine in for so
short a time that any of the states lt (E) over a considerable range of energies
in the neighborhood of E~ may be excited, and short enough so that no
appreciable difference in phase of the exponential factor for the various states
p(E) in the expression for lf can arise. "The matrix component of the pertur-
bation for the excitation by light from state Po to a state f(E) is proportional
to the matrix component, " Pos=fo"PoPQ(E)dx, where P is the electrical
polarization expressed as a function of x. The P(E) must be normalized.

a(E) will be proportional to Pox and to find out how POE depends on E we

must make a certain assumption regarding the integral which gives it. Ke
assume that all appreciable contributions to this integral come from the range

'0 Rice, Phys. Rev. 34, 1454 {1929).
"The assumption that Ed —E~ should be great compared to the width of the discrete

state at Ed was also made in the previous work, Ref. 9, but it was forgotten to mention it
explicitly there. This assumption was necessary to show that an in Eq. {5) of that article is
proportional to I'„,; it makes E„'—E, practically independent of E„' over the important
range of E&'.

~2 As in the case previously considered {Ref. 10, see p. 1458) it seems safe to replace this
condition by the statement that the time of illumination must be short compared to the time
Qf decomposition, i.e. in this case the average life of a particle in the valley before it escapes
into the plain. If the time of illumination is so short that more than one discrete state
is excited the various decompositions from the various states may all be treated separately
provided the energy between two discrete states is great compared to the breadth of a discrete
state, a condition which must be fulfi. lied anyhow. This will also presumely be the case, if the
perturbation is due to any other cause, provided it lasts for such a short time that no appreciable
decomposition takes place in this time. The point is, as we shall see, that the wave packet
starts in the neighborhood of the valley, and if the time of the perturbation is short enough,
it will not, during that time, get out of the valley."Dirac, Proc. Roy. Soc. A112, 674 (1926).
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of x in the valley, because P, is supposed to have appreciable values only in

the valley. In the immediate neighborhood of any given discrete level in the
valley, the shape of the part of P(E) which is in the valley or the amplitude
of the part in the plain will not vary greatly with the energy over a small

energy range, but the ratio which we call 8, of the magnitude of the valley
part of P(E) (for some definite value of x, say x') to the amplitude of the
plain part will vary greatly with the energy. Let us designate the maximum
of B as Bi. Then B/B& (which does not depend on x') is equal to the ratio'4

Pox/Ppsq because the normalization makes all f(E) alike in the plain. "' The
coefficient a(E) is proportional to Pos hence to Pos/Pox„hence to B/Bi.
Therefore, neglecting a constant factor, P becomes

Q(B/B, )f(E) exp (—2miEt/h). (2)

where the summation is over all allowable values of E. Now it will later be
seen that this equation results in the total amount of material in the plain at
t =0 being zero or almost so, but as time goes on, matter appears in the plain,
and the amount of material in the valley suffers an exponential decrease.

If Bo is greater than 8& so that the wave packet is set up by emission of
light the above will also hold.

CALCULATION OF THE STATIONARY EIGENFUNCTION

If P now is the stationary eigenfunction for some definite energy E, it has
been shown that for regions when ~E —U

~

is not too small, and the slope of
the U vs. x curve not too great, that the solutions of the wave equation can be
written in the form" (disregarding constant factors)

sin

y = (Z —U)-'"
I Jf (R —U)'"d*j

cos
for U&E, and

0 = (U —2) "' p I+ J~ (U —Z)"'d*j (4)

for U )E, where r&
= (Sir'cd/h') '"

In the immediate neighborhood of such a point as x~ these solutions do not
hold. The question now arises as to what happens if we start with some given
solution in the mountain to the left of xI, and go through xi into the plain.
On the assumption that the side of the mountain is long and straight, Kra-
mers" has shown that, if we start with the solution

(U —E) 't'exp j —Kf '(U E) I dx j
far to the left of xi, after going through xi and getting far to the right the
solution has become

'4 F.d is not a well defined energy and we could take it as that value of the energy for which
8 is a maximum. Ke prefer, however, to designate the latter energy as E&.

'4' The matter of normalization is explained in more detail after Eq. (17), See also Ref, 8,
p. 749.

"See, e.g. , Nordheim, Zeits. f. Physik 46, 842 (1927)."Kramers, Zeits. f. Physik 39, 828 (1926).
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2(E —U) '" cos jxf„(E U)—"'dx —7r/4}.

This means that the particular solution of the differential equation which has
the one form to the left of x~ has the other form to the right. We express this
by using the following notation:

+1

(U E) i p{,JI (U E)td }
P 2' jr

d-—2 2(F. —f() '" cos E I (E —U) "2dx —— (5)
4

Putting in the limits is equivalent to evaluating the constant of integration,
the integral being a function of x. Kramers and Ittman" also point out that

S ]

(U —E) P' p { (U —E)'&'d

Zwaan" points out that the relation (5) holds whether the side of mountain is
long and straight or not, if we can go from a region where the approximations
of the type (4) hold to a region where the approximations of the type (3) hold,
via a path in the complex plane along which the solutions are of the general
type (E—U) "' exp jiEf*„(E—U)"2dx} and which crosses the curve along
which argument of f*„(E—U)2"dx is 2r/2 at a point where the absolute ~alue
of f,*(E—U,)'"dx is large "

In similar manner we also have

g')
7r

2(E —«) "' { I (E —U)'"d

-'-'(U-E)-'"-p{ f(«--E)" d*} (2)

ancl.

Now if we multiply the left hand side of expression (5) by the factor exp
j f,', ()dU E)'"dx} which we—will call 8/2 we see that it coincides exactly
with the right hand side of expression (8). Likewise if we multiply the left

"Kramers and Ittman, Zeits f, Physik 58 222 (1929)"Zwaan: Intensitaten im Ca-Funkenspektrum, Thesis, Utrecht (1929), p. 35.
indebted to Dr. F. Bloch for calling my attention to this work,

'9 Kramers and Ittman state that (6) can be derived in the same way.

I am



0. E. RI'CE

hand side of (6) by 28 ' it coincides with the right hand side of (7). Thus we
have established a connection between the solutions to the left of x2 and to
the right of x~. Ke see, in fact, that

X99-(E- U) 9'-{. (E- U) ~..'-—
4.

9(E —U) '" { (E — )"U"H: —— (9)
4.

X2 7r
(E —U)- "9. { (E —U)"'9 ——

4,

Xg RI18 X1—-9 —8
—'(E —U) "' sm K (E —U)'"dx ——. (10)

E

4

The actual eigenfunction in the valley must consist of a linear combination of
the left hand sides of (9) and (10). If the eigenfunction in the valley is

g2

(E, —U) "4 cos K ( (E —U)'"dx ——

+ b sin ff: l E —Z7 '~'dx ——
4

the same eigenfunction in the plain is

—(E —U) "' 0 ' sin K If [(E —U)"'dx ——
7I'

+ b

Olios

ft ~ E —Z" '"dx ——
4J

THE SHAPE OF THE BROADENED DISCRETE STATE

In order that the solution of the wave equation should be an eigenfunction
it must satisfy a certain condition to the left of x3. It is probably good
enough to assume that to the left of x3 the solution must decrease exponent-
ially in absolute value as we go to the left, " and the solution to the left of x3
will therefore be of the form (U —E) '(Eexp { Kf '(U ——E)"'dx I. Now

gs

(U —E) "' «9 {— (U —E)'"d*j

X8
2(E U) ( cos K (E —U) "'dx —— (13)

(11)must be the same as the right hand side of (13), and it can be made the
same as follows. We can easily at any time adjust the aniplitude of (11)or
(13) so that they will be the same. But we have to adjust the phase of (11)
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so that it will coincide with (13). This is done by choosing the value of b. At
some energy, say for example at EI, the value of b will be zero. Then under
the mountain we have only the decreasing exponential. The value Ej will

therefore be approximately the same as an eigenvalue of the wave equation
if the curve for U increased indefinitely to the right. Kramers" has shown
that the condition that E& should be the energy of such a discrete state is

when n =1/2, 3/2, 5/2, . The phase of the right hand side of (13)
(starting from x) is less than that of the first term of (11), at some E not
too distant from EI, by

P~2 X2

E —U '"dx —~ E —U '"dx
g3 $3

The amount that the phase of (11) is less than that of its first term is tan 'b.
Thus, since (13) and (11) must be alike,

f $2

b = tan ff
~

E —U 'I2dx —~ J E, —~ I~2dx
& Xs X3

(16)

Now if the breadth of the "broadened discrete state" is to be narrow
compared to the distance between two discrete states, it means that over the
"width" of the discrete state (15) must be small compared to ir. We assume it
so small that we may write

X2 S2

K
~

(E U) i dx K (E —U)"'dx
Xs g3

S I)

= (E —Ei) ii
~ (E——U)'"dx

(17)

which we set b'(E —Ei). The derivative is taken for E =Ei. It is important
to note that b' is positive.

AVe now wish to find how the value of b affects the relative size of the ei-
genfunction in the valley and on the plain. For large values of x we know that
U' takes on some asymptotic value, which we can without loss of generality
take as 0. Then (12) also has an asymptotic form. In the limiting ease when
the box is large this part of (12) will determine the normalization, as the in-
tegral of lb' over the plain can always, by taking the plain long enough, be
made large compared to the integral across the valley. We make f,"Pdx = 1.
The amplitude of the sinusoidal function represented by (12) is (for large
values of x where U=0) equal to (0 '+b'8')"E '". To satisfy the normaliza-
tion conditions the amplitude must be (2/x„)'" where x„is the largest possible
value'0 of x. To normalize we therefore multiply (12) by (0 '+b'e') '"E'"—-

"Giving x a largest value allows in an idealized way for the fact that the system is in a
box.
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(2/x„)'". Now (11) must also be multiplied by the same thing, so its ampli-
tude becomes (1+b2)4/2(E —U') —«4(g —2+b2g2) —i/2E«4(2/x„)i/2 But if b is small
so that (17) holds, then it will also be negligible compared to 1. So the ampli-
tude of (11)becomes

(E—f/)
—i/4(g 2+b2g2) 2/2E4/4(2/x )i/2

If we divide this expression by its value when E =E~, and hence b =0, we get
an expression which will no longer depend on the particular value of x be-
tween x2 and x„and which will in fact be just equal to the quantity B/Bi
which appeared in Eq. (2). We thus find (assuming that E and 8 do not vary
appreciably over the range of E included in a broadened discrete state):

B/B —(1 + b2g4) —1/2 —[1 + b(2(E E )2g4]—1/2

The shape of the broadened discrete state is found by plotting

(B/Bi)' = [1+b"(E —Ei)2g4] '

against E. The width m of the state we may define as the energy over which
(B/Bi)' has the value —', or greater, or twice the absolute value of E —Ei for
which (B/Bi)' = —,'. Thus

24/ = 2/b'g'.

THE SETTING-UP OF THE WAVE PACKET; THE RATE OF DECAY; PROOF OF

ASSUMPTION OF COMPLEX EIGENVALUES

For a very large box the summation in Eq. (2) can be replaced by an
integration, which is surely allowable, as it wi11 be seen that the integrand has
no singular points. Eq. (2) thus becomes

(B/Bi)p(E) exp ( —22/2Et/b)dE/» (21)

where» is the distance between energy levels, and is equal to 22rE' 2///x„

where x„ is the largest possible value of x. It is only possible to integrate thus
from ~ to —~ because only a small range of E's contributes appreciably. To
find P for x))xi we substitute for i/b(E) in (21) the expression (12) with U=O
which must however be multiplied, as noted, by(9 '+b'g') "'E'/'(2/x )'"=
g(B/Bi)E'"(2/x„)"'. To find /I/(E) for x2(x(x2 we use (11) multiplied by the
same thing. V e will, however, find it convenient to multiply (11) and (12)
through by g(B/Bi)E'/4», in—stead, which is permissible for the following
reasons: P itself is not normalized, and we can always further multiply or
divide (11) and (12) by any factor which does not depend on E. And in the
range of values of E which contribute importantly in the integral (21) we may
regard» as constant. E'",(E—U)"', and g are also practically constant.
So (11)gives, when thus multiplied and substituted in (21) remembering (17)
and (19):
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jVi&/4 tI

(E U) 1/4 1 + b"8'(E —Ei)'

X2

8'(s —E)i ,{ (s —U)'"d —— . p ( i is—l/h)
4

1 + b"8'(E —Ei)-'
dF (22)

For great values of x we can substitute «E x+i for «Jf;„f r «Jf (E—U)"'dx x/4 in—

( ) W sim l let f be the diRerence between these two expressions, this
difference being constant for large values of x. Then we multip y &, y e
same expression as we multiplied (11) by, and get

[sin{«E"'x+f]+8'b'(E Ei)cos{—icE""x+i ] ]exp( —2xsE&/ )0=j
1 + b"84(E —Ei)'

We assume that the important range of E in this integral is so small that g is
the same for all the states in this range. We now proceed to evaluate ( ).

We substitute (E' —E'i)+Ei for E, and Ei' '+(E — i)/ i or
this is allowable for the small values of E—Ei which contribute to the integral.
The latter substitution gives the cosine and the sine of t..e sum of h..e sum of the two

+P and («/2E )i(E Ei)x. These —are reduced by the usua
trigonometric formulas. We also write exp ( —2iriEt/b) =exp ( —xi
[cos {2m(E Ei)&/Is} i 'sin—{2x(E E—,t/h]]. On—e thus gets a number of
parts of the integral which drop out because they are antisymmetrical about
the point E—Ei = 0. The rest of the expression becomes

P = eXP (—2VriE11/h)
" sin {«E&'i'x+ t}cos {(x/2E&'")(E —E~)x} co« {2x(F. —E~)i/h}

1 + b "94(E —E1)'
" (E —E) sin {«E, 'i'x+t} s n{ («/2E, 'i')(E —E )x}cos {2x(E —E&)&/b}

( E )
1 + b'29'(E —E1)'

" cos {«Ei"'x+t} sin {(x/2E&"')(E —Ei)x} sin {2x(E—E|)&/b} E)
1 + b "84(E —E1)'

" (E—E )cos {«E, '&'x+t }cos {(«/2E|'&') (E—E )x }sin {2x(E Li) i/8}-—~b'02

The four integrals we shall designate respectivety as $ Q 3 4.

trigonometric reduction gives I& = —, ~sin
~

f~~& & l & f J Q 1
—'[sin{«E,"'x+f] ] (Is++Is ), where

" cos {[(x/2E, '")x + 2xt/h](E —Ei) ]

1 + b"84(E Ei)'—
" (E —E,) sin { [(«/2Ei'") x + 2ir//b](E —Ei) ]

1 + b"8'(E —Ei)'



O. K. RICE

Ij+ and Ij are to be found from Pierce's Tables" and I2+ and I2 can readily
be found by diR'erentiating Ii+ and I& with respect to the proper parameter
(((/2Eq)'"x+ 2s 1/k. Now it will be found (as b is positive) that the contribu-
tions from I~+ and I~+ cancel each other in the expression for P, as do also the
contributions from I) and I2 when (~/2E)'/2)x&27rh/t. When, however,
(((/2EP")x (2s h/t the latter add. We can treat I3 and I4 in a similar way. So

f is zero for (/(/2EP')x )2+k/L and for ()(/2E)'/')x (2xh/t we have

P = (s/b'8') [sin ()(E('/'x + f) —i cos (i(E '"x + f) ]

exp I [()(/2E '")x —27rt/ h ]/b'8' } exp (—2xiE) t/ h) (24)

= ( x/0' 8') exp [ f()(E '"x—2~E)t/h —)r/2+)) } exp] [(/(/2E '")x —2wt/Ir]/b'8' }

Ke see that this represents a wave going in the positive direction with the
particle velocity (2E&/3E) "', and with an amplitude determined by the second
exponential factor for values of x up to the place where (((/2E, "')x=27rt/k
after which it breaks off. The wave shows an exponential decrease with time
and just the proper exponential increase with distance to insure that the
amount of matter in the wave is conserved. This is exactly like the outward
going wave of Kudar's, ' which resulted from the use of complex eigenvalues,
except that his did not break ofI', but continued out to infinity in space and
negative infinity in time.

Weshall now evaluate (22). The sine and cosine of /(f*'(E U)"'d—x —s/4
are roughly periodic functions of E, but we know that in the important range
of E the functions have gone through a small fraction of a period, as we are
considering a discrete state that is narrow compared to the distance between
two discrete states Ke can therefore consider the sine and cosine terms as
constant factors in the integration of (22). We write exp ( —27riEt/f)) in sine
and cosine form, as before, substitute in (22), note that some of the parts of
the resulting integral drop out because of antisymmetry of the part of the
integrand about 8—E~ ——0, integrate the remaining terms, which involve
integrals of the type already met with, and get

((i' = —[exp (—2xiE&t/h) ] [(Ei'/'8)/(Ei —U) '"]

X2

—'( /b 8 )io I )' ''(8 —»'"d — /4} e*p ( —2 I/»'9')).
(25)

Since the distance between two discrete states is by (17) and (14) of the order
of 1/f)' and since, if w is to be small compared with this, 8' must, by (20), be
large compared to 1, the last term in the expression (25) is negligible, and we
are left with

P = —[exp (—2xiE,//h)]E '/48(E —U) "4(7r/b'8')

COS 8(: E —U '"dX —m 4 eXP —2m/ hb'8', 26

~' Pierce, "A short Table of Integrals, " Ginn and Co. , Formula 490.
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a standing wave, except for the exponential decrement with time. Actually,
if we consider terms of higher order, the wave function in the valley will not
be expected to be merely a standing wave with exponential decrement with
time.

Now if the mountain is not too thick through (i.e. if x& —xm is not too
great)" we may find the expression for P in the mountain the same way as we
found it for P in the valley. We simply assume that exp I~f,*,(LT E)—"'dx}
does not vary over theeR'ective range of E—EI, and this is, in fact included
in the assumption we have already made that tI does not vary appreciably
over this range. The integrations are then readily performed. We get an
expression which again contains the factor exp ( —2miE~t/b —2st/hb'8') Also.
just to the right of x~, (23) does not give an exact expression for P. The
difference between the true value of P and that given by (23) will, however,
not be appreciably diA'erent from 0 for any great distance to the right of xI,
and for this range we may also assume that ~J'(E —U)'"dx does not vary
appreciably with E over the range m, or at least that it is a linear function of
E —E&. In either case it is easily seen that the expression for lb will contain the
factor exp ( 27riE&—t/b 27rt/hb'8—') Thus w. e see that the assumption of a
complex eigenvalue is at least approximately correct, and that the smaller m

is the better the approximation is. It also depends on the relations (9) and
(10). It is also, of course, necessary that t should not be too small.

The rate of decay, y, of P is of course given by twice the real factor of t in
this exponential time factor. We have"

y = 4s/hb'8'
(27)

It is seen from (20) that

the same relation that held in the case of predissociation, where we have a
different type of interaction between discrete and continuous states. '4

GENERALIZATION OF THE RESULTS

Our results so far are somewhat unsatisfactory inasmuch as the general
validity of the relations (5), (6), (7) and (8) depends upon the properties of
8—U considered a function of x when x is a complex variable, which are a
little hard to investigate in a general way, or upon the assumption that the

" In order for the discrete state not to be too broad, 8 must be great. The condition just
cited states that a sufhcient portion of this greatness must be caused by the height rather than
the breadth of the mountain. If the mountain and the valley are of somewhat the same width
the required condition will be sufficiently well fulfilled.

"This expression agrees with that of Eudar, Zeits. f. Physik 53, 99 {1929)also that of
Fowler and Wilson, l.c., in the exponential part, but not in the factor. The difference is prob-
ably due to the fact that Kudar and Fowler and Wilson considered a type of potential energy
curve to which Kramer's approximation method could hardly apply.

~4 Ref. 10, p. 1457.



mountain-sides are long and straight. Ke may, however, show that the gen-
eral character of the results depends only on the broadening of the discrete
state being sufficiently small so that any given solution of the wave equation
does not change its general character in that range. For then we may assume
that a particular solution in the plain (far to the right of x,) is connected with
a particular type of solution in the mountain and in the valley. Thus the two
solutions E '"'„„'(sE'"x+f) are connected with solutions in the mountain
and valley which do not change much over the range of energies in the width
of the discrete state. This will be true no matter what value we choose for i'.

Let us choose l" so that if E=E~ the eigenfunction in the plain becomes
E '"sin(vE"'x+f) Fo. r any other value of E the eigenfunction in the plain is

[E "' sin (~E"'x + f) + gE '" cos (~E'"x + f) ]/(1 + g')'". (29)

If 8—Ei is small enough g can be written as a linear function of 8—Bi say
g'(E —K) and in general it may be expected to be of the order of b'8'(E E&)—
as before, but the general character of the results, and the possibility of the
use of complex eigenvalues do not depend on this. (The sign of g' is important
but is surely the same as that of b'f)' )Sin. ce we assume that the range of
E—Ei is so small that the shape of the eigenfunction in the valley is not af-
fected we see that (8/8, )' is given by 1/[i+g" (E—E~)'], hence all our pre-
vious results follow with g' substituted for b'6'. Except, therefore, for this
substitution we see that our results depend only on general properties of the
solutions of the wave function, and not on their specific form.

I wish to thank Professor W. Heisenberg and Dr. F. Bloch for discussing
this problem with me. I am informed by Dr. Bloch that much the same
thing has been worked out independently by Professor Kramers, though
without indicating, as is done here, how the wave packet is probably formed
in nature.


