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ABSTRACT

A general solution is developed for the motion of electrons in the potential field

of the nuclei in a crystal lattice. As usual the energy interaction terms due to nuclear
vibration and to the presence of other electrons are neglected; they are to be included
later by approximation methods.

It is shown for low energies the wave function becomes a linear combination of
the atomic wave'functions, the allowed energies approximating the discrete atomic
levels; and for high energies the wave function approaches that of the free electron,
with the allowed energies a nearly continuous range. However, for electrons coming
into the crystal from outside, the crystal becomes impenetrable for those electronic
wave-lengths and directions analogous to the beams producing Bragg and Laue beams
in x-rays.

The solution is computed for a simple form of potential lattice, and the results
are shown to be in quantitative agreement with the experimental results of Davisson
and Germer. The phenomenon they call anomalous dispersion is shown to be a natu-
ral consequence of the characteristics of the wave function.

INTRODUCTION

HE problem of determining the behavior of electrons in crystals
has applications in several types of phenomena: in the scattering of

electrons from metal surfaces, instanced by the experiments of Davisson
and Germer, I of G. P. Thomson and others; and in the behavior of metallic
conductors.

The first problem in the study of the theory of any of these phenomena
is the study of a single electron in a crystal lattice made up of atomic nuclei
fixed at their equilibrium centers. The perturbation terms due to nuclear
vibration and to the presence of other electrons must then be dealt with by
approximation methods.

The simplest possible assumption for the unperturbed electron is that
used by Sommerfeld, ' the wave function being approximately like that of a
field-free electron:

P (H) = 1V exp i(H)"'(ax+ by + cs)

where W is Ss'p/b' times the electronic kinetic energy inside the crystal,
and a, b and c are the direction cosines of the electronic motion. This type

' This work was begun under the supervision of Dr. Davisson, at the Bell Telephone
Laboratories. The writer wishes to express his appreciation of the help the Laboratories in

general, and Drs. Davisson and Germer in particular, have given him. He also has obtained
many helpful suggestions from Professor E. signer.

' Sommerfeld, Zeits. f. Physik 4V, 1, (1928).
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of wave function is most nearly correct for the most loosely bound electrons,
but is not su%ciently correct, even for them, to explain the experiments of
Davisson and Germer.

The other type of approximation is to consider the electron behavior as
primarily determined by the electric fields of the crystal nuclei. Since the
potential wall between the atoms is not infinite, there is a finite probability
of an electron belonging originally to one nudeus to change to any other
nucleus. This means that in equilibrium the wave function for the electrons
in the crystal will be any one of the large number of linear combinations of
terms, each term representing the electron in the nth quantum state about
the sth nucleus. This is an example of equivalence degeneracy similar to
the simple case of the hydrogen molecular ion, and as a result the energy
level corresponding to the nth quantum state of a free atom will be split
into a large number of very slightly separated levels; in fact, if the crystal is
considered infinite in extent, the levels of the free atom will be spread into
bands of allowed energies which may or may not be separated from their
neighbors by bands of forbidden energies. Of course the wave functions for
the electron will be somewhat modified by this proximity of other nuclei,
and Bloch' has used a wave function which becomes, for an infinitely large
crystal:

P.(E) = 1V, exp i( Vt)""-(ax+ by + cs) N(W. )

where 8 is a function of lV and lV„, and u is a linear combination of wave
functions representing the electron about the various nuclei with an energy
W..

This assumption is fairly good for the more tightly bound electrons, ie
the inner orbits, but for the loosely bound ones, the ones contributing most
to the electric conductivity, the field due to the nucleus is so greatly distorted
by the neighboring atoms that the undisturbed atomic functions are not
particularly good approximations.

At any rate, whatever the potential function happens to be, it can always
be represented by the three dimensional Fourier series of the type

h2 00

V = — g .1~ „exp i(lnx + mPy + cps)
Q 2 t, m, n=—~

where n, P, y=2s. /(d„d„, d, ), where the d's are the lengths of sides of the
unit lattice cell in the x, y and s directions respectively. The A's are chosen
so that Vis real and Appp =0. This series is applicable to the cubic, tetragonal
and orthorhombic systems of lattices, and the generalization to the other
systems is obvious. The wave function for such a potential will be obtained,
and its properties investigated, in this paper.

Heisenberg, Zeits. f. Physik 49, 619 (1928}.A very good resume of the subject is given by
Sla,ter, Phys. Rev. 35, 509 (1930}.

4 Bloch, Zeits, f. Physik 52, 555 (1928}.
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THE %AVE FUNCTION

A somewhat less general, but considerably simpler form of potential
function

h' 00 00

g&2g eilaz + gp2+ pimp@ + g~2g eieyz
Q f@= oo A=—oo

will first be considered. The crystal will at first be considered as infinite

in extent, and the average potential as zero, so that A p=A„p=A p=o.
If the electronic energy is k'W/Ss'p then the Schroedinger equation which

must be satisfied can be separated into three equations of the type

""+ Wn'+o, ' A, t." ' " =0
l

where W,o.'+W„P'+W.y'= W. The complete wave function is 4'= (x)
II(y) D(s), where the equations for H and 0 are similar to Eq. (4).

The independent variables are now changed to $, il, I =nx, py, ys and then

all three equations have the form
""+ (W, + QA, ie"&) = 0. (fi)

The solution of this equation was given by Hill, ' and is

. = cV e'"* $ Qb„(k,) e"&

where k, and the b's are to be determined. k, is given by the equation

sin' irk, = sin' ir(W,)'i' (0)

where C3(0) is the infinite determinant

—A, , g
—A, 3

—A, , 4

1 —W, 1 —W, 1 —W, 1 —W 1 —W

—A —A, , I

—A, , 2

I —W

4

4 —W 4 —W,

—A, , i

1 —IV

—Ag, I

—W

4 —W 4 —W,

—W

—A, i

1 —W,

—A

—W

1 —W,

4 —W,
A g 5

—A, , 4
—A, —A A z,—

9 —W 9 —W, 9 —W, 9 —W 9 —W,

Equations similar to those considered here were discussed by Bethe, Ann. d. Physik
SV, 55 {1928), but no solution was obtained, Peierls, Ann. d. Physik 4, 121 {1930) gets an
approximate solution, Strutt, Ann. d. Physik 86, 319 (1928) discussed a one-dimensional case.

6 Hill, Acta RIathematica 8, 1 (1886).
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This determinant can be expanded into a convergent series of the form

(0) 1 (C11A 2:1 ClsA xl + ClsA zl )
—(CssAX2''')' ''
+ (C121A zlA x2 ClssA zlA zs + ' )
—(CsssA', sA, s ) +
+ (C&sssA, sA, sA, s ) +

The values of some of the C's as functions of W, are given in Fig. (1).' When
the series of A 's converge at least as rapidly as A„=1/2", this expansion

Csts

Cst

c~IQ

Css

Css

s2J Q

Css

-20

-40

0 4.0

Fig. 1. Values of some of the coefficients in the expansion of Q (0).

is accurate to one part in a thousand if only the terms written above are
used ~

The b's are obtained by solving the equations

[(k + r)s —W jb, i gA ~sb*r s= 0, —
l=-co

where r can have any integral value from plus to minus infinity.

' The writer is very much indebted to Mr. B. L. Snavely for computing the values of a
number of the functions discussed in this paper,
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A generalizationof Hill's arguments shows that a solution of the Schroe-
dinger equation using the general potential function given in Eq. (2) will
be of the form

p = X exp i(z,x + ~„y + x,z) +B„„expi(rnx + spy + tyz) (10)

where the relations between the ~'s are given by the equation

S(g„~„,~, ; iz, P, y) = S(aW"', bW'", cW'"; a, P, y) (0,0, 0, )

where M(0, 0, 0,) is a determinant similar to C](0). The function

2/ex+ 2mPy+ 2npz —x' —y' —z'
S(*,y, ', , P, ~) =("+y'+") lI'

l, m, n=—oa- l'n' + m'P~ + n'y2

where the infinite product does not include the term for which /=m=n=(},
and u, b and c are the direction cosines which the electronic motion would
have if all the A's were zero. For a two-dimensional case S(x, y; n, p) is
the product of the elliptic functions H(x+iy) H(x iy), w—here the periods
of these functions are Z=n/2 and X'=p/2. For the one-dimensional case
discussed by Hill, S(x; n) is sin (xx/n) as given in Eq. (7). The B's are given
by the equations

[(~, + ra)' + (~„+ sP)' + (~, + ty)' —W]B„, , + QA ( „B„.. . „=0.
l, m, n

Expression (10) is of natural form; that of a free electron whose direction
cosines of motion are proportional to K„Ky and z„multiplied by a function
representing the distortion of the wave function due to the periodic variation
of the potential function. For low energies this distorting function will be
a Fourier expansion of one of the linear combinations of atomic wave func-
tions discussed earlier. In this case Eq. (9) is the form used by Bloch.

One property of (9) must be emphasized, however. The coefficients
z„x„, z„ in the "field-free-electron" factor are not equal to W'~'(a, b, c)
as they would be if the A's all equalled zero, as for Eq. (1). For values of
a(W)"' near /n/2, or b(W)"' near mP/2, or c(W)"' near ny/2 (i.e. , near the
singular points of the determinant or near the maximum points of the
function S) the s's differ considerably from the values (W)"'(a, b, c), and
for certain ranges become complex.

In crystals of infinite extent, the values of S' and a, b and c for which
any of the x's become complex are not allowed; for in these cases the wave
f'unction contains a real exponential factor which becomes infinite at plus
or minus infinity. Even in the case of finite crystals, it is seen that the
amplitude of wave functions for which a flf: becomes complex is negligible in
the interior of the crystal. Thus for crystals of size greater than, say, a
thousand atoms along a side, electrons with energies for which a z is com-
plex are not present inside the crystal.
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This means that the periodic variation of potential inside the crystal
creates bands of forbidden energies inside the crystal, even for electronic
energies greater than the maximum potential energy, a somewhat surprising
result. However, this only means that when electrons outside a crystal have
energies such that their wave-number components are integral multiples of
the reciprocal lattice spacing, they are reflected strongly back at the surface
of the crystal. That this is true experimentally has been shown by Davisson
and Germer.

These bands of forbidden energies are very wide for low energies, but
become very narrow for higher energies. In other words, the allowed bands
of energy are very narrow for low energies, corresponding quite closely
to the atomic levels; but for energies larger than the maximum potential
energy nearly every energy is a11owed. Thus the general solution shows a
gradual transition from purely atomic states to states of the free electron,
as general considerations have shown it should.

A SIMPLE EXAMPLE

It will be of interest to examine in detail the solution for a very simple
form of potential variation. The form

h'
V = ——[2n'2, cos ux + 2P'A „cosPy + 2y'A, cos ys]

Sx'p,
(12)

is not a particularly good approximation to the lattice field, but its solution
is not too difficult, and the quantitative check of the computed results with
experiment leads one to believe that it is not too bad an approximation when
dealing with electrons of high energy. It is, of course, a very poor approxima-
tion for the low energy, "bound" electrons, and care should be used in apply-
ing its results.

The three Schroedinger equations which must be solved are Matthieu
equations

-" + (W, + Ae'& + Ae '&). = 0. (13)

The solution is the generalized Matthieu function, ' of the form given in
Eq. (6), where the values of k, are given by Eq. (7) when A, &

——A, ~
——A,

and A „=A, =0, for n greater than unity, in the determinant W(0).
The values of k,' as a function of A and W, are shown by means of the

contour map in Fig. 2. The shaded areas are the values of A and W, where
k, is complex. It is to be noticed that these areas are larger the larger A is,
and are smaller the larger W is. The area included between the diagonal
dotted lines radiating from A = W =0 represents the values of W. less than
the maximum and greater than the minimum potential energy. The values
of the contours for k ' are equal to the values of W, when A =0, as would be
expected. The narrowing of the unshaded bands of energy as A increases

8 E. C. G. Poole, Proc. Lond. Math. Soc. 20, 374 (1921); B. var: der Pol and M. J. 0.
Strutt, Phil. Mag. 5, 18 (1928).
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f m the continuous allowed leveevels when A =0illustrates the transition rom e
to the discrete levels when A is infinite.
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The diR'erence between lV, and the real values of k for a given value of
A can be given by considering W as a function of k and defining

j,(k,) = W, (k,) —k,'.
Values of f. for real values of k, are given in Fig. 4 for a particular value of A.

The value of A will be chosen to be 1/4 for the calculations below, since
for this value, and for a lattice spacing of 3 5 Angstrom units, the diR'erence
between the maximum and minimum potential energy in the crystal will be
about 36 electron volts, a reasonable variation.

0.3

0.2

O. 1

-0.2

030 0.5 i.o f.5 2.0 2, 5 3.0

Fig. 4. Values of f{k ) for real values of k„ for A =1/4.

The Fourier coefficients, b, „(k,), can next be computed by means of
Eq. (9), which in this special case can be transformed into one or the other
of the following continued fractions

b,s, r+1
r

b,„A
b„,„1

5

5, g—

A'

S„+l—

A'

~ ~ ~S„

A'

S„+2—

(16)

' E. C. G. Poole, Prop, Load, )8gth. Soe. 20, 382 (1921).
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where 5, = (k,+r)' —W, . Values of b,„are computed in terms of b, o and the
value of b,o adjusted so that g„b,„'=I, for normalization purposes. Values
of the b's for A = 1/4 for various real values of k, are shown in Fig. 5.

It can be shown in general, by symmetry arguments, that when k =n/2
(n an integer) b, „=+b„„,. In intermediate cases, as is seen in the curves,
b, o is very much larger numerically than any of the other b's.

1.0
bo

0.5

b s
'i b.s

b t

0.5 i.0 1.5 Z.O 2.5

Fig. 5. Values of the Fourier coefficients b;(0,) for real values of k„ for 3 =1/4. Coeffi-
cients not shown in this 6gure are negligibly small.

SCATTERING FROM CRYSTAL SURFACES

Thus for this simple case it is possible to obtain an exact solution for
the motion of electrons inside a potential lattice. Let us see how nearly these
results check with experiments with electrons of high energies.

Such experiments have been chieHy concerned with the scattering of
electrons from the surface of a crystal. A simple model of this experiment
would be a plane electron wave of kinetic energy k'E/87r'p outside the
crystal. If the potential outside is zero, that inside will be k' Vo/8s'p plus the
V given in Eq. (12), since the average potential inside the crystal is less than
that outside. The values of the W's used will then be such that W n'+ W„P'
+TV,y'= lV =E+ Vo.

The wave function inside the crystal (positive values of x) will be given
by the product of three factors similar to Eq. (6). Then, since the wave
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function must be continuous in value and normal gradient at the crystal
surface, the wave function outside must be

0'p = g C~~ exp i[ [E —(k + m)'P' —(k, + n)'y']'~'x

+ (k„+ m)Py + (k, + 22)yz}
(&8)

+ P D~~ exp i [
—[E —(k + m)'P' —(k, + 22)'y']"' x

+ (k„+ m)Py + (k, + 22)ys}

where the C terms represent beams impinging on the surface and the D terms
represent beams coming from the surface. But to fit the case we were con-
sidering, where there was only one incident beam with the direction cosines
a, b and c, we must make all the C's equal to zero except, say, Cpp, and then
make bpE=k„'P' and cpZ=8, 2p2. To do this we must introduce other internal
beams, due to the secondary internal rejections from the surface.

Then the complete wave function inside the crystal is

QF„exp i [k,(rs)nx + (k„+ r)Py + (k, + s)&s]

QB1„„(rs) exp i(lns: + mPy + 22ys)
l, m, n

where B1 „(rs) =b,1(k,(rs)) b„(k„+r) b, „(k,+s), and where Fpp, the
coef6cient of the primary internal beam, can be taken as unity. The value
of k, (rs) is determined by the value of W, (rs), where

npW, (rs) = E+ Vp —(k„+ r)'P' —(k„+ s)2yp —P'f„(k„+ r) —&pf, (k, + s).

No negative value of k, is included, since the other boundary of the crystal
is considered as being at x equals positive infinity, and no beams rejected
from its surface are present.

The 1ntensity of these secondary internal rays is determined by ~F„„~
and will be shown to be small compared to

~
Fp2 ~2. Since also the B's decrease

rapidly (except for special cases considered later) for increasing i, m, n, to a
good approximation we can neglect all except the B„,(rs) for every beam ex-
cept the primary one, where r = s =0.

Then the boundary conditions determining the relative magnitudes of
the D's and I"s for all C's equal to zero except Cpp are, approximately

& + Dpp = QB1pp(00)

(20)P (k + 1)nB1p2(00)

C —Dpp ——

(B k 2P2 k 2y2)1/2

for the incident and primary rejected and refracted beams. Here C = Cpp

and k, =k, (00) for brevity. Also
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D Q [Bl (00) + F Bipp (rs) ]

Q [(k + l) BI„(00)+ F„(k,(rs) + l) BIpp (rs) ] n (21)
—Drs (B (k + r)2P2 (k + $)2+2) I/2

for the secondary beams outside and inside, since all the other C's are zero.
These equations will hold to a good approximation except in the special

cases when F„he come sof the same order of magnitude as Fpp (this can only
haPPen when BI„,(00) is of the same order as Bppp(00), and then not neces-
sarily). In this case the D's other than D„will be small anyhow, and the
resulting inaccuracy in the determination of the reHected intensities will

be small even in this special case.
Then the ratio between the incident current of electrons and the regularly

reHected current is

BOO
P[(a(B)»2/n) —k, —r]b.,(k,) '

Q[(a(E)I/2/n) + k, + s]b,.(k,)
(22)

When k, is not near half integral values, it is nearly equal to (ape+ Up)"'/n,
and b 0 is the only not-negligible b, . Then the formula reduces to

D 2 a(B)1/2 (a2B + U ) I/2 2

a(B)1/2 + (a2B + U ) I/2

which is the intensity of reHection when A =0. That is, except for special
values of k, the crystal behaves as though it were a hollow of uniform
potential —kpUp/82rp/I with no periodic potential variation at all.

When k, =/2/2, however, we have seen that b, , = + b, , „, and substitut-
ing —(s+n) for r in Eq. (22) it is seen that

Boo
+g [(aE""/n) + (/I/2) + s] b„

g [(aE, / / I)2+n(2//2) + s] b.,

For the complex values of k*, ~lDpp/C'~ =1, but there is a change of phase on
reHection. That is, the crystal is perfectly reHecting for every value of
electronic energy and direction of incidence which has a value of 8; for which
k, is a half integer or is complex. These values of lV, for any value of A are
represented by the shaded areas in Fig. 2.

Of course in an actual crystal the reHected intensity for these values of
S' will be considerably less than unity, because a number of electrons will
interact with the crystal atoms as they traverse the lattice. In any case,
however, the maximum reHection intensity will be for values of W some-
where within the shaded areas in Fig. 2, and can be represented by the
equation
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lV.„= (n'/4) + G„(A)

132i

(23)

where G is a small quantity compared to 1/4, except for the ca,se n =1.
When the incident electron stream is normal to the crystal surface,

W„=f„(0) and W, f.(0), since k„and k, must both equal zero. Equation
(18) reduces to

where V„= V0 —P'f„(0) —p2f. (0), which is larger than Vo since the f(0)'s
are negative quantities.

In this case the relative intensity of the rejected beam will be a maximum
when

E„= (e'n'/4) + n' G(A) —V„

from Eq. (23). The ideal curve for a typical case is given in Fig. 6. In the
actual case, as was previously pointed out, the maxima are less than unity
and probably decrease in height for increasing n, since the peaks are nar-
rower and the chance of losing energy is greater. The experimental curves
of Davisson and Germer" for nearly normal incidence show just such char-
acteristics.
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0.2
I

0.6 1.0 1.2

Fig. 6. Relative intensity of the regularly reflected beam as a function of the electronic
wave number. The incident beam is normal to the 111surface of a nickel crystal. L~nes marked
1st order, etc. , indicate positions of strong x-ray reflection for the same crystal.

There will also be the other scattered beams represented by the co-
eScients D „in Eq. (19)whose direction cosineswill be (8 m'P' n—'y')"'/—8"'
mP/Z"' and ny/Z", whose relative intensities will vary with E, but will in
general be much smaller than unity.

For an obliquely incident beam whose plane of incidence is parallel to
the s axis we have

gI[2. sin g
IV a' = E cos' 8 + V —P'f

P

'0 Davisson and Germer, Proc. Nat. Acad. Sci. 14, 622 (1928).
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where V, = VD —y'f, (0) is larger than Vo but smaller than V~, and where
8 is the angle of incidence.

The values of 8 and E for a regularly reflected beam of maximum intensity
will be such that

W,„a' = (n'a'/4) + a'G„(A)

similarly to Eq. (23). Substitution in the equation for fVv,n gives

(E„)'~' sin e„
E cos' 8„= (n, 'a'/4) —V„+P'f„

P
(25)

where V = V —~'G, and where E and 0 signify the values of 8 and 0
for maximum regular reflection. Since the quantity f„is small for most values
of its argument (see Fig. 4) we see that the wave-length l/E„"' plotted
against cos 8 gives in general a straight line going through the origin.
However since f„ is large and discontinuous for values of E and 8 near
where

E„"'sin 8„=mP/2 (26)

f4

&m=(~.)
f.o

gl
0.5 0.7 0.5 0.9 i.o

COS em

Fig. 7. Values of electronic wave number and angle of incidence of electron beam for
strong regularly reHected beam. The crystal is nickel, the surface the 111plane. Broken lines
indicate positions of analogous x-ray reHection.

0.60 4 0.$

"The analysis here has been for the case when the crystal surface is the 1pp plane, per
pendicular to a crystal axis. In the experiments of Davisson and Germer, the crystal surface
was the 111 plane, oblique to the crystal axes. In this case, both f and f„vary, and although
the discontinuities are of the same character as that given above, their shape is more compli-
cated. Eqs. (25) and {26) still hold, however, if a and P are now considered as the distance
between atom planes parallel and perpendicular to the surface, respectively, and 4(F &sin

8„/p), a function of f and f„, be substituted for f„ in Eq. (25). F'ig. 7 has been computed by
means of these revised equations.

the curve deviates from a straight line near these values, and is discontinuous.
A curve of f/E '" against cos e„ for values of n, P and A corresponding to
a nickel crystal is shown in Fig. 7."
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%hen the experimental curves'"- for this case are studied it is seen that
not only is the general form of the curves similar, discontinuities and all,
but that the positions of the discontinuities correspond. The shape of the
curves near the discontinuities does not fit exactly, but if a better approxima-
tion to the actual potential function were used in the calculations, the cor-
respondence would probably be better.

The physical explanation of these discontinuities is that for E sin
= m'P'/4 there is resonance, and therefore strong damping, in the y direction,
and nearly all the electrons are reflected back in a direction exactly opposite
to the incident beam, leaving none to be regularly reflected. This phenome-
non was given the tentative name of "anomalous dispersion" by Davisson and
Germer, and in a way this term is correct, for it is due to a simultaneous
resonance of the x and y components of the electronic wave number, and a
consequent damping out of the wave function in the interior of the crystal.

The other scattered beams in the x, y plane come o6 at angles p„, where

sin g = sin 8 + mP/E'j'.

It can be seen from Eq. (21) that their relative intensities will be

D„, b„(E"' sin 8)
X

b„o(E"' sin 8)

Q„(k,' + s —k, —r) b.,(k,) b(k, ')

(27)

I

2

E cos'0

~here k, ' is the k,(mo) of the beam reflected back into the crystal at the
surface, and is a function of the energy TV, ', where

These secondary internal beams will make a slight change in the magni-
tude of the primary internal beam, but this can be neglected. The quantity
fj„ is only large when E"' sin 9 is near the value —m/2, corresponding to
reinforcement due to the y, s planes of atoms, and, when E and 0 also satisfy
Eq. (23), corresponding to the case of "anomalous dispersion" of the regularly
reflected beam. The quantity ~D o/C ~' also shows other maxima analogous
to the various Laue beams in x-ray scattering.

CONCLUSION

Thus it has been seen that for high energy electrons even the simple
potential function used above gives results in good accordance with experi-
ment. This accordance becomes less and less good as we consider electrons
with less and less energy, and the results probably do not fit at all for the

'2 Davisson and Germer, Proc. Nat. Acad. Sci. 14, 624 (1928). Later (unpublished) curves
shoes a more complete agreement.
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tightly bound electrons in the inner atomic shells, where the allowed energies
are narrow bands very slightly different from the simple discrete atomic
levels. For these electrons, also, the interaction between electrons cannot
be neglected.

However for those electrons whose energy is greater than —&'Vo/Sn'p
it seems likely that the results of the simple case discussed above will be
indicative. So that while this simple case will not tell us anything about fer-
romagnetism, for instance, or of any other crystal property which depends
on the inner bound electrons, it may be of help in discussing those properties
which depend primarily on the high energy free electrons, such as electric
conductivity. Ke have seen that for the still higher energy electrons used in
scattering experiments, the agreement with experiment is very geod.

When the stationary states inside a crystal of finite size (say a rectangular
one whose edges are I-d, Md„, Xd, respectively, where I., 3f and N are in-

tegers) are considered, it is seen that the wave functions are

(2) 1/9

(L2d 2 + IrI2/i 2 + +2d 2)1/2

QB/„„(r s t) sin + f ax+ —+ rs Py+ + e ys
2M 2X

where the fractions rr///2L, sP/2M and ty/2E (r, s, t integers) replace the

variables K„Kr and /r„and where the B's are normalized so that/ „B/
=1. From this it can be seen that the distribution of electrons in terms of
r'n /I2', s'P'/M', Py'/M' is a normal Fermi one. But, since the energy is a
complicated function of these quantities, the electron distribution in energy
is different from that of the completely free electron.


