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ABSTRACT

Intensity formula for vibration bands. The intensities of vibration bands depend
on certain matrix elements of the electric moment of the molecule. The electric
moment of a diatomic molecule is a function of the nuclear separation and must be
expanded in a power series about the equilibrium point. Matrix elements are cal-
culated by perturbation methods for the fundamental and first two harmonic bands
of the vibration spectrum, and it is found that, to a first approximation, for the n'" har-
monic it is necessary to consider the (n+1}'"power in the series expansion of the
electric moment, and higher powers for better approximations. The formulas for
the fundamental and first harmonic are given to a second approximation. The matrix
elements are alsocalculated from wave functions due to Morse for a diatomic molecule,
and it is shown that there is a negligible difference between the two methods of
calculation for small quantum numbers. Formulas are also given for the ratio of the
intensity of the first two harmonic bands to that of the fundamental.

Application to HC1. The formulas derived in the first part are applied to the
case of HCl which is the only molecule for which the intensities of the vibration bands
have been measured with any precision, New data from wave-length measurements
of Meyer and Levin are used and the value of the coefticient of the quadratic term in

the power series expansion of the electric moment is found. It is found that two
values of this coefficient would give the same intensities and no satisfactory way
of resolving the ambiguity is available. Numerically it is found that if the electric
moment P =P,+P, '&+P."P/2, then P,"~0.070X10 "or 4.56X10 "e.s.u.

INTRGDUcTJQN
'

HAVE recently shown' that the ratio of the measured intensities of the
- - fundamental and harmonic bands of HC1 in the near infrared can be pre-
dicted quantitatively assuming Morse s' vibrational wave function analysis
and also that the electric moment of the molecule is a linear function of the
nuclear separation. Morse's potential function is not as general as a simple
power series expansion of the potential function about the equilibrium point
and so there has been some question as to what effect the difference between
these forms for the potential function would have on the predicted intensities.
It is the purpose of the present paper to compare the intensity formulas ob-
tained from both potential functions and also to consider the effect on the
intensities of higher terms in the power series expansion of the electric mo-
ment. Briefly stated the results are that the intensity formulas derived by
the two methods give numerical results which differ by less than the experi-

' National Research Fellow.
' J. L. Dunham, Phys. Rev. 34, 438 (1929).
' P. M. Morse, Phys. Rev. 34, 57 (1929).



mental error of the measurements, and that the inclusion of higher terms in

the electric moment is, in general, necessary. The numerical agreement ob-
tained previously does not have a unique interpretation. Either it is an indi-
cation that for HC1 the coefticient of the quadratic term is very small indeed,
or it is due to a cancellation of terms. The first part of the paper will deal with
the derivation of the intensity formulas based on the two potential functions
and with a comparison of these formulas; the second part will consider their
application to the numerical results for HC1.

PART I

The ratio of the intensities of two corresponding lines in diferent bands
has been shown to be'

2
a&t1s v& ~ P&~

Ajk vjk Pjk

where a„ is the intensity of the line e~m and v„„ is its frequency. I'„ is
the matrix component of the electric moment associated with the line n~m
and will hereafter be called the intensity in/egral. It is calculated from the
expression

where P(r) is the electric moment of the molecule and is a function of r, the
nuclear separation, and R(r) is the radial part of the wave function. If we
expand p(r) in a power series about the equilibrium point (r = r,) and change
to the dimensionless variable $ = (r r,)/r„we have—

where P.' = (dP/d&)t=o etc. , and, correspondingly

Pe PeP„=p, '$ + (' + $' +
2 6

(4)

where g' = f&'R R r.dP, is the (n m)'" component' of the matrix P'.
The expansion of the potential function about the equilibrium point can

be written as

(P + si$'+ s2$'+ s3$'+ )
2/2

where co, is the frequency of a classical oscillation for very small amplitudes,
e' = k/4s'co, I,«1, I, is the moment of inertia of the molecule, and a~, a~ and a3

are arbitrary constants which can be determined from the frequencies of the
4 This formula was given in reference 2, p. 448. The material for its derivation is given

very concisely by E. C. Kemble, Phys. Rev. 25, 1 {1925);where the only change to be made by
the new quantum mechanics is that on p. 6. Q' is to be replaced by I'

This expansion of I' is not to be confused with the expansion of charge distribution into
dipoles and multipoles. This entire analysis concerns only the dipole radiation.
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lines. ' ' The first term gives the potential of a simple harmonic oscillator, for
which the wave functions are known, but the wave functions of the more
general case must be calculated by perturbation methods. Fues~ has calcu-
lated the energy levels by this method and has given a formula for evaluating
all o'f the integrals required in the perturbation calculation so that the details
of the analysis will not be reproduced here. Su%ce it to say that the per-
turbed wave functions are calculated by straight forward application of per-
turbation methods and from them the intensity integrals are obtained by Eq.
(4)

The intensity integrals for the fundamental and the first two harmonic
bands are found to be

p, '9 11 3 5p"ag
Po, —— 1+ 8' —a, ' ——a, —

(2)'" 16 4 4

p, '8' 243 111
P02 (131 + p ) + e &1 131132 + 5133

2(2) 1/2 32 8

(6)

+ p

+03
p '83(3) "2 3a '+ 4a p"'

where p" =P, "/P, ' and p"' = P,"')P, '. The formulas for P01 and P02 have been
carried out to a second approximation, and the formula for P03 has been given
to show how higher derivatives of p enter into the intensity integrals for
higher harmonics. There are no reliable intensity measurements for any sec-
ond harmonic bands so far as I am aware, and consequently P&3hasbeen
given only to a first approximation.

Mensing and Dennison have obtained by perturbation methods similar
to those used here a formula for the intensity ratio of the harmonic to the
fundamental band based on the first terms of Eqs. (6) and (7) but omitting
the term in p", and Fues' has given formulas for the intensity integrals to a
first approximation, using Kratzer s potential function, which are closely
related to the first terms in Eqs. (6), (7) and (8), but omitting p" and p"'.
However, the fact that p" enters into the first term of P02 in Eq. (7), and that
both p"' and p" enter into PO3, shows that in general these terms cannot be
neglected even to a first approximation. Generalizing from the above equa-
tions it seems that for the band (0—+n) it is necessary to consider at least the
first 23 terms in Eq. (4)."

' E, C. Kemble, Journ, Opt. Soc. Am. 12, 1 (1926).
~ E. Fues, Ann. d. Physik. 80, 367 (1926).
' Note by D. M. Dennison at the end of a paper by Meyer and Levin, Phys. Rev, 34,

44 (1929). L. Mensing, Zeits. f. Physik 36, 814 (1926),
' E. Fues, Ann. d. Physik 81, 281 (1926)."The reason for this can be seen quite simply by considering the case of Po& in the fol-

lowing fashion. The wave functions are those of an harmonic oscillator made slightly asym-
metrical by the anharmonicity of the potential function, The integrand of (0~ is composed of
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p1

53 23 3a2+ p// —ai' —27aia2+ 10a3 + p"' —ai' ——
4 8 2
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It turns out that because the expressions for P„are even or odd in 0,
it is necessary to carry the perturbation process two steps farther for each
new term in 8 added to P„, a behavior very like that found by Fues for the
energy levels.

The frequency ratios which are necessary to calculate the intensity ratios
(see Eq. (1)) are given by v»/v„—2(1 —x) and v,~/v„—3 and the formula for
x (which is the coefficient of the quadratic term in the vibrational energy level
formula) as given by Fues' or Kemble~ is x= 3k[5aP/4 a2]/1—67r'+,I, so that
the intensity ratios are given by

np2 8' 103 51
(sl + v")' + e' si' ——si's2 + 10sl&3

2 8 2
culpa

-3a,2+ 4a,
g4 + I I

npi 8 8 3
(10)

The derivation of the formulas for Ppl, Pp2 and Pp3 using t:he wave func-
tions derived by Morse is similar to the calculation of Pp2 given in reference
2, with the exception that the terms in p// and p"' require evaluation of inte-
grals of the type fe "*x~ ' '(log x) "dx. This offers no difficulty as they can
be obtained by (n —1)-fold differentiation with respect to i of the formula for
the integral with n = 1. Since we are using only small quantum numbers and
since k = 1/x»1 it is possible to expand the logarithms and radicals appearing
in the expressions for P„"in terms of 1/k = x. This simplifies these expres-
sions considerably.

~p3

P'()"'' 1 5")1+x —+
are 2 2a~e

p
/ — // // 3 /I/

1 — +x —+
Pe X3/2 2 1/2 3P P

I I /

1 —-- +
ate 3 2a're 2a fe

(13)

the product of two wave functions both of which are nearly even functions, and of & which is
an odd function, so that the integrand as a whole is nearly odd. Consequently in the integral
there is nearly complete cancellation, it being saved from vanishing only by the slight asym-
metry of the wave functions. Now $ is a first order small quantity to begin with, because for
low quantum numbers the wave functions are appreciable only for a small range of & about
$ =0, so $02 ls a second order small quantity. On the other hand the integrand of &OP is nearly
even, all three factors being nearly even, so that there is no cancellation, but, since P isa sec-
ond order small quantity, the value of &OP is of the second order too, and therefore of the
same order of magnitude as $02.

» Unfortunately in reference 2, Eq. {13) was incorrectly printed. The factor A,A 2k'
should be replaced by f{k—2}(k—5}/2a']'/'.
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From these the intensity ratios can be calculated at once.

0!0]

=x 1 —— +x 1+ — — —— + (14)

O01

0'03 3p p= 2x' 1 — +
2ar, 2a'r, ' (15)

Ke are now in a position to compare the intensity ratio formulas given
by the perturbation method with those given by Morse. This is best done
by expanding Morse's potential function in powers of $ about )=0 giving

7 1
U = Da2re ( are( + a re $ a re $

12 4

There are only two assignable constants in this expression, D and a, whereas
in Eq. (5) all the terms have arbitrary coeIIicients. That is to say there are
certain relations connecting the coefficients of all the higher terms in Morse s
potential with that of the first term. Now if we impose these relations on the
coeflicients ai, a& and o& in Eqs. (9) and (10), we find that we get exactly Eqs.
(14) and (15), so that any numerical differences in the values of intensities
calculated by these two methods would be entirely due to slight differences
between the potential functions assumed and not to any difference in the
mathematical analysis. It has been pointed out by Fues' ' that since
the harmonic oscillator has no continuous spectrum and since the
perturbing terms in the energy go to infinity for large values of $, intensity
calculations based on this perturbation procedure are not to be relied upon.
The identity of the two analyses shown here, however, proves that for low
quantum numbers and to the approximations used, the absence of a contin-
uous spectrum in the perturbation analysis has no effect upon the intensities.

A word should be said about the relative accuracy of the two methods.
Although for accurate calculations the perturbation method is more precise
than Morse' s, because the potential function assumed can be fitted to any
given molecule more accurately, nevertheless, for first approximations Morse' s
formulas are to be preferred. The reason is that the first term in Eq. (9) takes
into account only the first perturbing term in the potential function, whereas
the first term in Eq. (14) contains contributions from higher terms in the
potential function as well. In other words Morse's intensity formula conver-
ges the more rapidly of the two, so that its first term is a better approximation
than that of the perturbation formula. " For HC1, the numerical difference
between the two second approximations is considerably less than the experi-
mental error of the observed intensities. For gases like CO and NO where s
is materially smaller than for HC1, the difference is very small even for the
first order terms.

"Of course perturbation methods could be applied to Morse's wave functions to obta1n a
more accurate intensity formula, but there is no need of this here in view of the relatively
large experimental error.
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PART II
Ke are now ready to turn to a consideration of the numerical values for

HC1. Unfortunately there are no accurate data on the intensities of vibration-
rotation bands for any other diatomic molecule, as data from imperfectly
resolved bands observed with only one tube length or only one pressure are
not in the least reliable for intensity measurements.

I have measured the intensity of several lines in the harmonic band of
HCl' and shown that the observed ratio of the intensity of that band to the
intensity of the fundamental band as observed by Bourgin" is 0.0161. The
probable error of this ratio depends on the probable error of the measured
intensities of both bands. The probable error of the harmonic is given (re-
ference 2, p. 445) as 6 percent and Bourgin gives 25 percent as the "precision
limits" of his measurements. Interpreting "precision limits" as a figure which
the true error is unlikely to exceed, or that there is, say, but one chance in

ten of the true error being greater than 25 percent, the probable error for the
fundamental turns out to be 10 percent. '4 The probable error of the ratio is
given by the square-root of the sum of the squares of the separate errors, "
which is 12 percent. Thus we have for the observed value of the intensity
ratio

= 0.0161 + 0.0019. (17)

al = —2.34

Dennison, 9 on the basis of observations of Meyer and Levin, has estimated
the ratio of these intensities as 0.021+0.004, which agrees, within the limits
of error, with the value just given. Dennison s estimate, however, is based
on the measurements of one or at most two tube-lengths and so cannot be
considered to be as accurate as the value given in Eq. (17).

To compare this value with the theoretical expressions for intensity it is
necessary to substitute in Eqs. (9) or (14) the values of the measurable con-
stants of HC1. Meyer and Levin' have recently published the results of new
measurements of the wave-lengths of the HC1 bands under higher dispersion
than had previously been obtained and Colby" has derived the values of the
various molecular constants from their data. These values dier appreciably
from the constants used in reference 2. They are:"

I,= 2.613X 10 40 gm cm' a = 1.710

o), =2988.7 cm '

x = 0.01725 a~ = 3.62

r, =1.276X10 ' cm
8' =0.00709

a3 = —2.60

"D.C. Bourgin, Phys. Rev. 29, 794 (1927).
"R.T, Birge, Phys. Rev. Supp. 1, 1 (1929), esp. p. 4.
"%.F. Colby, Phys. Rev. 34, 53 (1929)."The values given are obtained by averaging the results for the two isotope components

which is sufficiently accurate for our purposes. The value of ~ has been obtained by using
the value of a'r, '/4 (i.e. the value of a3 according to Morse's analysis, cf. Eq. (16)). az is a small
term occurring only in a second order correction so that a more precise evaluation is not nec-
essary.
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Substituting these values in Eqs. (9) and (14) we have:

= (0.0194 —0.0166p" + 0.00355p"'-')
(Pert) (18)

( —0.0015 + 0.0008p" + 0.00026p'"—

0.000147p"' —0.000414p"' + 0.000177p"'p" . )

= (0.0173 —0.0159p" + 0.00364p"')
(Morse) (19)

(+ 0.0003 + + 0.00025p"'—

0.000143p"3 —0.000376p'" + 0.000173p"'p")

In Eqs. (18) and (19) the two terms in 8 appearing in Eqs. (9) and (14) have
been kept separate to show that the formula from Morse's analysis converges
more rapidly than the other so that its erst term may be considered a better
approximation than that of Eq. (9). If the two terms are combined, itis
easy to see that the difference between the two second approximations cannot
be greater than 2 percent, as none of the major terms diA'er by more than that
amount.

In these equations the only unknowns are p" and p'". Unfortunately we
cannot evaluate both of these constants from one equation, as the method of
successive approximations would not yield very significant results for p"' in
view of the relatively large experimental error. Consequently we shall use
only the first terms and solve only for p". Now, as we have seen, if we are
going to use only the First term, Eq. (19) is more accurate than Eq. (18) so
that we shall use the former in calculating p", which gives us:

0.066 + 0. 13

4.30 + 0.13
(2o)

there being two values because the first term of Eq. (19) is quadratic in p".
Now p" =p,"/p, ' and, for a known value of p, ' determines p,". Using the
value of P, ' found by Bourgin" (P, ' =1 06X 10 "e.s.u. ) we have for p„"

0.070 && 10 "
e.s. u.

4.56 X 10 's (21)

p," is the coefFicient of the quadratic term in the expansion of p($) about
$ = 0 and consequently is a measure of the "curvature" of the electric moment
at that point.

The fact that one of the values of P," is zero (within experimental error)
shows why in my previous paper on this subject' a calculation of the intensity
ratio assuming a linear electric moment gave results in good agreement with
the observed value. This correspondence, however, cannot be used to show
that p,"is negligible because we have just seen that a value of p,"which is a
good sized positive quantity (a negative quantity if p„ is negative) also gives
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the correct value for the intensity ratio, and there is no way, using only inten-
sity data, to distinguish between these two values of p, ".

A similar ambiguity arises in the case of p, where, because of the quad-
ratic dependence of the intensity on the electric moment, it is not possible to
determine the sign of P, from intensity measurements alone. This ambiguity
in the sign of P, ' leads to a sort of double ambiguity in P," because a change
of sign of p, ' changes the sign of p, "as determined from Eq. (20). This, of
course, does not affect that value of p."which is practically zero, but the
other greater value may apparently have either sign depending on that of p, '.

It has always been assumed that the electric moment of HC1 is linear and
that p, is positive in the region about the equilibrium point. These were
natural assumptions when HC1 was supposed to dissociate into ions, but in
recent years, it has been shown that HCl probably dissociates adiabatically
into neutral atoms, "which means that at least for large values of r, the elec-
tric moment decreases with increasing nuclear separation. This surely means
that the curvature of the electric moment is appreciable somewhere, and
there is no reason why it should be negligible at the equilibrium point, so
that we cannot rule out the larger value of p,"until there is more detailed
information on the form of p as a function of r. As far as the sign of p, ' is
concerned, it is probably positive. The position of the hydrogen nucleus when
at equilibrium, is generally considered to be inside the 3f shell of the chlorine
atom and so we may assume that its distorting inhuence on the chlorine
atom, and consequently the electric moment of the molecule, is not at its
greatest, and hence p is still increasing with r." This is a very rough sort of
reasoning but owing to our complete ignorance about the detailed processes
responsible for setting up electric moments in molecules with atomic binding,
it is the only sort of reasoning that we can apply to the data at present.

V. Kondratjew, Zeits. f. Physik 48, 583 {1928);R. Samuel, Zeits. f. Physik 49, 95 (1928);
F. London, Zeits. f. Physik 45, 455 (2928) esp. p. 472 et seq. ; Franck und Kuhn, Zeits. f. Physik
43, 164 {1927)esp. p. 169.

"Assuming that the electric moment at r. is near its maximum and has a positive slope,
the most probable value of p,"is the small one (nearly zero) because the other implies a large
positive curvature which is impossible in the neighborhood of a maximum, However the as-

sump ion that r, is near the maximum is too questionable to warrant definite predictions and
the whole matter may be complicated by subsidiary maxima in the electric moment for values
of r less than r „.


