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ABsTRAcT

A potential barrier of the kind studied by Fowler and others may be represented

by the analytic function U (Eq. (1}). The Schrodinger equation associated to this
potential is soluble in terms of hypergeometric functions, and the coef6cient of re-

flection for electrons approaching the barrier with energy 8' is calculable {Eq. (15)).
The approximate formula,

f 4
1 —p =exp I

—
Jl (2m(v —w))"'dxI

h

is shown to agree very well with the exact formula when the width of the barrier is

great compared to the de Broglie wave-length of the incident electron, and g ( U a .

'HE "failure" of the law of conservation of energy in quantum dynamics,
as evidenced by the penetration of an electron through a region of space in

which its potential energy is greater than its total energy, has been advanced
as the explanation of several phenomena. Gamow, ' Gurney and Condon, '
and others have discussed it in relation to the Geiger-Nuttall law of the
radioactive decay constants; Fowler and Nordheim' in its relation to the
lowering of the thermionic work-function by surface impurities, and to the
emission of electrons from cold metals under the influence of strong fields.

The mathematical discussions in these papers have all been based either
on a potential function which has discontinuous derivatives, or else on ap-
proximate treatments involving asymptotic (i.e. , divergent) series. It
is therefore of some interest to note that there is an analytic function which

represents some of the types of potential barriers which have been discussed
and whose associated Schrodinger equation is soluble. This function is

V(x) = —Ag/(l —j) —8$/(1 —$)', $ = —exp (2sx/l), (1)

' G, Gamow, Zeits. f. Physik 51, 204 {1928).
~ R, %'. Gurney and E. U. Condon, Phys. Rev. 33, 127 (1929).
' R. H. Fowler, Proc. Roy. Soc. A122, 36 (1929), A117, 549 {1927). L. Nordheim, Zeits.

f. Physik 45, 833 (1928}.
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in which x is the cartesian coordinate, and A, 8, and l are constants. The
graphs of this function for various values of A and 8 are shown in Fig. 1.
It is seen to approach zero for large negative values of x and a constant value

Fig. 1. Graphs of tbe function V{x). The numbers on the curves are the values of B/A.

A for large positive values. The width of the transition region is, practically
speaking, 2/. When ~B

~

is greater than ~A
~

it possesses an extremum at

x„=—log [(B + A)/(B —A) ],
2~

whose height is
Y(x ) = V = (A + B)'/4B.

In the following, it will be assumed that 8~0 so that theextremum isa
maximum, when it exists at all.

The wave equation governing the dynamical problem of an electron mov-
ing under the action of this potential is

d'm Sx'm
+ {A$/(1 —$) + Bt/(1 —$)'+ W}e = 0 (3)

dx' h'

or if differentiation with respect to $ be indicated by an accent

2ml2
PN" + $u'+ {A$/(1 —$) + B$/(1 —$)'+ W}e = 0.

This equation4 is of the hypergeometric type, and its solutions may therefore
be written down at once in terms of the hypergeometric series

4 Special cases (A =0, and 8 =0) of this equation were discussed in the Colloquium at
Pasadena by Professor P. Epstein in 1925, the occasion being the work of Epstein and Robert-
son on the reHection of radio waves by the Heaviside layer.

F. Klein, Ueber die hypergeometrischen Reihen, (Gottingen, 1894) pp. 3-7. A. R.
Forsythe, Treatise on Differential Equations, {2~, one vol. ed. ) {New York, 1888) p. 185.
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a b a(a + 1) b(b + 1)
F(a, b, c, y) = 1+ y+ + 0 ~ ~

1 c 1 2 c(c + 1)

Before proceeding to study the exact solutions, it will be well to consider
their asymptotic behavior for very large positive and negative values of x.
In both cases, the potential is practically constant and therefore the solu-
tions should be monochromatic de Broglie waves to a first approximation.
For large negative values of x the wave-length will be X=b/(2mW)'/2,
for large positive values, X'=//i/(2m(W —A))'/2. It may be assumed that
S' A, since the interest in the other case is not very great. The solution
may be specified even more precisely if we confine ourselves to the case in

which the electrons are incident on the barrier from x = —. Then there
will be a single (transmitted) wave

exp (2xix/X') = (—&)'/i, P = I/X' (6)

for large positive values of x, and two waves (incident and reflected) for
large negative values of x:

ai exp (2xix/X) + a2 exp (—2 ix/xX) = ai( —$)' + aq( —f) ', 0/ = 1/X. (7)

As will be shown, the condition that the exact solution reduce approximately
to these values for large values of x, suSces to determine it uniquely, and
also to determine the constants ai and a2. The quantity p= ~a~/ai ~' is the
reHection coefficient, whose value is required for the applications mentioned
in the first paragraph.

In working with the hypergeometric series, Eq. (5), it must be borne in
mind that it converges only for ~y ~

& 1. It then appears that of the twenty-
four we11-known ways' in which solutions of the hypergeometric equation
can be expressed in terms of F(a, b, c, y), only eight converge for large
values of $ (x)1); of these only four approach (—$)'~ (the other four ap-
proaching ( —$) '~) when ~$ ~

increases indefinitely. The four solutions
approaching ( —$)'~ are only formally different, so that it suffices to study
any one of them; we single out the form

in which n and P have the values of Eqs. (6) and (7) and b is to be defined
immediately. If we define a quantity C by the relation (2mC)'/2=b/21,
it becomes possible to write

1(gT/C) i/2 P 1 [(PT g)/C]1/2

and the quantity Itl is then defined by

6 KIein, pp. 76—80; Forsythe, pp. 189—194.

(9a)
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C is the energy of an electron whose de Broglie wave-length is 21, the total
width of the region of variable potential.

The function u of Eq. (8) obviously approaches ( —() c for large values
of $, since F(a, b, c, o) = 1. Its value for very small values of $ cannot be deter-
mined at once, however, since the series F(a, b, c, 1) diverges. It is necessary
to have recourse to the so-called process of analytic extension, and to express
u in terms of series which do converge for small values of ~$ ~. The result
of the analytic extension of the hypergeometric series has been known,
practically speaking, since the times of Euler and Gauss; it is summarized
in the formula' for compounding two hypergeometric series:

y'(I —y)' F(a + b + c, a + b' + c, 1 + a —a', y)
= ib(c, c')(1 —y)'y'F(a+ b+ c, a+ b'+ c, 1+ c —c', 1 —y) (10)

+ i'(c', c)(1 —y)"y'F(a+ b + c', a + b' + c', 1 + C —c, 1 —y)

where

I'(1 + a —a')I'(c' —c)
g(c, c') =

P(1 —a' —b —c)F(—a' —b' —c)

This equation is an identity for those values of y for which all the series con-
verge, and may be used as a definition of F(a, b, c, y) for ~y ~

)1, ~1
—y ~

(1.
If we set y equal to 1/(1 —$), a= —a'= iP, b—= b'=-', +ib—, c= —c'=ia,
and

I'(I —2iP) r(+ 2ia)
G2

P[l+ (--~- )b] pl[+ ( -~+b)1

(12)

it reduces to

« = "(&/& —1)'.(1 —&)'&F [l + i( —a+ b),
—-'+ &( —0 —b) 1+ 2', 5!(f —1)]

+ "(~/»- 1)--(1-~)»[!+i(---i3+b),
—

2 + i( a —P ——b), 1 —2ia, $/($ —1)].

(13)

The two series on the right side of this equation converge when ~$/(( —1)
~

(1
hence certainly when ~» ~

(~. For very small values of ( the value of u may
be computed from this equation, and is seen to be exactly the expression of
Eq. (7) with ai and a& defined by Eqs. (12). Eqs. (8) and (13) thus define
the function u for all real values of x; it may readily be shown that it satis-
fies Eq. (4), and is finite, continuous, and possesses continuous derivatives

' Klein, pp. 88—91; Forsythe, pp. 194—201.
8 For it is a linear function of two of Kummer's twenty-four solutions (cf. reference 6).
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throughout this range. It is therefore the wave-function we are seeking, and
the coe%cient of reHection is hence

(14)

since ~r(2ia)/&( —2$a)
~

is obviously 1.
In the numerical evaluation of this formula the two cases, 6=real and

5 = imaginary, are to be distinguished. These two cases are separated by the
condition B= C; since B will in general be of the order of magnitude of W,
the case of a real 6 corresponds to a potential barrier whose region of inhomo-
geniety is wide compared to the wave-length of the incident electron (cf.
Eq. (9)) while an imaginary 8 corresponds to a narrow region of inhomo-

geniety.
If 6 is real, the arguments of all the gamma-functions have the form —,'+iv,

where v is real. It is known that'

and that

~

I'(u + iv)
~

= I'(u) exp [—P(u, v) ]

Hence

exp [P(s. , v)] = [cosh (xv) J"'.

cosh [v (b —P + n) ] cosh [v (8 + P —a) ]

cosh [v(5 —P —n)] cosh [v(b + tl + n) ]

cosh [2v(n —P)] + cosh [2vb]

cosh [2v(a + P)] + cosh [2v5]

(15)

If 6 is imaginary, both the numerator and denominator of Eq. (14) have
the form

with u=-,"+]5 ~. Now,

~
r(«+ fv)r(I —u+ iv)

~

exp [P(u, v) + P(1 —u, v) ] = [(cosh 2vv —cos 27ru)/'2 sin-" vu]'"

and hence

cosh [2x(n —P) ] + cos [2v i
6

i ]
cosh [2v.(n + P) J + cos [2v [ 6

) ]
(15a)

The two Eqs. (15) and (15a) are identical, if it be remembered that

cosh [2vb] = cos [2v
(

ft( ]

"The formulae regarding F(u+iv) which are used in the follawing are all to be found on

pp. 23—25 of N. Nielsen, Handbuch der gammafunktion, (Leipzig, 1906).
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when 6 is imaginary; the separate derivation of the two is necessary, however,
for

~

F(u +is)
~

is not an analytic function . The expressions for p are plotted
in Fig. 2 for 8 = 8A and various values of /.

W

Fig. 2 . Graphs of the re Rection coeAicient . The numbers are the values of A / C.

It is instructive to compare this expression for the reflection coe%cien t
with the values which have been obtained by other writers. If W & V
the expression

4
p = y exp ——

II 2m V —W ' "dx (16)

has been used, in which the integral is to be extended over al 1 values of x
for which V & W, and y 1 . It may be shown that this is a valid approxima-
tion to Eq. (15) when t is very large, C very small. In this case, n and P
become very large, so that

cosh [27r(a + P) ] —', exp [2m (a + P) ]

and 8 ~~(8/ C) ' ~'. Hence, approximately,

1 + exp [s (W'" —(W —A)"' —B"2)/C"']
P

1 + exp [s (W'" + (W —A)'" —8'")/C'"]

The argument of the exponential in the denominator of this expression is
very much greater than 1 when W» V, and very much less than
when W&& V . Hence

p = exp [—vr(W'" + (W —A)"' —3"')/C'"[

when 8' » V, and

(1 —p) = [ 1 —exp[ —2s, ((W —A)/C)"'] ]
exp [&(Wl/2 + (W A)1/2 21 12)1/1CI2]
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when S'&&V . When l is very large, therefore, p is practically zero if
8 & V and practically f if S'& V; these formulae are valid except when

~W —V
~

C. Comparing the second of Eqs. (17) with Eq. (16) it is seen
that the latter is verihed if

4~ ]

(2/g(l/' W)) &/2dg —s.(W&/2 + (W A) &/& —2l&/2)/( &/2

The integral on the left is readily evaluated by the method of residues, "
and does prove to be equal to the right side of the equation.

For very small values of 1 (C very large) cosh 2s 8 approaches —1 regard-
less of 8 and

so that

cosh 2s(~ + /Ii) = 1 + s 2[W~/2 y (W —A)~/2] 2/gC

p = [W'/' —(W —A)'/']'/[W'/' + (W —A)'"] '.

In this limit, therefore, all eEect of the maximum of potential function van-
ishes and the reAection coefFicient has the value characteristic of a rectan-
gular potential barrier of infinite width, "and height A.

For values of 8"very much larger than A, 8, or C,

cosh [2s.(a —P)] 1, cosh [2s(u+ P)] ~ 2 exp [2s.(W/C)"'],

so that

p = [1+ 2 cosh (2sb)] exp [- 2s(W/C)'"]

For 8' A the reAection coe%cient is always unity, as may be most readily
deduced from general principles.

"See, e.g. , A. Sommerfeld, Atombau, {4th Ed. 1924), p. 772.
"See, e.g. , %. Heisenberg, Physical Principles of the Quantum Theory (in course of

publication. )


