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ABSTRACT

The conception of random positive ion velocities corresponding to ion tempera-
tures in a plasma has serious theoretical difficulties and is lacking in direct experi-
mental verification. It is more reasonable to assume that each ion starts from rest and
subsequently possesses only the velocity which it acquires by falling through a static
electric field which is itself maintained by the balance of electron and ion charges.
This new viewpoint thus ascribes motions to the positive ions which, for long free
paths, are ordered rather than chaotic, each negative body in contact with the discharge
collecting ions f"&m a definite region of the plasma and from it only. The resulting
integral equatio .. the plasma-sheath potential distribution have been set up for
plane, cylindrical, and spherical plasmas, for long, short and intermediate length ion
free paths, and for both constant rate of ionization throughout the plasma and rate
proportional to electron density, and these equations have been solved for the
potential distribution in the plasma in all important cases. The case of short ion free
paths in a cylinder with ion generation proportional to electron density gives the same
potential distribution as found for the positive column by Schottky using his ambi-
polar diffusion theory, with the advantages that ambipolarity and quasineutrality
need not appear as postulates. The calculated potential distribution agrees with
that found experimentally. The potential difference between center and edge of
plasma approximates T,/11,600 volts in all long ion free path cases. The theory
yields two equations. One, the ion current equation, simply equates the total number
of ions reaching the discharge tube wall to the total number of ions generated in the
plasma, but it affords a new method of calculating the density of ionization. The
second, the p/asrna balance equation, relates rate of ion generation, discharge tube
diameter (in the cylindrical case), and electron temperature. It can be used to calcu-
late the rate of ion generation, the resulting values checking (to order of magnitude)
those calculated from one-stage ionization probabilities. The potential difference
between the center of the plasma and a non-conducting bounding wall as calculated
from the ion current equation agrees with that found experimentally.

The solution of the general plasma-sheath equation has been extended into the
sheath surrounding the plasma to determine the first order correction which is to be
subtracted from the discharge tube radius to obtain the plasma radius. The wall
sheath in the positive column is several times the thickness given by the simple space
charge equation.

Actually the ions do not start from rest when formed but have small random
velocities corresponding to the gas temperature, T,. In the long ion free path cases
this leads to an error of the order of only T,/T, in the calculated potential distribu-
tions.

In the plasma surrounding a fine negatively charged probe wire the potential
difference between plasma potential maximum and sheath edge may be so small that
the ions generated within the plasma potential maximum are not trapped but can
traverse the maximum by virtue of their finite initial velocities. This justifies the use
of a sufficiently fine negatively charged wire in the usual way to measure positive ion
concentrations, although certain difficulties appear which are thought to be connected
with the collector theory rather than the present plasma theory.
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A positively charged cylindrical probe collects electrons in the same manner as
previously supposed, except that the sheath about it is considerably thickened by the
presence of ions generated in the sheath.

The plasma balance equation completes the number of relations needed to de-
termine completely the conditions in a positive column. Taking the arc current as
the independent arc variable, the five dependent variables are axial electric field,
density of ionization, electron temperature, positive ion current to the wall, and the
rate of generation of positive ions. The five relations which determine them are the
plasma balance equation, the ion current equation, an ion generation equation, a
mobility equation, and an energy balance equation. The essential nature of these rela-
tions is recognized even though present knowledge is insufficient to complete all of
them.

Stability in the positive column has not been considered. The possibility exists
that instability of one type or another may lead to the oscillations which can occur
in an arc.
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I. INTRQDUcTIQN

'HERE is a large amount of evidence to show that the vast majority
of free electrons in the plasma of a gaseous discharge possess velocities

distributed according to the Maxwell Distribution Law (hereafter "M. D.").
The temperatures to which these velocity distributions correspond lie roughly

. in the range between 5000 and 70,000'K. The method for measuring these
temperatures need not be gone into' beyond mentioning that it depends on
the Boltzmann density distribution which the electrons assume in the sheath
about a negatively charged collector. The validity of the method hinges,
first, on the confinement of the electrode potential changes to a sheath about
the electrode, and second, to the smallness of changes in sheath cross-section
or volume compared to the whole cross-section or volume of the plasma.

No such direct measurements on the positive ions are possible for vai ious
reasons. The most direct evidence that the ions possess considerable veloc-
ities lies in the saturation current to a collector at negative voltages. It
has been reasoned that since the potential difference between plasma and
electrode is confined to the sheath, only those ions will be collected which
are headed for the sheath edge anyway. The random ion current densityI„
in the discharge can then be found by dividing the observed saturation cur-
rent by the sheath area. The ion density is equal to the electron density,
n, in the field-free plasma. On the assumption that the velocities are dis-
tributed according to the M. D. Law, but only over one hemisphere since
no ions leave the collector, kinetic theory gives

T„"'= (2am„/k) ' "I„/2ex. = 2.02 X 10"(I„/n, ) (m„/m, ) '" (1)

I. Langmuir and H. M. Mott-Smith, Jr. , General Electric Review 27', 449, 538, 616,
762, 810 (1924). Hereafter these articles will be referred to as "L and M—S, Part I, etc. , to
Part V, " respectively.
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A saturation electron current at small positive voltages on the same collector
can be observed if the collector area is not too great. This can be treated in

the same way, giving'

T '"=4 03X10"I,/e, .

Combining the two it is found that

In a typical set of measurements made on a mercury arc' the average value
of I,/l„was 405+25. For mercury rrl, „/rn, =3.678)&105, whence it would
follow that T,/T, =0.55. It seems entirely unreasonable, however, that the
ion energy. should even approach the electron energy in view of the fact
that it is the electrons primarily which supply energy to the rest of the plasma
and the positive ions with their large relative mass and frequent impact
with slow atoms are not adapted to acquiring large random kinetic energies.

But evidence in favor of a large random ion current is found in another
experiment. When two equal plane electrodes, back to back and insulated
from each other, are placed in the positive column of a discharge so that one
electrode faces the anode, the other the cathode, the two electrodes receive
comparable ion currents even though to reach one of the electrodes the ions
must flow toward the anode. A similar conclusion offers itself in the related
experiment in which the sheaths on a spherical electrode immersed in a
positive column are seen to be of equal thickness on cathode and anode sides. 4

There is other evidence also. Experiments in which a double electrode
is used, the electrode facing the discharge being pierced with fine holes,
give ion temperatures of several thousand degrees. But how accurately
Maxwellian these results show the velocity distribution to be is somewhat
doubtful.

Although all this evidence points to the possession of considerable
velocities by the positive ions, and the concept of a random velocity
distribution among the positive ions has been a generally useful one in
explaining a multitude of observations, there has been no convincing deter-
mination of the velocity distribution, and the hypothesis of large random
velocities has grave theoretical difficulties to overcome. ' A further difficulty
crops up as soon as the attempt is made to join the sheath to the plasma, that
is, to investigate theoretically the nature of the sheath edge. ' In quite general
ter ms the perplexity is this. Consider two nearby points in the discharge, one

just inside the sheath about a negatively charged electrode and one just outside

' There appears to be some justification for using 4.03 in the equation pertaining to elec-
trons as compared to half of this for the ions. See I. Langmuir, Phys. Rev. 33, 964—5 (1929).

' L and M—S, Part II, Table III.
4 L and 3E—S, Part V, p. 812.
5 L. Tonks, H. Mott-Smith, Jr. , and I. Langmuir, Phys. Rev. 28, 104 (1926).
' In applying his quasi-neutral diffusion theory to the positive column of an arc |A".

Schottky, Phys. Zeits. 25, 346 (1924), abandons the idea that the positive ions have a tempera-
ture comparable with the electron temperature.

~ I. Langmuir, Phys. Rev. 33, 976 (1929).
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the sheath. At the outside point suppose that there is a one-sided M. D. of
velocity among the ions—one-sided since no ions come out through the
sheath. At this point the electron and ion densities are equal. The potential
at the inside point is slightly less than in the plasma, with the result that
both electron and ion densities are less there, the electrons according to
the Boltzmann Law and the ions because of their greater average velocity.
This can readily be seen by plotting the theoretical densities against the
potential decrease. But these curves show an astonishing relation —for
small negative potentials the electron density exceeds that of the positive
ions because the electron density curve approaches the plasma potential
with a finite, the ion curve with an infinite slope. By Poisson's Equation
any such predominance of negative charge at the sheath edge requires
positive curvature in the potential distribution curve there, thus making
it impossible to merge the sheath into the plasma.

We have now reached a new point of view which seems in every way
to be more satisfactory. We suppose as before that the electrons possess
a M.D. of velocity and such a high mobility that they obey the Boltzmann
Law irrespective of any drift in the plasma away from their points of origin.
(This is, of course, not true of the longitudinal gradient in a positive coiumn,
but the arc current is so very much greater than the drift currents neces-
sitated by the generation of electrons, that this gradient by its smallness
justifies rather than invalidates our assumption. ) But the positive ions
are supposed to have negligible velocity when formed and to acquire only
such velocities as correspond to the electric fields through which they pass.
In the case of long mean free paths each ion will thus fall freely under the
inHuence of the small plasma fields set up by the electrons and ions them-
selves until it strikes the tube wall or an electrode. For short free paths the
ion will be impeded in its motion by collisions with atoms but still will be
mainly guided by the electric field in which it finds itself.

This point of view, it will be seen, ascribes a less chaotic motion to the
ions than they possessed according to the old concept. Thus in a sphere or
cylinder at very low pressure the ions all move radially outward, each with
a velocity corresponding to its point of origin, and for any geometrical
configuration it becomes theoretically possible to associate each element of
wall or electrode area with a tubular region of the plasma which alone con-
tributes ions to that area. Accompanying this picture is the idea that it
is the presence of an electrode (or tube wall) in contact with the discharge
which is responsible for the ion current Howing to that electrode by reason
of its inHuence, as a boundary condition, on the potential distribution in
the plasma. '

8 This is, of course, an idealized representation. In any case the ions possess the random
motions which they had as atoms just before ionization occurred, but this is usually small
compared to the potentials through which the ion falls in the plasma. Cases in which these
small velocities are not negligible appear later. At the higher pressures collisions with atoms
introduce additional randomness.

9 Later, in Section VI, it will be found that very small electrodes have no effect on the
potential distribution through the body of the plasma and can, therefore, be used as true probes.
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In order to handle this theory mathematically it is necessary to know
the space distribution-of the ion generation. Two cases will be considered
below. If the ions are generated wholly by electrons which have acquired
their velocity in the sheath surrounding an electron source, and the mean
free path is long compared to the tube dimensions, the generation will, in

many cases, be essentially uniform throughout the plasma. If, on the other
hand, the ion generation is caused by the "ultimate" electrons themselves
which are constantly renewing their energy, as in the positive column of
a discharge, the rate of generation of ions will be proportional to the electron
density. Other cases may suggest themselves, as for instance, generation by
fast electrons at higher pressures where the mean free path of the electrons
is small, and these cases can also be handled by the methods developed here.

For all geometrical configurations except those possessing the simplest
symmetry, the mathematical difficulties become very great, and for this
reason the quantitative treatment is confined in the following section to
plasmas bounded externally by two infinite parallel planes, or by an infinite
circular cylinder, or by a sphere, and in Sections VI and VII to plasmas
bounded internally by a cylinder.

II. PQTENTIAL DIsTRIBUTIQN IN THE PLAsMA. PART I

It is evident that if ions are to flow to electrodes and walls under the
influence of the electric fields hypothecated, there must be a potential max-
imum in the plasma, and, in the simple cases to be discussed here, symmetry
considerations place it at the center of the boundary structure and the ions
thus move outward in straight lines. It is advantageous to select the origin
of coordinates at the center (median plane, cylinder axis, or sphere-center)
of the structure and to denote distance in cm from this center by r. If
the potential at r =0 be taken as zero, it is negative elsewhere and the ions
generated at any point z acquire a certain velocity v, by the time they pass
some further point r. In general v, may be a complicated function of the
potential distribution, and the high and low pressure cases are distinguished
by the type of function assumed for v, . If the number of ions generated
per second per unit volume at s is N„ their density when they pass r
is, in each case, respectively,

Plane: N, ds/v,
Cylinder: N, sds/rv,
Sphere: N, s'ds/r'v,

Since ions generated at every value of s which is less than r contribute
to n~, the ion density at r, this density is given by

(2)

where P assumes the values, 0, 1, 2, for plane, cylindrical, and spherical
cases respectively.

The electron density at any point is given by

n, =no exp (eV/kT, )
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where n, is the electron density at the origin, T, is the electron temperature,
and V is the space potential. Poisson's Equation may be written

q'U = 4~—e(n„n,—) .

Substituting Eqs. (3) and (2) in this equation we have

r

g'U —4seno exp (eV/kT, )+4xer e N, seds/v, =0.
0

(4)

This is the general integral equation for the potential distribution
throughout plasma and sheath. In the form of Eq. (4) and in subsequent
forms to which this equation may be transformed in various cases it will be
known as the complete plasma-sheath equation. Throughout its various meta-
morphoses it will continue to consist of three terms, namely, one term cor-
responding to the Poisson differential coe%cient, another corresponding to
the electron density, and a third corresponding to the positive ion density.
In its complete form this equation is far too complicated to handle, but it
can, fortunately, be simplified in two important regions. First, in the plasma
it will appear that the Poisson term is negligible. Dropping it from the
complete equation leaves the plasma equation, the equation with which the
present section deals. Second, in the sheath bounding the plasma other
simplifications can be made leading to the sheath solution which will be dis-
cussed in Section IV.

Eq. (4) can be simplified immediately by the substitution of a new di-
mensionless variable g for V,

g = —eV/kT, .

The equation then becomes

r

(kT,/4sre'n )s7'rt+c & np 'r e—
N, sdes/, o= .0

0
(6)

This equation must now be adapted to the various particular cases.
Case l. I.ong mean free path and ion generation proportional to electron

density. In this case each ion falls freely from the point at which it is gener-
ated. Accordingly,

o, = [2e(V,—V)/m„]"'= [2kT.(rt rt)/m„]'—
where V, and V are the potentials at z and r respectively. Here, also

E,=Xn, = 'Anoe 'I,

where ) is the number of ions generated by an electron in one second.
Substituting these expressions in Eq. (6) we have

r

(kT./4rre'n)g'rt+e ~ X(m„/2kT )'"—r ~ see ~.(rt rt) '"ds=0. —
0
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In order to solve this equation the substitution

s=nr (10)

is necessary where s is the new variable and o. is an adjustable constant.
Remembering that 6'g has the dimensions of rir ', it is seen that Eq. (9)
takes on the form

(n AT /4e-e rs)q g+e & )(m„—/2feT )' s n s,ee "*(g q)—' ds, =0 (11)
0

where g, indicates that derivatives are taken with respect to s, and g,
is the same function of s, that q is of s. At this point o is so chosen that the
coefficients of the second and third terms are equal, that is

n =X(m„/2 k T,) '" (12)

and as o. has the dimensions of a reciprocal length, s as well as g is dimension-
less. This substitution puts the differential equation in the form

(~ g2/fls. eel )p 2g+e —0 s Ps Pe
—

Uz(rj —q
—
)
—leeds —0

0

Later it will be shown that the introduction of typical values for the
constants in the coe%cient of g,2g renders that term negligible over prac-
tically the whole range of s in most cases. Thus the definition of the plasma
as the region where ion and electron space charges are essentially equal re-
ceives additional justification. If now the sheath edge is defined as the sur-
face at which this essential equality fails, it is left somewhat indefinite,
thus requiring a detailed treatment of the plasma-sheath transition, which
will be touched on later.

Dropping the first term, then, we have to solve the integral equation
S

e ~ —s e sJ'e "«(g —q)
—'~'ds, =0.

0

(14)

The fact that the plasma equation can be reduced to this dimensionless
form immediately enables us to draw the important conclusion that the
potential distribution curve will be of the same shape irrespective of the
particular values which the constants which originally entered the equation
may have. To make the general curve fit any particular case it will simply
be necessary to change the ordinate (rf) scale according to the value of
T, and the abscissa (s) scale according to the tube dimensions and the thick-
ness of the sheath on the wall when that is appreciable.

The solution of Eq. (14) is made possible by regarding g rather than s
as the independent variable and putting successively

'g=p gz=Pz p

2 p, =p sin 0.

This converts the equation to the form
m. /2

s~e &' — s ee &*'(ds,/dp, )do= 0.
0
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If now s be expressed as a power series in p

S=ap+Cyp+C2p + (17)

with s, being expressed as the same function of p. , it is obvious that the inte-
grand itself can be expressed in a series

bo+ bcpl+ hyped +
in which each b is a function of certain of the a s. The substitutions in-
dicated in Eq. (15) give the (p+1)term of this series the form b„pr sin& 0.
The integration limits in terms of f! are 0 and a/2, and this integral of
sin" gd8 being given in the tables, the integral term of Eq. (16) comes out
as a power series in p. The coefficients of this series can then be equated term
by term with those in the expansion of the first term in Eq. (16) in order
to evaluate ao, a~, a2, etc. The boundary condition that s =0, at p =0 requires
that ap=0. In the final solutions it also turns out that O=a2=a4=a8,
etc. , so, for simplicity, these values will be assumed immediately in ob-
taining the actual solutions. We shall, therefore, use,

s=ojp+83p +cqp +
The second boundary condition that the electric field at the origin be
zero requires that di!/ds = 0, that is that ds/d(p') = ~ there, a condition which
the above solution is seen to satisfy also.

The cylindrical case may be used to illustrate the evaluation of the
coefficients in detail. For this case P = 1 so that Eq. (16) becomes

From Eq. (18)

m' /2

se» — s»(ds»/ilp )c»»'d9=0 (19)

Also

s»ds»/ilp» = ui p»+ 2(2uiu3) p» +3(ua +2uiuit)p» +

e- *'= 1 —p, 'y p.'/2! —p.'/3!+

Replacing p.'"+' in the product by p' +' sin'"+'8 the coef6cient of p'"+'
is seen to be

(—1)~ sin '~+'0I ui/m! —2(2uiuq)/(m —1)!+3(u '+2uiu, )/(m —2)!—
+k[ui, '+2(uiui, i+u3u&i, 3+ )]/(m k+1)!—+ to k=m+1I (20)

Now

f 1246 (2m)
sin'm+' gde =

0 1 3 5 7 (2m+1)

so that, denoting the bracketed expression in (20) by u the coefficient of
p' +' in the integral is

1 2 4 6 (2m)
(—1)"ir

1 3 5 7 (2m+1)
(21)
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For the first term of Eq. (19) we have to form the product

(alp+ a pp'+ ) (1—p'+ p'/2! — ) .

The coefficient of p'~+' here is

—(—1)~ [ai/rn! —ap/(rn —1)!+ap/(rn —2)!— + ap„,i].
Setting the sum of this expression and (21) equal to zero we find that the
condition to be satisfied by the a's is

1.2 4 6 (2np)
ai/np! ap/—(rn 1)!—+ap/(rn 2)—!—

1 3 5 7 (2m+1)

&& [aip/rn! —2 (2aiap)/(rn —1)!+3(app+ 2aiap)/(rn —2) ' — ] (22)

To evaluate the a' s, ns is set equal successively to 0, 1, 2, etc.
For nz = 0, u~ = a~' whence a~ = 1

For ra=1, 1—ap ——(2/3) (1—4ap), whence ap ———0.2
For m=2, 1/2!+0.2+as=(8/15) [1/2!+0.8+3(0.04+2a„.)] whence ap ——

—0.026061 and so on, giving for the solution

s = pt
i (1—0.2 it —0.026061pt

' —0.0064894it P

—0.0019840it —0.00067937itP —0.000253rt —0.000101itr — ) (23)

The coefficients of the last two terms are estimated from the trend of the
preceding ones.

If this series be used to calculate the potential distribution, it is found that
at a certain value of pt, say ptp, drt/ds passes through infinity and that thereafter
s decreases with increasing g. We recognize in go and in the corresponding
value so of s the extreme limit for the validity of the plasma solution since
dpit/dsp is infinite at sp and the pppt term of Eq. (13) ceases to be negligible at
some lesser value of s. By setting the derivative of Eq. (23) equal to zero,
it is found by successive approximations that go= 1.155, so=0.7722.

The results of a similar calculation for the plane case are given in Table
IIa at the conclusion of this section. -

Case 2 Long mean free p—ath and son generation constant throughout the

p/asrna. This case differs from the previous one in that here

N, =J (24)

Jbeing the number of i'ons generated per cm' per sec. throughout the plasma.
Examination of the previous treatment will show that all the conversion
factors and integral equations there used can be adapted to the new case by
omitting the ep* under the integral sign and substituting J'/np for
everywhere. Thus, instead of Eqs. (12) and (13) we have

cp =J(rn„/2 k T,) 'iP/np

S

(rnQ'/8pre'n p)1r 'pt+p p —s e s,e(rt —it ) 't'ds, =0.
0

(25)

(26)
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This equation can be solved by the identical method used before and the
resulting solutions having the same general character as the earlier ones are
given in Table I lb.

Crise 3. Short mean free paths and uniform ion generation. A. If the mean
free paths are short compared to the dimensions of the plasma and the
field strength is so small that the energy which an ion picks up between im-
pacts with atoms is small compared to the thermal energy of the atoms, the
ion drift velocity at r is made up of two components, one arising from
diffusion, the other from the electric field,

o, = —(D/ri„)dg„/dr (eD/—kT, )d V/dr

where T, is the temperature of the gas and D is the diffusion constant
for the ions into the gas. The fact that v, has ceased to be a function of
s will be indicated henceforward by dropping the subscript s. Since ion and
electron densities are equal in the plasma, n„can be substituted for X,
in Eq. (3), thus making it possible to eliminate „u a nd dn& and giving

o= (eD/k)(T—, '+T ')dU/dr

and since T,« T„ the diffusion component is negligible and

o = —(eD/k T,)d V/dr (27)

Assuming D to be the same as the interdiffusion constant for the gas, we
have "D=0.561lgv where /, is the mean free path and 8 the average speed
of the atoms in their random motion. Expressing 0 in terms of T, we have

s = 2(2k Tg/irm„) '~'= 1.597(k Tg/rri„) "'
Thus Eq. (27) can be put in the form

where

o= —0.895lg(kTgrz ) '~iedV/dr

qedV/dr—
q =0.895l 0/(k T,rn„) '".

(28)

(29)

for convenience. Now E,=J can be brought from under the integral sign
in Eq. (6) and since o, = o of Eq. (28) is independent of s this, too, comes out,
glvlng

r

(kT,/4rieimo)p's+c i (J/rioqkT, )r —~(dq/dr) ' s,sds, =0.
~o

The substitutions used in Case 1 here lead to

n =j/ripqkT8
and

S

(J/4ire'rio'q)s7, 'q+i & ss(ds/dil) s,s—ds, = 0.
0

(30)

(31)

(32)

Jeans, Dynamical Theory of Gases, 2nd Edition, $440.
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As before the first term can be neglected for the present and the solution
comes out very simply as

e- = l —e'/2(P+1). (33)

A marked difference between this solution and those previously obtained
is that here qo ——~ although so is finite, having the values

so ——1.414, 2.000) 2.449; P = 0, 1,2. (34)

In this case then, the potential at which the present solution fails to be a
good approximation must be very far indeed from go although the correspond-
ing value of s may not be very different from so.

B." At pressures intermediate between those just discussed and those
contemplated in Cases 1 and 2 the ion temperature will be determined less
by the gas temperature and more by the energy acquired in a free path.
Thus T, in Eq. (29) must be replaced by T„, the ion temperature, and this
becomes proportional to d V/dr so that the drift velocity is proportional to
the square root of the field strength. " A rough value for the drift velocity
can be calculated as follows. Let the ions be accelerated by a uniform
field X and let the average components of velocity in the direction of the
field at the beginning and the end of a mean free path be vo and vf respectively.
The gas atoms are moving so slowly compared to the ions that they~can be
assumed to be at rest. The persistence of velocity for the resulting type of
collision" is 0.5 so that

'Dy = 2vo.

Denoting the mean free time of the ion between collisions by ~ there are the
additional relations

v~ = eo+ (eX/m~) r

&„=en+ (ex/nz„) r'

where /„ is the positive ion mean free path which is 2'~' times the atom free
path on account of the higher velocity. The last equation neglects the
existence of a velocity component perpendicular to the field, but the eff'ect

of such a component in decreasing the progress made between collisions is
small enough to be neglected in this rough calculation. Eliminating ~ and

"Here, as later in Case 4I3, the significance of the analysis is somewhat doubtful, first
because of the small radial field strength near the potential maximum as mentioned below, and
second, because in the very important class of cases pertaining to the positive column of an
arc there is a uniform longitudinal field. Both in the free fall and the short path cases the ion
motions can be simply resolved into components, leaving the theoretical results unaffected by
this uniform field, but this resolution fails when, as here, the drift velocity is proportional to
the square root of the field.

"P. M. Morse, Phys. Rev. 31, 1003 (1928) uses a formula for ion mobility which is an
adaptation of an expression for electron mobilities derived by K. T. Compton, Phys, Rev. 22,
333 (1923). Morse does not, however, take into account the finite persistence of velocity of the
.ions, with the result that his consolidated numerical coeScient is 0.858 compared to 1.2 derived
here, Eq. {35)."The Dynamical Theo". y of Gases, J.H, Jeans, p, 279, 2nd edition.
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v f from these three equations, solving for oo, and then findi'ng o = (oo+or)/2,
the drift velocity, it is found that

e = 1.2(eXt~/m„) "'
If in the present case we put

then
q' = 1.2(t„/m ) '"
e = q'(ed V—/dr) '".

(35)

(36)

Substituting this expression for o and J for X, in Eq. (6), and at the same
time introducing s we have

o:= (1'/n 'q" kg)"'
S

(1/4xe')(kTJ'/no'q")""g 'rt+e & se(ds/—drt)'" s,eds, =0
0

the solution for which, neglecting the P,'g term as usual, is

= [1—2$3/3(l + P) 2]1/2

In this case, too, go= ~ while

(3&)

(38)

(39)

so ——i 145, i 816, 2 378; for /=0 1 2. (40)

A unique feature of this potential distribution is that q approaches
zero at s =0 along a cubic rather than along a parabola, as in all the previous
cases. It is probable, however, that this is of little significance because the
approach of the electric field to zero in the neighborhood of the origin makes
Eq. (28) rather than Eq. (36) the more applicable there.

Case 4. Short mean free paths and ion generation proportional to electron
density. Here again two cases must be distinguished according to the length
of the ion free paths relative to the electric field and gas temperature.

A. In the range of shorter free paths Eq. (30) is readily adapted by
substituting ) no~ 'i. for J, leading to the equations

8

(X/4ne'n, q)s7 . 'rt+e —~ —s—
e(ds/dg) e

—~IsJ'ds, = 0
0

n= ()/qkX)"'.

(42)

(41)

The solution, when the first term is neglected as usual, can be easily trans-
formed into the Bessel Equation of order (1 —P)/2

d'w/ds'+(1/s)dw/ds+ [1—(1—tt)'/4s')I~=0

by putting m =s'l' ""e &. The solutions are given in Table IId.
The solution for the cylindrical case,

e &=20([X/qkT, ]"'r),
is identical with Schottky's solution which he gives" as

n =nZ, ([a/D. jl~sr)

'4 K'. Schottky, Phys. Zeits. 28, 635 {1924).
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(the a being the present 'h) if one assumes the ion temperature and mobility
entering the expression for the ambipolar diffusion constant D to be small
compared to the electron temperature and mobility, respectively. The new
treatmentis thought to have two advantages over the earlier treatment,
first in that the present method, by including the Poisson term in the funda-
mental equation, will tell us when this term can no longer be neglected and
how the problem can be handled beyond this point (see Section IV), and
second, in that the radial ambipolarity of the diffusion is shown not to be
essential to the solution. Schottky recognizes that his solution is, in fact,
inconsistent with this idea, for its assumption that n is zero at the tube wall
is equivalent to having the wall at an infinite negative potential, in which
case the electron current would be zero. The essential requirement appears
to be that the loss of electrons to the walls shall not be sufficient to disturb
materially the M. D. of electrons in the plasma.

8. In the range of longer free paths Eqs. (37) and (38) can be readily
adapted by writing Xno for J and putting e &, under the integral sign, giving

n=P'/q"kT)'" (43)

(% S

(1/4se&e')(7eTX'/q")'t'q 'q+e & se(ds/d—rl)'t'
~

e «s,ds, =0.
0

(44)

With the omission of the first term the equation can be integrated once to
assume the form

Solutions of the form

8 g I/2

1 —2 y
'& c &'s,~ds, dy

0 0

"=1+GIs1Q)S +
can then be obtained by substitution (see Table IId).

The theoretical potential distribution curves for a number of the cases
so far discussed are shown in Figs. 1 and 2. Fig. 1 applies to cases where the
ionization rate is proportional to electron density and thus covers Cases 1

and 4. Fig. 2, applying to a uniform ionization rate covers Cases 2 and 3.
The abscissae are values of s/se so that except for the small sheath thickness
on the wall the radius of the tube is the unit of distance. The ordinates are
values of g which can be converted readily to voltage by multiplicp, tion by
T,/11, 600.

Corresponding to the transition from long to short ionic free paths the
respective potential distribution curves should show a progressive change.
Curves for cylinder-long path, cylinder-medium and cylinder-short path in
both Figs. 1 and 2 show this transition at larger values of s/se but the cylinder-
medium-path cur~e falls out of line at the lower values of s/so. This un-

doubtedly arises from the fact mentioned before that the mobility law under-

lying the medium-path curves is not valid in small fields, leaving the cases
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ment between the theoretical and experimental results both the uncertainty
of the potential measurements and also the absence of any adjustable con-
stant in the theory must be considered. Since the transition from the CLX
curve to the CSX curve should occur in the range where the free path length
f„ is comparable with the tube radius a, the ratio f„/0 has been given on
each figure. The value of l~ was calculated by multiplying Langmuir and
Jones' value of 70 cm" for the electronic mean free path at 1 barye and
650'K by 1/4 and correcting to 300'K and the appropriate pressure. When
the potential distribution curve assumes the short-free-path form as in Fig.
4 one should expect ls/c to be rather less than 0.37, the value found. On

0 OZ ON 06 08 /0
s/s. : r/a

oo OZ OW a~ O8
s/s, = r/a'

ass

02

aA1

0.6

SHORT ~
FREE FATH

N8 FREE
PArH

/ BIO/.r
1
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/0

/CW /IIO/ r
I

08-
p /. 2

/2

C2=3. / Cm
78- &8,'800 K

I

BULB rEbfP / +
+q PRESS 0.20 X /0 & mmsee'A. IOI/ FREE PAr/j C 3/ Cbf
RATIO 8/Ih = /0

/s6 a= 5. / cm
78= /9900 K
BCILS rEh1PERATVRE 38.6 C
Hg Pezssuez S.yx/0-3 mm
APPROX. /OIV. FREE PA%' l = I/5 C/r/

Reoria r/a = O. s7

Fig. 3. Comparison of experimental
and theoretical plasma potential dis-

tributions for long ion free paths.

Fig. 4. Comparison of experimental and
theoretical plasma potential dis-

tributions for short free paths.

the other hand free-path values —and even the concept itself —are some-
what uncertain. Probably the fact that the transition occurs in the general
neighborhood expected is all that can be asked.

The plasnsa balance equation. A digression may be permissable at this
point to inquire into another consequence of the theory so far developed.
In every case there is a fixed numerical value sp which is the upper limit
of the values which s can assume. Qow sp has already been identified with
the tube radius in Figs. 3 and 4 and this is justifiable to the extent that the
sheath thickness is negligible. Hence, using Eq. (10), we can write ap-
proximately for any case

"I. Langmuir and H. A. Jones, Phys. Rev. 31, 357 (1928).



THEORY OF THE ARC PI.ASIA

a/s, = r/s = I/n.

To fix our ideas let us confine our attention to the low pressure ) cases
covered by Table IIa. After introducing the value of n given by Eq. (12)
this becomes

aX = so(2k/ni„) "'T,'t'= 0.5522 &(10'so(T,in, /m ) '"(cm sec ')

For a cylinder, so = 0.7722 whence

ah= 0.4264&&10'(T,ni, /ni )' ' cm sec '

(46)

(47)

and in Hg (rn„/rn, )"' is 605.5 so that for a cylindrical mercury discharge
at low pressure

a) = 703. 1T,'". (48)

We are thus enabled to calculate most easily the average rate at which each
electron in the positive column of an arc ionizes atoms. Using some of the
results given by Langmuir and Mott-Smith for a tube of 1.6 cm radius with
bulb at 15.5'C corresponding to a vapor pressure of 1.05 baryes we find the
values given in the 5th column of Table I.

TABLE I '7

Run No. Arc Current,
(amps. )

I„
(ma cm '

X)&10 ' calc. by

plasma balance ion generation
equation equation (See

Section VIII)

34b
35a
35b
37a

0.5
1.0
2.0
8.0

27,500
29,000
26,600
19,500

0.17
0.25
0.44
2.29

7.29
7.48
7.15
6.13

1.6
2. 1
1.4
0.21

Eq. (46) will be called the plasma balance equation for the low-pressure
proportional-ionization cases because it states the adjustment of electron
temperature to ion generation which just fits the plasma into the space
available for it. It will be noted that Eq. (46) can be derived directly from
the s vs. r equation appearing in Table IIa by inserting the limiting values
so and a. This same substitution when made in each of the other s vs. r
equations of Table II yields the plasma balance equation appropriate to the
particular case. Because of the finite thickness of the positive ion sheath
on tube wall, a does not correspond exactly to so, and the necessary correc-
tion mill be derived in Section IV.

Hitherto, the number of known relations in a positive column has been
one less than the number of variables to be fixed. The plasma balance
equation is important because it is the mi'ssing relation. This phase of the
theory mill be discussed in Section VIII.

17 Langmuir and Mott-Smith, II, Table III. Examination of the original data reveals that
the electron temperature in Run 34b is somewhat uncertain with the consequence t»t the
value 1.6 for X &&10 ' may, possibly, be as much as 30 percent too low.
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The plasma balance equation can, obviously, say nothing concerning the
actu'al causal dependence of ) on T, and other quantities. This causal rela-
tionship might conceivably be incompatible with the plasma balance equation
and in that case the formation of a plasma would be impossible. This rela-
tionship will be further discussed in Section VIII.

The first order correctt'on to the plasma equation Th. e total unimportance
of the first order correction to the plasmasolution throughout the greater
part of the plasma becomes evident in Section IV but it will enter into any
exact plasma-sheath transition calculation. The evaluation of this correction
can be carried out by a method similar to that employed later in Section V.
In long free path cases it will probably be advantageous to put s&+Ss& for s
in the complete equation, s& being the solution already obtained and 5s&

being the correction desired. In short free path cases, on the other hand it
appears that the useful substitution will be e &= e ",+5(e ",).

III. POSITIVE ION CURRENTS IN THE PI.ASMA

Pursuing the views advanced in the preceding sections one readily con-
cludes that the positive ion current at the center of a discharge tube is zero,
that at any other point it is radial (except for a longitudinal component in
the positive column arising from the constant longitudinal gradient), and
that it increases continually up to the sheath edge. If we abandon the
approximation that each newly-created ion starts from rest, and make the
more reasonable assumption that the newly-created ions have the same tem-
perature as the gas—namely T„it is seen that there is a real, if small random
ion current even at the center of the tube, but that does not concern us at
present. The important thing to note here is that the ion currents en route
to the walls are almost certain to remain unobservable by any direct measure-
ments, for the introduction of any electrode which is apparently suitable for
the purpose will itself so distort the plasma fields and ion motions as to
destroy completely the effect sought. The result is that in seeking experi-
mental agreement with the theory, we are limited to the observation of the
ion current density at the tube wall. This current can be readily expressed
in terms of the variables which have already been introduced. In all of the
cases already discussed the number of ions reaching each unit of wall area in

one second is the number generated per second in the volume subtended by
that wall area. Thus

ael„= t eS„r~dr
0

where I„ is'the positive ion current density at the wall. Introducing s here
as before we have

8p

I„=aeS0
—t'—' E,S~dS

0

or where p(= rt"') is the independent variable

tfP 1/2

I~ = aeso ~ ' X,se(ds/dp) d p .
0

(49)
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Comparison of this with the integrand appearing in the integral equations
of Case 1 above shows an identity of form. The only difference lies in the
variable of integration. Whereas for each series term a sin Ode was inte-
grated before, here a p dp is to be integrated. Thus with ionization pro-
portional to electron density

I„=aese e 9N——P(—1)"o»o~+&e+'& "/(2m+ p+1)
0

TABLE II. Plasma solutions and values of sp, pp, hp.
Designation of cases.

Form of plasma

P plane
C cylindrical
S spherical

Ion free paths

L long
M medium
S short

Ion generation

J constant throughout (¹=J)
proportional to electron density(N, =An, )

TABLE IIa.'8 Plasma solutions for Case 1 in text.
Plasma equation: s = Gq~~2(1+g~q+g 2'+ ) ~ =s/r =X(m„/2k T, )~&'2

Constant Case: PLX CLX"

G
gx
g2
g3
g4
gs
gp

gv

sp
7J p

hp

2/m-0.333333—0.0333333—0.00476190—0 .03661376—0 .0484181—0.059715

0 ' 4046
0.8540
0.8513

—0.200000—0.0260260—0.00648941—0.0019840—0.036794—0.03Z53—0.0210

0.7722
1.155
0.3500

4/vr—0.142857—0.017722

TABLE IIb."Plasma solutions for Case Zin text.
Plasma equation: s =Gal'~'(1+g&p+g2g'+ ~ ) O. =s/r=(J/np) (m„/2kT. )'~'

Constant Case: PLJ CLJ SLJ

G
gi
g2
g3
g4
gs
gp

g7

gs

sp
7)p

hp

s 2P

~ 2P

hp2'

2/vr—2/3
+4/15—8/105

[+2/1 3 5 .

0.3443
0.9244
1.0000

0.38
0.943
1.000

I—0.600000
+0.238182—0.068573
+0.015303—0.0027721

(2p+1) ] +0.0,4242—0.0456
+0.Og65

0.5828
1.0542
0.5000

0.638
1.26
0.500

4/vr—0.571429
+0.227712—0.0661527
+0.0147939—0.00265902
+0.03395—0.0450
+0.Og55

0.7707
1.1950
0.3333

0.818
1.50
0.333

"In the numerical coefficients the subscripts have the meaning indicated by 0.047
=0.00007."The coefficients in italics were obtained by extrapolation from the previous ones."These solutions were obtained by an approximate method. (See Section VI.)
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TABLE IIc. Plasma solutions for Case 3in text.
Cases (P, C, S) SJ:

Plasma equation: s' =2(1+P) (1—~ ")
q=0. 895 l„(kT,m )-'~' =s/r = (J/n. qkT, ) I

Constant

. Sp

7jp

hp

Case: PSJ
0
1.414

1.0000

CSJ

1
2.000

0.5000

SSJ

2
2.449

0.3333

Cae (P, C, S) MJ:
Plasma equation: s' = (3/2) (1+P') (1—e ' ")

q' = 1.2 (ly/mp)'~' n = s/r = (J'/np'q "kT,)'t

Constant Case: PMJ CMJ

Sp

Qp

hp

0
1.145

1.000

1
1.816

0.500

2
2.378

0.333

TABLE IId. Plasma solutions for Case @in text.
Cases (P, C, S) SX:

q=0. 895 l„(kT,m„)- & ~ =s/r = P,/qkT. )1~2

Plasma
equation

sp

TJ p

hp

Case: PSX

c 9 =cos s
1.571

0.6366

CSX

.-~=J,(s)
2.405

0.2159

c 'I=(sins)/s
3, 142

0.1013

Cases (P, C, S) MX;
q'=1.2 (l„/m„)1~2 ot= s/r = (P'/q' kT,)'~

Plasma solution for case CMX only:
'I = 1—(1/12)s' —0.0369444s' —0.0479089s' —0.0632511s"—0.0616513s"—

sp =2.154 qp= 00 ~ ~ ~
p

o being defined for the cylindrical case just above (2p) and for any case
as the coefficient of the (m+1)*' term of the series which occurs as integrand
in the course of the original solution. In this way I„is seen to involve a new
dimensionless constant which can be chosen to correspond to current
density just as sp corresponds to distance and qp to voltage

hIi
——so e ' g( —1) orbit, ~+&e+'& "/(2sii+P+1)

so that
I„=hp88tl p~ (51)

which will be called an iort currertt equatiort In Cases 2 . and 3 (X,= J,
constant) it is readily seen that Eq. (49) can be integrated directly giving
the ion current equation

I„=hpeaJ,
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where ho ——1/(1+P). In Case 4 when the mean free paths are short Eq. (49)
again applies. The values of hp for this and other cases are given in Table II.
Another significance may be attributed to hp in Cases 1 and 4, namely that

(1+P)ho ——average value of e & (53)

taken throughout the plasma. Thus in the cylindrical case the total number
of electrons X, per unit length of tube is given by

whence the total ion current

S.= 2hpmpm a' (54)

27raI„= V,e) = 2m'a'ho&pe)

which checks Eq. (51). The plane and spherical cases work out similarly.
Both when the ionization rate is uniform and when it is proportional to

electron density, a simultaneous solution of the plasma balance equation and
the equations involving ion current gives in long free path cases

I&= sohpesp(2 h T,/rs„) '"
=8.787X10 "s,h,eo(T,m, /m„)'" amp cm '

and in short free path cases

j„=soshoemoqh T./s

(55A)

(558)

(55.5)

These types of equation will also be called ion current equations.
It will be noted that the ion current equation affords a method by which

the electron density at the potential maximum in the plasma may be deter-
mined. Solving for np in Case CLX Eq. (558) becomes

rio ——4. 21X10 "(m~/m, ) '"I,T, '"
This method was checked experimentally against the electron and ion den-
sities determined from the positive and negative branches of the volt-ampere
characteristic of a fine probe as discussed in Sections VI and VII. For
this purpose three runs were made with the tube which Killian used. The
results are shown in column 5 of Table III.

TABLE III

Arc
Current, Bulb temp. Electron l~ )& 104

(amp. ) temp. ('K) (amps/cm') by Eq. (55)
for ions for electrons

n, X10-Io

by i' —V plot

5.0
5.0
1.0

15.5'C
O'C

15.5'C

20,600
27,800
23,300

4.52 8.04
4.57 7.0
0.84 1.40

16.3
16.4
3.12

8.07
6.2
1.54

The value of I„ for the 1.0 amp. case has been corrected for the wall
sheath thickness in accordance with Section VI so that I„refers to the sheath
edge as it should rather than the tube wa11. The correction amounts to
4.5 percent in this case.
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The potential which a non-conducting tube wall bounding the discharge
assumes can now be calculated. Such a wall becomes su%.ciently negative
so that all the electrons are turned back in the sheath except the small
number required to neutralize the positive ion current. By kinetic theory
the electron current density reaching the surface of the wa11 is

I„=e~oe &w(kT, /2sm, )'«'

where g„= —11,600 V„/T„V„being the wall voltage with respect to the
plasma potential maximum. But if the reHection coefficient of the wall
is p, the current actually collected" will be only

Equating I' to I„as given by Eq. (55) it is found that

g„=ln [(rN„/r««. ) ' "/2s't 'h, s,]+in (1—p,)

which in Case CI.X and Hg gives

q„=6.45+ ln (1 —p, ) .

(56)

(57)

Both the voltage on the axis of the positive column and T, can be determined
from the semi-log plot of the volt-ampere characteristic of a fine axial wire.
Also, the voltage at which a collector on the tube wall opposite the wire
takes zero current is readily measured. The difference of the two voltages
multiplied by 11,600/T, gives g . Referring to the original data for collectors
F" and II upon which Tables III and XIU of I. and M—S Parts II and IU
are based it is found that g„=5.9+0.2 for Runs 34b to 37a. In a special
test with a positive column of twice the diameter used there it was found
that g„was 6.13 for one pair and 5.73 for another pair of electrodes, again
giving an average of 5.9. A reasonable value for p, is thought to be 0.15 lead-
ing to the theoretical value 6.3 for q„.The agreement with experiment is con-
sidered to be good particularly in view of the effect of the collector support. "

This is, perhaps, as good a place as any to point out that in many
cases the plasma theory as so far developed applies to the plasma in the
neighborhood of an anode almost as well as to electrodes drawing less electron
current. The only necessary condition is that the electron current density
reaching the anode shall be small compared to the random current density
at the sheath edge. It has already been pointed out" that without violating

» It might reasonably be expected that the constant drain of fast electrons by the walls
would cause a deficiency of high velocity electrons. No such effect has been found at small
distances from a wall or from an electrode considerably less negative than the wall. The ex-
planation of this phenomenon is not known, Were it not for this mechanism which rapidly
reestablishes a M.D, , slow electrons would accumulate indefinitely at a potential maximum
and build up the ionization density to a high value, escaping finally either by recombination or
by setting up oscillations. Perhaps the unknown mechanism involves just such oscillations.

& The ideal collector would be axial, but the fact that I' is not axial is unimportant com-
pared to the errors introduced by the lead-in structure in lowering the plasma potential at the
supported end of the collector.

"Land M-S. , Part IV, pp. 766, 767.
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this condition anodes of reasonable area are capable of collecting the full
arc current.

Ke are now in a position to discuss the magnitude of the ion currents
received by two equal plane collectors arranged back to back in the positive
column of a discharge so that one electrode J faces the cathode, the other
X, the anode. Fig. 5 gives the volt-ampere characteristics ~' in Hg vapor
saturated at 16'C of two such electrodes. Each was allowed to Goat while
the characteristic of the other was being taken. Both were square plates
0.95 cm on a side spaced 0.08 cm apart in a tube of 3.2 cm diameter carrying

/00

Char'a cteristics of
two electrodes

bn.ck to bzxck
J fe cing, ce thade
K.: fe cine anode

II)

A

-Q2

VoL&s re Anode
-QO -ZO

Fig. 5. Note change in current scale at. zero.

an arc current of 0.60 amps. The arc gradient was 0.24 v cm '. It is to be
noted that not only did J receive the larger electron current at positive
voltages but also the larger ioIn current at negative voltages. X, which was
completely exposed to any longitudinal drift of the ions toward the cathode
captured fewer ious than J which, on the random-ion-current theory, could
only receive the random component of the ion current. The present theory,
howev'er, explains this quite readily. Ke observe that the larger electron
current to J arises from the very appreciable ratio of drift to random elec-

"From unpublished data taken by I. Langmuir and H. M. Mott-Smith, Jr.
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tron current density. This not only increases the density of electrons in the
plasma near J above normal but decreases the density near X below normal.
Positive space charge arising from an excess of ions if present would set up
potential di8'erences tending to wipe this out, but such an excess haslittle
tendency to occur because the generation of the positive ions is it self pro-
portional to the electron density. Thus the density of ionization as a whole
is less near E than near J, and the smaller ion current to E than to J at
negative electrode voltages is to be expected. The relative difference be-
tween the two ion currents is smaller than between the two electron currents
and this probably arises from the effect of the longitudinal field in the column
which tends to increase the volume from which ions can reach E and to
decrease the volume contributing ions to I. (This longitudinal field of 0.24
v. cm ' is small compared to the average radial plasma field. The electron
temperature was approximately 30,000'E. In case CI.'A go=1.155 whence
the potential difference between tube axis and plasma edge is
1.155(30,000/11, 600) = 3v, a difference equal to that found in 12.5 cm along
the axis. It is interesting to note that the displacement of the curves shows
that the presence of the dual electrode causes a potential difference of some
3v in less than a millimeter distance. )

The ratio of random electron current to drift current. The quotient of the
density of the ion current to the mall in a positive column and the arc current
itself leads directly to the ratio of random electron current density I„to drift
current density, I . From kinetic theory

I,= en p(h T,/2prm, )"'
at the tube axis. Combining this with Eq. (55A) we have

I,/I„= (m /m, ) 'tp/2s, h, pr"'.

The average drift current over the tube cross-section is ie/pra' and taking
account of the actual distribution by using Eq. (53) we have

I,=is/2hpprap

at the tube axis. It follows then, that

I,/I. = (pr P "/sp) (m „/m. )"'a'I„ie/ . . (57.5)

The aPProximate efiuality of I„for electrodes of various sises and in various
Positions. One of the experimental facts which favored the random ion
current belief was the observation that at low gas pressures electrodes var-
iously disposed in a tube excited from a hot cathode received ion current
densities (corrected to sheath area) which di8ered usually less than 2 to 1 in
ratio even though one electrode might be in the center, the other on the wall
of the bulb. Experiment thus shows that the shape of the plasma boundary
at a certain place has no great effect on the ion current density to that
place. The theory indicates the same result, for Eq. (55A) shows that for plas-
mas of different sizes and varying in shape from the plane to the spherical
but all having the same maximum ionization intensity, I~ is proportional to
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soho. From Table IIb it is seen that the variation involved is only from 0.34
to 0.26.

The average ioe velocity ct so. I ater it will be convenient to know the
average velocity of the ions as they pass from the plasma into the sheath.
The g equivalent to this velocity will be denoted by go and can be calculated
readily. We have

I„=nevp, n=npp «, -vp=(2k T, rt/pmp)'"

where v„ is the mean ion velocity. Combining these, we find

Ip=enpp «(2kT, rtp/mp)'»'

and eliminating I„with Eq. (55A) it is found that
—h 2S 2tp2pio (58)

in long free path cases. In Case CI.)go=0.7359.
The magnitude of the neglected term inthe 'plasma equation Eq. .(55)

makes it possible to calculate the coefficient of the neglected term in Eq.
(11) or (13) which will be denoted by 2, for any given case. Using Eqs.
(45) and (55) to eliminate cp and np respectively, we have

A =hpsp'(2kT8)"'/8rrea'mp'"Ip

for long free path cases. Introducing the numerical values of known con-
stants and expressing I„in amperes cm ' this becomes

A =4.210&&10 "hpsp'(m, /m„)'"T, "'/a'I„
and for Case CI.) in mercury

A =1.119&&10 "'T "'/a'I .

(598)

(60)

Thus in Run 37a" where the arc current was 8.0 amps, T.=19,500'
a=1.6 cm, and I„=2.29X10, and we find A =5.19)&10 7. In Run 34b
at the other extreme of this group of runs the arc current was 0.5 amp. In
this case T, =27,500' and I„=0.17&(10 ', whence 2 =1,17/10 5. From
Table IIa it is readily found that p,2g at the potential maximum has its
largest value 4.94 in the plane case. We thus confirm the smallness of A&,2g

at the origin relative to the other terms of Eq. (13). How far out this term
may be neglected will be discussed in the next section.

IV THE SHEATH EDGE AND SHEATH

The limit of validity of the plasma eguation We hav.e already noted that
the approximation which gives the plasma equation fails at some value of
s less than so because of the fact that 5,'g becomes infinite at sp. Physically
of course, this is just the type of development that is necessary to give a
sheath. Accordingly, the problem of carrying the solution up to and past
sp is the problem of the sheath edge and sheath.

2' L. and M-S. Table III, Part II.
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Only the low pressure case will be analyzed in this section and that com-
paratively roughly because the plasma-sheath transition is inherently more
complicated than either plasma or sheath alone. The high pressure case
might be covered by the assumption that the ion velocity was proportional
to the electric field, but there is a wide range of pressures for which the ion
may drift in the plasmayet fall freely through the greater part of a thin
sheath.

The first question which arises concerns the point at which the plasma
solution should be abandoned. We may, without definitely committing
ourselves for the present, say that we shall have to do this when the Poisson
term, neglected in the plasma solution, becomes equal to a certain fractional
part, P, of either of the other two terms, that is when

Ad ri/ds' =QE-". (6l)

Here p, 'rl has been replaced by d'rj/ds' since the only sheaths which will be
considered are those which are thin compared to the radius of the tube.

The point on the plasma solution at which this relation is satisfied is
designated on Fig. 6 by g~, s~. The coordinates s~ and g~ are most easily

Fig. 6. The relation of the plasma and complete solutions of the
plasma-sheath integral equation.

expressed by their differences Ss~ and 6g~ from so and go respectively. In
order to evaluate lsd and 5&i&, d'&i/ds' must erst be expressed with ri as the
independent variable. We have

drj/ds = (ds/dq) ' d'q/ds'= —(d's/dq') (ds/drj) ' (62)
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A Taylor Expansion gives

bs = (—,') s,"6g' [1+8g( ) j (63)

where 6s=s —so, 5g=g —go, so" denotes the value of d's/dg' at so, and the
term involving so is absent since so' ——0 by definition of so. Neglecting
all but the lowest order terms in 5g we also have

ds/dg = s = so 8g

d s/de) =s =so

Substitution in Eq. (62) gives

dq/ds=so" '8g "

d 'g/ds = —so 8'g

In addition,
Qp

(64)

(65)

to the same degree of approximation.
Then 5q~, the value of —5rj for which Eq. (61) is satisfied, (the minus

sign being inserted simply to make 5g~ intrinsically positive), is found through
substituting the last two equations into Eq. (61). It is found to be given by

87/O =Af" /So0 (66)

The corresponding value, As', of —5s can be found from Eq. (63). In case
CI.)

so"= —0.635

so that using A from Eq. (60).

~&, =2.064X10-5Z ~ ~-»31„-»3y-I~
and

6s =1.35X10 "T a "'I
for mercury.

As example we may take the two runs already used. Noting that s&%&'12
= 7.88 in Case CIA, the values of A already found substituted in Eq. (66)
give immediately

Age
——0.0160/g'~' and 5gp

——0.045/@'t'

for the 8 amp. and 0.5 amp. arcs respectively. Thus for /=0. 05 we have

8gp
——0.045 Rgb= 0.122

and
us&=6. 4X10 4

bshe
——47X10 4

The extension of the general plasma-sheath equation, Eq. (4), past
g&, s@ is very much more complicated than the solution of the plasma itself.
In addition, the only theoretical result which finds application at present is
the sheath thickness, and that occurs only as the correction to the discharge
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tube radius which gives the plasma radius. Accordingly, the present treat-
ment of the problem will be only approximate. The solution involves three
simplifications of the general plasma-sheath equation. The first consists in
the replacement of LVU by d'Ujdr' as already noted in connection with Eq.
(6l). The second concerns the ion charge term of the general equation and
results in the elimination of the integral. The third consists in dropping the
electron charge term when it becomes negligible.

Regarding the second simplification it is to be noted that in X cases the
low and rapidly decreasing electron density in the wall sheath suppresses
the generation of ions there, and in any case, the thinness of the sheath will
render its ion contribution negligible compared to that from the plasma.
Hence the ion current density through the sheath can be assumed to be con-
stant and to have the value calculated for s~. This value is equal to I„, the
value at so, to within a quantity of the order of 6s& or 8g~'. To calculate the
ion space charge the velocities of the ions must also be known. The plasma
equation enables us to find the single velocity which is equivalent as regards
space charge to the actual distribution of ion velocities at s~. The same steps
that yield Eq. (58) lead to

gy=SO kO e "4 (67)

where p@ is the g corresponding to the equivalent single velocity. A erious

difhculty enters here, for it immediately appears that j& is characteristic
of g~, s~ only. For example, jo, corresponding to the single equivalent
velocity of the stream at go, so, is not p~+6g~, but by combining Eqs.
(57) and (67) it is found that

(68)

in Case CL). This is indicated qualitatively in Fig. 6. If p~ and po repre-
sented mean potentials of origin of the ions, the expected relation would have
been correct. Actually the average here encountered is the reciprocal square
of the mean reciprocal square root of g~ —g and go —q respectively. In the
present solution, however, we shall treat g& like a simple mean value rather
than the complicated average which it really represents. The positive ion
space charge in the sheath then becomes (rn„/2hT, pl, )"'I„where
—pl&+f)e. By Eq. (55A) this becomes e~psphprj,

—"~' and using this in place
of the integral term in Eq. (4) we have

d'U/dr" 4sepspc -p—+4prempsphpq, ""=0
which can be reduced to

AdPg/ds' jp " sphpq "'=0— (69)

A being given by Eq. (59A).
In order to bring this equation into a form which has already been treated

by Langmuir" it is convenient to substitute for s(=nr) a new independ-
ent variable (, which is defined by the following series of equations

"I. Langmuir, Phys. Rev. 33, 976—980 (1929) Eq. (68).
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d( = dr/x„

I =((2)""/9s)(e/m )'i'W "'/x '

W, = Ie T,/e = 2',/11, 600

(70)

(71)

(72)

d $ rather than f being defined since the origin of $'s is better left indefinite
for the present. The physical signihcance of W', and x„are evident from their
relation to electron temperature and the simple space charge equation res-
pectively. As the new variable appears in the first term only of Eq. (69),
the substitution is most easily carried out by means of the relations

ds2 ~2d1.2 ~2g 2d(2
27

followed by substitutions for x„' and W, from Eqs. (71) and (72). It is
found that

A/ds' = 9sehe/4d)' (73)
so that

d'ri/d&'= (4/9)(iI '"—e
—

&/s Ii )

Integrating once, it is found that

(dri/d&)' (dri/dre)—e' (16/9)——ii, '" ice"'——(1 e "+"e)—e "e/2se&e].

Evaluating (drl/d$)e by means of Eqs. (73), (61), (64), and (65) we find

(dri/d$) e' ——(4e &e/9so he) 4&—iie

In order to proceed, a further approximation now becomes necessary.
The quantities q~ and q~ must be replaced by go and qo throughout both the
above equations. Thus g, which was equivalent to q —p~+q~ is rede6ned
» g —go+go Naturally, dg, can be written for dg in the derivatives. Making
use of Eq. (58) to eliminate seke, the differential equation then becomes

(dn. /df)' (4/98e—"')4~ve=(16/9) [n
"' no'" (—1—e "'—+~)/ n2"e'] (74)

The right member now vanishes when rI = rl, (j.e. rl, = qe). The left member
then tells us that the electric 6eld at go, so has the value which we had sup-
posed it to have at g~, s~. Thus the effect of the last approximation has
been to transfer the beginning of the sheath solution to qp, so as regards ion
and electron space charge concentrations and ion velocities but to retain
the correct value of initial electric field.

The next integration has to be performed in three steps, namely;
A. By expansion in a Taylor Series at g, =go, giving

E= 3/ )in, 2t (z, —',i
—

r 1o.
' ' —(1/2) 1—

$8 'gO Q8gp

gD 4vo(ne 'e)—
for the range qo(g, ~2qo. Putting go=0.736 for Case CI- X the value of
f for rI, =2iie becomes

1.472

= —0.449 —1.23 In ($8qe) .



906 LBIVI TONKS AND IRVING LANGMUIR

B. By quadrature of Eq. (74) neglecting (4/977, '72)qM7l&, giving for Case
CI)

5]7.472

1.472 2.944

2.82 4.40

in the range 2gp+g +6&p.
C. By integration of Eq. (74) neglecting the exponential (electron space
charge) giving, finally

$ = (77 '72+2. 88) (g, '72 —1.44) '72 —0. 10—1.23 ln (4178714) (75)

for Case CI.X when 71, ~6772, $ being measured from s2.

In Run 37a already cited, it was found that 5g&=0.045 when $=0.05.
We have also found that the potential of the tube wall is given by g„=
6.30 = g +gp

—gp. whence q, = 5.88 and

$„=5.16—1.23 ln (q9774) (76)

where $„measures the sheath thickness on a non-conducting wall. Thus
$ = 12.7 whereas the same ion current space charge limited in the absence of
electrons would give

$ =(5.88)"4=3.78.

This sheath, then, is 3.3 times what might be called the normal thickness.
In Run 346 (0.5 amp arc) f7714 =0.12 for @=0.05 and $ =11.4.

The exact sheath solution would not involve P which is a measure of the
error tolerated in the plasma solution before it is abandoned, and con-
sequently the presence of Q can be used to estimate the degree of approx-
imation involved in Eq. (75). Since 6774 varies with &f&

~4, the term which
is variable in P becomes —0.81 in/. Thus a two-fold change in @ causes a
change in t of only +0.56 which is less than errors introduced in the in-
tegration of Eq. (74).

The relation between $ and the tube radius is most readily obtained from
Eq. (73). Putting p for As/s2, the fraction of the tube radius occupied by
the sheath, this gives

p = (2/3s2) (A/s2 h2) 272$

In Case CI.X this becomes

(78)

Whence, in Run 37a, p =0.015 and in Run 34b, p = 0.065

V. EFFECT ON THE PLASMA OF AN

ION TEMPERATURE

Up to this point the theoretical treatment of the plasma has been based
on the assumption that newly formed ions start from rest, whereas it is
most reasonable to suppose that they actually possess the velocity dis-
tribution characteristic of the gas atoms from which they have just been
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formed. W. Schottky's treatment" of the short mean free path case includes
consideration of such an ion temperature. Here the long free path case is
handled. In view of the result that the difference in voltage between the
potential maximum and the sheath edge is of the order of T,/11, 600 in the
cases so far discussed, whereas any ion temperature eRects would probably
be confined to a voltage difference of T„/11,600, (T„=T,) this assumption
appears to be justified in the main. Only in the neighborhood of the potential
maximum could the ion temperature conceivably inHuence the result ap-
preciably, and it is possible to evaluate there the first and second order
corrections from this cause.

Case PLJ will serve as the example. As before q denotes —eV/kT„
but in addition it is convenient to introduce p to denote —eV/kT„The.
plasma-sheath equation now takes the form

A P, 'p+e '7 —m' ' exp p, —p, 1 —I' p —p, 'i' dq,
0

(79)

where P(x) =2~ '"f;e "dt, and q=s(T, /T~)'~' takes the place of s in the
previous analyses. We shall not give the derivation of this equation. Let
it suffice to point out that the first integral gives the density of the ac-
celerated ions originating at values of g, (or IJ.,) less than g(os) and the second
integral gives the density of the retarded ions originating at values of
g, ( roy, ) greater than g(or p) and that these expressions include the flow of
ions across the potential maximum. The two integrals can be rearranged
to give

00

s'"' exp (p p, )dq, s'" — exp —(g p,)P((p p,)—'")dq, . —
0 0

Assuming the solution

p, =Bq'+Cq4+

p, =Bq,'+Cq, 4+
(80)

the first integral immediately above, which will be denoted by II&, becomes

H, =7r"'el' exp ( Bq,' Cq, ' —)dq, .— —
60

Now, to the present degree of approximation

C 0

+C(dHg/dC)c 0

'7 Schottky, Phys. Zeits, 25, 342 (1924).
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by a Taylor Expansion, so that

RIld

qz+C q'z q & ez
diaz

0 0

H, = (s /'28'r') e [1—3C/48']= (rr/, 28"t') (1+p) [1—3C/48'] .

The second integral expands to

[(~ I" )'"+—(213)(~ ~ )"'+
0

Using the assumed solution we have

H& 2[(Bq——'+Cq Bq.' B—q, ') '~'—+(2/3) (Bq'+Cq Bq, ' B—q, ) '~'—]dq,
0

and applying the same method as before

EIg ——(rrB"'q'/2) (1+Bq'/2+ Sq'C/SB) .

Eq. (SO) can be written

q' = (p/8) (1—pC/8'+ ) .

Using this to express H2 in terms of p, we have

H2 ——(are/28"') (1+@/2 3cp/SB')—

If T~/T, be noted by 7 then q =ry and Eq. (79) can now be written
'

p, +e '"—Hq+B2 —0.

(Sl)

Neglecting A'p, 'p, expanding e '&, substituting for HI and II&, and equating
sums of coefficients of like powers of p to zero, it is found that

1—(+/28'i') (1—3C/48') = 0

—.—(~/28 )(1—3C/48)+~/28 '=0

whence

8 = s. /4(1+ r) C = s r/12(l + r)

Noting that q'=s'/r and y = rl/r we thus find for Eq. (S1)

s= [2(1+r)rj't /rr] [1—2g/3(1+r)+ ]

for the plasma solution in the neighborhood of s=0, at which place, as has
been pointed out, the ion temperature will have the maximum effect. Com-
parison with the solution originally obtained (Table Iib) shows that the
distortion introduced by the finite ion temperature is only of the order of
Tr/T„a very small quantity in most cases.
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VI. PQTENTIAL DIsTRIBUTIoN IN THE PLAsMA

PART II—INTERNAL PLAsMA

The cases hitherto treated have all dealt with outward motion (in the
extreme case parallel motion) of the ions toward an external collector.
If, however, a negatively charged electrode is placed in the midst of the
plasma this electrode becomes surrounded by a potential maximum and an
entirely new condition arises in which the ions generated inside that max-
imum How inward while those generated outside How outward. Among
the three plasma shapes already investigated it is evident that in the plane
case the introduction of an additional infinite p1ane electrode parallel to
the wallsleaves the problemformally unchanged. On the other hand, introduc-
ing an axial cylindrical electrode in a cylindrical tube, or a central spherical
electrode in a spherical bulb does change the problem. It is readily seen that
the lower limit of the integral expressing the ion concentration in the plasma
equation, Eq. (14) for instance, must lie at the potential maximum. Thus,
to deal with the new cases, the zero limit of the integral has to be replaced
by the finite value of s, say S, which corresponds to the radial distance of
the potential maximum. Hence, the equation becomes,

e
—

& —s—
& s,t'e &» q

—
q

—"'ds, =o.
S

(82)

As before, . an expansion in series can be attempted,

s —S= (2/s)g'"(1+age+ )

outside the potential maximum and

s —5= —(2/s) s't'(1+ b,g+ )

insidethe potential maximum. The coe%cients al, a2, . . . , b&, b~, . . . , are func-
tions of S. Unfortunately, for the smaller values of S these series do not con-
verge for all values of g less than go with the result that rigorous solutions
would be most complicated even if at all possible. It is questionable whether
any involved mathematical investigation which is intended to cover
electrodes of all sizes is justifiable. "

But the case of a very small cylindrical collector is of particular impor-
tance, because fine wires are often used experimentally as probes. In this
instance the external plasma, namely that part. of the plasma outside the
potential maximum, very soon becomes indistinguishable from the plasma
about an axial potential maximum. and equations already derived can be
applied. Inside the potentia1 maximum an approximate mathematical
method can be used. This method was employed before the rigorous solution
of the long free path plasma equation had been found and applies strictly

"In the very short mean free path cases rigorous solutions are readily obtained. These
solutions involve the zero order Bessel Functions of both the hrst and second kind in the
cylindrical case and (cos s)/s as well as (sin s) js in the spherical case.
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only when ionization is uniform. It gives the comparative results shown in
Table IIb.

The approximation is made by supposing that the ion density at A
Fig. (7) is caused by ions starting from the potentials lying on the broken

Fig. 7. IllustratinI, the approximation made in solving the internal plasma case.

line AstS rather than from the potentials lying on the actual potential
curve ABS. Ast is tangent to ABS at A. On this basis

g, =q+(s, —s)g' when s&s, &s,

q, =0

s,-s= -g/g'.

when st (s,(S

These are the quantities now to be introduced in the integral of Eq. (82)
after making that equation apply to uniform ionization (» & =1) and to
the cylindrical case (P= 1). The integral breaks up into two parts

st pS
(—q') '"

J
s,(s, s) '"»ds, +g —'" )' s,ds,

8 st

which combine to

'~' [(5' s')/2 sg/q—'+ (q/q—') '/6] .

Dropping (q/g')'/6 because it is always negligible we have the approximate
differential e'quation for an internal cylindrical plasma

» » q'~' [y' s—')/—2s q/q'] =—0. —

The substitutions o = s/S and f = g'~'/5 convert this equation to

2of'» " +o'+ofdo/df 1=0. —

In the limit, when S is zero, c ~'&'= 1 and

2of+ o'+ ofdo/d f 1= 0. . —

(83)

(84)



THEORY OF THE ARC PLASMA 9ii

The solution of this equation which satisfies the boundary conditions at
s =5, (i.e. , at o = 1) namely, that I =0 and df'/do =0 there, is

or in terms of s and q,

2f(o+f)+ln (1—2of) =0 (85)

(2/5 )2( /+2/s'2/ )2+1 n(1 —2s2/"/2/52)=0.

Fig. 8 is a plot of this limiting form of the plasma equation. With increasing
2/ Eq. (85) rapidly approaches the limiting form

2g| = 1 —q
—2t' —& = 1.

20 2.0

/6

/4

/2

0.4

./~ L
O.Z O.Q 06 C,8

Fig. 8. Limiting form of potential distribution in plasma.

Thus when '
2// /2)51 the internal plasma solution may be written

4/ =54/4s'. (86)

If as before, Eq. (61) be used as the criterion for the failure of the plasma
solution as the sheath is approached, the limit of validity is again given
by that equation. In our present approximations, however, e & may be taken
as unity and it is found that

54/s44 = 1t /A, s4 =5(A/y) "4 —52/1/2/4A 1/2

Thus, choosing /=0. 05 it is found in the two cases previously cited that
s ~ = 0.0571S, g &

= 78.8S' in the 8.0 amp. arc of Run 37a
s~ =0.123S, g~ =16.3S'in the 0.5 amp arc of Run 34b.
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In order that errors arising from putting e &=1 should not be serious,
it may be insisted that for the present approximation j~(0.25. It follows
that in Run 37a, S&0.056 whence s~& 3.2 X10 ', or in terms of fractional
tube radius se(int)/sz(ext) &4.1&&10 '. In Run 34b these quantities come
out S&0.124, se&.0153, se(int)/se(ext)&0. 0197. Thus, for the present
formulae to hold within the approximations stated, the radius of the probe
used in Run 37a would have to be somewhat less than 1/250th of the tube
radius and in Run 34b somewhat less than 1/50th. Further quantitative
relations depend on the possession of an adequate sheath theory for this
case.

A striking feature of the internal plasma is the very uniform potential
throughout all but a small portion near the internal electrode. Thus Eq.
(86) shows that'when s=S'/2 then ri=S'. Accordingly, at least three-
quarters of the ions generated in the internal plasma are formed at less than
g = S' below the maximum. Even though S be as large as 0.1, the majority
of these ions will possess enough thermal energy to cross the potential
maximum and escape from the probe vicinity, for the ratio r=T„/T,
is rarely less than 0.01. This means that the trapping of ions by the potential
maximum is relatively unimportant in the case of a one wire probe. Of the
ions reaching the probe only a' small fraction may originate within the in-
ternal plasma; the vast majority have crossed the maximum from the out-
side. Thus the negatively charged probe can be treated on the present
theory just as it was on the old.""

The important case appears to be that in which the collected current is
limited by orbital motion. The equation for the resulting volt-ampere char-
acteristic may be written"

i„' (4A'I=„'/rr)( eV,/kT„+1)— (87)

wherei„ is the positive ion current to the probe, 2 is the probe area, I„
is the positive ion current density in the plasma about the probe, and
U, is the negative probe voltage measured with respect to the potential
maximum in the plasma. Thus if the square of the observed current i„
be plotted against the collector voltage U, a straight line will be obtained
whose negative slope 2 is given by

I /T ""=(ark/4e)'r'Z"~ /A. (88)

In the previous applications of this theory it has been assumed that I„
at the tube axis was substantially equal to its value at the wall, and on this
basis values of T„were calculated which were comparable with T,. It will
be observed, however, that in view of the general kinetic theory relation

(I/e) T""=m(k/27rm) 'I'. (89)

"L and M-S, Part I. The next few equations are taken directly from this article.
"H. M. Mott-Smith and I. Langmuir, Phys, Rev. 28, 727 (1926).
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Eq. (88) can say nothing regarding I„and T„ individually. It can yield
only the ion density in the plasma near the probe

e =(sm /2e)'~ 2 ~ /Ae= 3.32&& IO '(m /nz, )'~ Z'~'/A cm '

if Z is expressed in amp. volt ' '. It might appear possible to use the ad-
dition of unity to eV, /—kT„ in the second factor in the right member of
Eq. (87) for determining T„and I~, but the extrapolation required and the
uncertainty of the zero point of U, among other factors make such an at-
tempt futile.

Although Langmuir and Mott-Smith have apparently used this method
for measuring ion density with success, two diAiculties appeared in the tests
already tabulated in Table III. The first is evident in the table, namely
that the apparent density (Column 6) obtained for the ions in this way has
approximately twice the value of the density found either by Eq. (55) or

l.o

istic of fine cyli, ndrica 1,
be coltsctirlg ion~
snturate, d gt O'C

c currant 3 zxrrlp.
l.5.YY1. Sx10 cm, 1ensth 1.55cm

-30 -40
volts

Fig. 9.

-30
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pote ll t Iht

-20 ~-l0

from the positive branch of the volt-ampere characteristic of the probe, as
treated in Section VII. The second difficulty is illustrated by I ig. 9, where
it is seen that the straight line coinciding with the upper portion of the curve
cuts the axis not at the space potential as theoretically required, but some
6v. negative to it. Only the first run was normal in this respect. Neither
of these difficulties casts serious doubt on the proposed theory; because the
questions raised pertain rather to the theory of the collector. Quite apart
from any plasma theory the ionization densities as determined from the two
ends of the volt-ampere characteristic should agree, and yet there is the
two-fold difference between Columns 6 and 7 of Table III.

If probes of greater and greater diameter be employed there are two im-
portant effects. The diameter of the potential maximum increases and as
a first result the number of ions generated in the internal plasma increases
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more rapidly than the number crossing inward over the potential max-
imum. This occurs because the former number is roughly proportional to
the cross sectional area of the internal plasma, while the latter is proportional
to the perimeter of the cross-section. As a second result the average potential
within the internal plasma decreases with respect to the maximum so that
a smaller proportion of the ions generated inside the maximum escape.
The progression of these two factors thus accomplishes the transition from
the condition where the small electrode only intercepts a part of the low
temperature random ion current which is Hovving around it to the condition
where the large electrode determines a volume in the plasma from which
it drains all the ions generated there.

VI I. POTENTIAL DISTRIBUTION IN THE PLASMA

PART III—THE VICINITY OF A POSITIVELY
CHARGED ELECTRODE

It has been pointed out that if an electrode whose exposed area is just
sufficient to receive a random electron current equal to the arc current,
be used as anode, there is zero anode drop. " If the electrode area is greater
than this critical area the anode drop is negative, if less than this positive.
A collector having an area equal to or greater than this critical area in a
discharge tube carrying a fixed arc current can be maintained at any de-
sired potential negative to the plasma without having any material effect
on the plasma potential, as this is fixed by the anode. If, now, the collector
potential is raised past the anode potential, the collector becomes anode and
the plasma potential rises with it, the original anode thus taking the role of
negative collector. Only when the electrode area is but a small fraction of
the critical area can it be maintained at a voltage considerably positive
with respect to the plasma. -

The simplest case to consider is that of a small wire in a plasma of large
dimensions relative to it. This case has not, as yet, been treated quanti-
tatively since qualitative considerations seem to suffice for the present.
The potential distribution is of the type shown in Fig. 10. The space charge
in the sheath is made up of orbital electrons and out-going ions which have
been generated in the sheath and whose space charge contribution may
be very small except near the sheath edge. The electric field decreases to
zero (or at least a very small value) at the sheath-edge or plasma potential
maximum, and from that point out the potential distribution is approxi-
mately normal. There are two disturbing factors, the drain of electrons from
the plasma and the ions Howing outward from the sheath. Over wide ranges
of potential on a fine wire the former results in only a very small electron
deficiency and even when this becomes considerable it is compensated by
the proportional decrease in ion generation. The second factor can be
compensated by a slight increase in curvature of the plasma potential
curve which causes a decrease in the space charge contribution from ions
generated immediately outside the sheath edge. Thus a positively charged

"Land M-S, Part IV, p. 766.
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electrode of this type does not affect more than a small region in the plasma
and the theory of electron collection which calls for a straight line jP —U
plot as previously outlined applies. " Ionization densities calculated in this
way have already been given in comparison with the results of other meth-
ods in Table III.

It is probable that the thickness of the electron sheaths in such cases
is considerably greater than the value obtained from the ordinary space
charge equation because of neutralization of electron space charge by ions
generated within the sheath. They are generated there at a greater rate
per electron than at the plasma potential maximum because of the higher
electron velocities. " But this greater rate of generation does not lead to
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Fig. 10. Potential near a positively charged cylinder.

a net positive charge as the large electric field rapidly gives the ions consider-
able velocities. At the plasma potential maximum, however, the space
charge neutralization is practically complete. Accordingly, near the sheath
edge (plasma potential maximum) and for some distance within it there
will be appreciable neutralization of electron space charge by the ions. The
resulting increase in the sheath thickness may be sufficient to make orbital
motion the factor' limiting the current to the electrode even with electrodes
of comparatively large diameter. Such a collector has actually been found to
give an approximately linear i.' —U plot at small positive potentials. "

A more complicated case is that of a small positively charged electrode
on the tube wall. Collector II,35 a square plate 1.9 cm on a side, bent to
fit the wall of the 3.2 cm diameter discharge is such an electrode. Fig. 4"
shows that with 2 amps. leaving the cathode, a constant current of 1 amp
reached this collector in the voltage range —10 to —Sv measured with res-

~2 L and M-S, Part I, p. 455, and Part III, Fig. 10.
3' See Section VIII (3).
'4 L and M-S, Part III, Fig. 11~

'5 L and M-S, Part II, Figs. 3 and 4.
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pect to the anod'e. The present theory makes a rough calculation of the mag-
nitud. e of this current possible, " As the potential of H was increased up to
—10v,the maximum plasma potential opposite it in the discharge tube re-
mained fixed at —10v. (Strictly speaking, of course, there is no potential
maximum in the plasma near II because of the arc gradient, but the resulting
differences of potential over thewidth of Hare so small compared to the radial
plasma potential differences that the arc gradient is neglected in the present
discussion. ) If, as the potential of H with respect to anode was still further
raised (the total arc current being maintained constant at 2 amp. ), the plasma
had tended to rise with it, the whole arc current would have Howed to it
immediately. This is what would occur with a collector somewhat larger
than H, as was pointed out at the beginning of this section. But as H varies
from —10 to —5v the maximum plasma potential opposite remains practi-
cally constant at —10v. The existence of the saturation current is then ac-
counted for in the usual way by the formation of an electron sheath over
H so that the whole random electron current crossing the sheath edge is
captured by H, whereas no ions can reach it.

A fairly good approximation to the conditions in the adjacent plasma
when H is drawing its saturation current would be obtained if H were re-
placed by an orifice in the tube wall opening into a second discharge tube iden-
tical with the first in size as well as excitation. The most important difference
is that in this hypothetical case electrons travel both ways through the ori-
fice, but this is not thought to be an essential difference since the actual
one-way How results to a first approximation only in lowering the electron
density to one-half, the ion density dropping in proportion due to the pro-
portional ionization. Our hypothetical picture shows that for small openings
there is a saddle-like potential distribution in the hole, the pommel lying
in one tube, the cantle in the other. As the size of the hole is increased the
plasma maxima in the two tubes approach each other along the hole axis,
finally merging into a single maximum at the center of the hole. This size
undoubtedly corresponds to the size at which H would become anode as
soon as it reached plasma potential. Since this did not happen, the plasma
maximum lies some distance from the edge of the sheath on H. Thus we
may adopt the plasma maximum as the upper limit of the plasma potential
in contact with the sheath edge at the center of II.

The radial motion of the ions over the cross-section of the hypothetical
hole is so similar to their motion in a cylinder that we are led to use the same
mean value of e & over the sheath edge of H as over the cross-section of a
cylinder, namely, 2&o [Eq. (53)]. Then applying the Boltzmann Equation
to the electrons at the sheath edge the current density is found to be

e "rloe(kT,/2m') "'.
at any point of H and to average

I,= 2kpep(k T,/2s-nz, ) '"
over the whole of H.

36 See also the treatment of this given by I. Langmuir, Phys. Rev. 33, (1929}.
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The use of the Boltzmann Equation in this case where accelerating fields
are involved needs some justification. The hole analogy indicates that the
plasma equipotentials are perpendicular to II at the sheath edge, so that
with respect to tube radii the plasma potential at II is a minimum. In addi-
tion the accelerating field from the edge of II toward its center is similar in
nature to the accelerating field toward the axis of the discharge tube which
does not lead to any apparent discrepancies, and the fiow of electrons' toward
II across the sheath edge is analogous to their longitudinal drift in the dis-
charge tube. The chief effect of the accelerating field at II is to reduce the
electron density at the sheath edge everywhere to one-half normal, the effect
of which has already been dealt with.

Combining the equation for I, with Eq. (55) the ratio of I, to I„is found
to be

I,/I„= (m„/m, ) ' "/s'~'so

=0.731( m„ /m)'"
(90)

which, in the case of Hg gives I,/I~=444, as an upper limit. This is to be
compared with the average experimental value 380 of six low pressure runs. '

VIII . GENERA L ARC RELATION S

It will be shown in this section that the plasma balance equation com-
pletes the number of relations necessary to determine all the variables of
the positive column of an arc as a function of one of them. Although all
these relations are recognized qualitatively, the complete quantitative for-
mulation of certain ones is lacking. For this reason the discussion under-
taken here is to be regarded as suggestive of the possibilities offered by the
theory and also as serving, perhaps, to define the problems still awaiting
solution.

The variable quantities involved in the positive column of an arc may be
divided into. two classes, the independent and the dependent. Among the
former belong the gas used, the tube radius a, the gas pressure p„and the
wall temperature, which, in case the atomic mean free path is comparable
with c, may be used for the gas temperature T,. One of the arc variables
proper must also be included in this category —experimentally it is usually
the total arc current i~. The dependent variables are, therefore, the axial
electric field Z, the electron density in the axis no, the electron temperature
'1„ the positive ion current density at the wall I„, and the number of ions
generated per electron per second, ) . These variables are five in number and
five equations will be required for their complete determination. These
equations, involving various more or less accurately known relations and
constants will be discussed individually for the low pressure (Case CI.X) arc.

(1) The Plasma Balance Pguati orl, Eq. (46). 'Th. is is the essentially new
equation given by the present theory. When the wall sheath is not thin the
tube radius a must be corrected by using Eq. (77). Further, this equation

'7 L and M-S, Part II, Table III, Runs 34b to 37a.
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only applies strictly when ions are formed by a one-stage process, for only
in that case is the ion generation at a point proportional to electron density.
In the hypothetical case that ion generation is entirely a two stage process,
the rate would tend toward proportionality to the square of the electron
density. Now the transition from uniform ion generation to ion generation
proportional to the erst power of electron density causes so to go from 0.5828
to 0.7722. Hence the further complete transition to proportionality to the
square of the electron density would probably cause a further comparable
increase in so. It seems probable, however, that not until high arc current
densities and high gas pressures as well are reached will this effect on so

become considerable, for so depends on the distribution of the ion production
through the tube cross-section and not on its magnitude. Thus the ionization
of excited atoms may be contributing electively to the total ionization, there-
by causing the "constant" X to increase with i&, but as long as these excited
atoms are distributed with fair uniformity over the tube cross-section (as in
the case at low pressure) s» will be but slightly affected.

(2) The Ion Curren-t Equation, Eq. (55A). Deviations from the one-
stage ionization process will also affect the accuracy of this equation. But
since soko changes only from 0.2914 to 0.2703 in passing from uniform to
proportional ion generation this equation is much less dependent on ioniza-
tion mechanism than is the plasma balance equation.

(3) The Ion Generation Equat»ou. In accounting for the ion generation
Killian" has assumed that the ionizing is done by those electrons in a normal
M. D. which possess velocities greater than the equivalent of the ionization
potential U; of the gas. As Killian points out, it is sufhcient for this purpose
to represent the ionization probabilities at the lower voltages only and these
are given accurately enough by the relation

(91)

where I' is the number of ions generated per electron per cm of path at
gas pressure p, and temperature T, (the really significant variable is density)
and where 8' is the equivalent voltage of the ionizing electrons, U; is the
gas ionization potential, and P is an experimentally determined constant.
It is the slope of the I' vs. TV curve reduced to unit pressure and temperature.
Using W, for T,/11, 600 the calculation of X on the basis stated gives

X=6.70X10 P(p»/T»)W "'(2+V/W, )» v"~' (92)

Judging from the shape of the experimental probability curves" it seems
more reasonable to assume that initially I' is proportional to the excess
velocity of the electron rather than its excess energy. The only effect of
this assumption is to change the 2 in the parenthesis of Eq. (92) to 3/2.
Thus, putting

fr= 6.70&&10'(W,/V~)'"(3/2+ V /W, )» (93)

' Forthcoming article in THE PHYsIcAL REvIEw,
' K. T. Compton and C. C. Van Voorhis, Fig. 6, Phys. Rev. 26, 436 (1925) and T. J.

Jones, Fig. 2, Phys. Rev. 29, 822 (1927).
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and

we have

~~ =Pl""'(pg/T. ) (94)

(95)

A plot of fq facilitating calculations of 'A is given in Fig. 11. From Compton
and Van Voorhis PP, /T, is 1.4 where P, = 1 mm = 1330 baryes and T, is
room temperature, that is about 300'K." Thus P =0.31 for mercury vapor.

&0

io4

Y/1/~ro'
6 8 io

Fig. 11. Variation of relative ionizing power of electrons with their equivalent voltage.

Also, V;= 10.4. For the case illustrated in Fig. 3 we may assume T, =400'K
roughly. Correcting 0.27 baryes, the vapor pressure of Hg which is saturated
at 1.4'C, for thermal effusion it is found that p, =0.33 baryes, whence
n&, =0.0086. Since T, =38,800'K, V;/W. =3.11 and from Fig. (11) fr=2.5

X 10' giving X = 2 1 X 10'. Eq. (48) can also give avalue of X. Using a = 3.1 it
is found that ) =4.5&&10' which is rather satisfactory agreement in view of

(a), large uncertainties in p, and (b), the large errors in fq which arise from
small errors in T,.

Thus the plasma balance equation and the ion generation equation to-
gether constitute a pair of simultaneous equations in the variables ) and T.

By letter K. T. Compton has explained that the pressure of 1 mm, given in Fig. 6 (loc.
cit.) corresponds to the initial temperature of the ionization compartment before any heating
occurred there.
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only, which should fix these two arc variables irrespective of the others.
The simultaneous graphical solution of the two equations is given by Fig. 12.
The relatively small changes in T, for large changes in a and o.), is evident.

The fact, however, that T, does vary with arc current, decreasing jn
general with increasing current, indicates that two-stage ionization processes
contribute appreciably to the total ionization. How important such pro-
cesses may be is shown by a comparison of the values of ) given in the last
two columns of Table I. These values were calculated in the same way as
the values of 'A for Killian's results. The fifth column gives the rate of ion
generation necessary to maintain Lhe plasma, the last column the rate at
which the one-stage process can supply ions. The rapid failure of this source
of ionization with increasing arc current is evident.

l5.o

5;0

0'

0/0 rZO 30 40

Fig. 12, Simultaneous solution of plasma-balance and one-stage
ionization equations.

Unfortunately a new element of uncertainty has been introduced in
the attempt to confirm Eq. (95) further by the additional experiments
already mentioned in connection with Table III. It is to be noted that the
electron temperatures there listed are considerably lower than those found
by Killian, who for instance found 38,800' under apparently the same con-
ditions as those which gave us 27,800' as listed in the second row of Table
III.

(4) 3SIobiliry Equation. Killian has used" Langevin s Mobility Equation

p, =0.75el,/m, v, (96)

where p, is the electron mobility, l, the electron mean free path and 8, the
average thermal velocity, to calculate the electron mean free path from the arc
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current i~, arc gradient Z, and X the number of electrons per cm length of
column through the relation

i~=Nepg (97)

The value so obtained checks well with the accepted value. Combining
these two equations and noting at the same time that v, =2(2kT, / nm)' 't

and that
¹

is given by Eq. (54), it is found that

ie =0.75m'"hoe'a'nol Q/(m. k T ) '"
= 8 7 y 10—~oa2nol, Z/T, ~ &2

(98)

(99)

for Hg in practical units.
(5) Energy Balance Equation Altho. ugh the types of energy loss in the

positive column are probably known, their quantitative formulation is not
p6ssible as yet. The power input is, of course, i~Z per cm of tube. Of this,
the kinetic energy of the ions striking the wall accounts for approximately
27raI„(rt„—0 3)kT, /. e ergs sec —1, the 0.3 being estimated as the average
potential drop in the plasma. The electrons striking the wall account for
27raI„2kT, /e and the heat of recombination for 2naI„V; watts. In addition,
the ions will, on the average, have fallen through various distances parallel
to the axis before striking the wall and wi11 therefore dissipate additional
energy there. The energy which the electrons lose in their elastic collisions
is probably negligible, "but this cannot be true of their inelastic collisions
which do not lead to ionization, those which do lead to ionization having
already been counted at the wall. Certain unknown probabilities are involved
in these processes but no new arc variables.

The power immediately accounted for is thus

27raI„[8.0T./11, 600+V;j watts.

Applying this to two typical cases, a 1 amp and an 8 amp arc at low pressure"
it is found that only 0.31 to 0.28 of the energy is accounted for in this way,
necessitating a detailed investigation of the radiation loss and of the other
more obscure factors.

Schottky' treatment of the positive column In hi. s arc theory Schottky4'
combines his plasma solution directly with the plausible assumption that
X.X is proportional to iIiZ for different tube diameters to obtain the import-
ant result that arc gradient is inversely proportional to tube diameter if
electron and ion mobilities remain constant. Certain experiments of Claude
in neon in which the product Za [Schottky's (c7 V/BZ) R] was found to be
constant appear to conhrm the original assumption. The practical value
of this treatment cannot be denied, but from a more fundamental point
of view such a short cut evades some of the basic relations in an arc, all of
which must be woven into any comprehensive theory.

4' Runs 35a and 37a of L and M-S, Part II, Table III.
42 W. Schottky, Phys. Zeits. 25, 635 (1924).
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Stabilify and osciaa60ns. The plasma balance equation represents an
equilibrium but it is not obvious that it is a stable equilibrium. Instability
of one type in a mercury cathode arc is certainly shown by its negative re-
sistance. But there seem to be other possibilities also. Thus if we suppose
that due to statistical fluctuations in the electron velocities the rate of genera-
tion of ions in a certain cross section of a positive column is momentarily
A+6, what will ensue? The plasma balance equation tells us that X+Q.
corresponds to a sma11er tube diameter than X, that is, that the plasma field
is stronger and that the ions will, consequently, flow out faster. But this
increased field and increased positive ion density result in an increased poten-
tial at the tube axis in this region, at least while the excess ions are flowing
away. This, in turn, by unduly accelerating electrons causes further excess
ionization in this cross-section. At the same time, to the anode side of this
region there will be a deficiency of ionization, for there the arc gradient will
be less than normal. Will such a lump of excess ionization be dissipated
more rapidly than renewed? Will the general drift of ions toward the
cathode carry it as a wave in that direction?

If a positive column is maintained by an anode of such size that it has
a negative anode drop, there is an absolute potential maximum in the plasma
near the anode. At that place one should expect to find more and more
electrons trapped because of inelastic collisions made nearby. This would
mean a progressive decrease in their effective temperature. Does the same
mechanism which accomplishes the rapid recovery of a disturbed M. D. else-
where in the positive column operate in this region also, preventing the aver-
age electron energy from decreasing? Or do the electrons accumulate to a de-
gree where new forces predominate which allow them to dissipate once
more?

A study along the lines indicated by these and possibly other similar
questions may lead to further insight into the oscillation behavior of arcs.


