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ABSTRACT

By the aid of the hypergeometric function with two variables, the transition
probability in the sense of the quantum mechanics between two states with positive
energy in a central field due to nuclear charge Ne has been calculated. When the
transition probability calculated is applied to the intensity of continuous x-rays,
the spectral energy distribution, which is nearly independent of the frequency of the
radiation emitted, has been obtained. As the result of the present computation,
the dependence of the intensity for the isochromat I„on the applied voltage V is
somewhat Hatter than the result expected from the law I„1/V. The isochromat ex-
periments by Kuhlenkampff for the continuous x-rays emitted from a thin target
show a good agreement with the values computed here. The polarization and the
angular intensity distribution of continuous x-rays have been discussed.

HEN we want to attack the problem of the intensity of continuous
x-rays by the wave mechanics, we have to calculate the transition

probablity between two so-called hyperbolic orbits defined by (K, k&, m&)

and (E„k„m,), where E& and E, are positive. The emission spectrum of
continuous x-rays has been investigated by a number of physicists theo-
retically' and experimentally. ' The special points to be solved theoretically
are the dependency of the spectral energy distribution of the polarization
and of the angular intensity distribution for the continuous x-ray spectrum,
on the velocity of cathode rays, and on the mater'ial used as the target.

The object of the present paper is to compute the transition probability
between two states with positive energy in a central field due to a nucleus
of charge Ne, in order to get the relation between the intensity of continuous
x-rays and the velocity of the cathode ray electrons and the material of the
target, from which the spectral energy distribution can be obtained.

With regard to the angular intensity distribution of continuous x-rays,
even by the classical quantum theory it has been rather hard to solve with-
out any ambiguity. We should attack this problem by taking Dirac's idea
for an electron which encounters a nucleus with the resultant emission of
radiation, but it seems to be diffIcult to get a result without some assumption.
The author would like to leave this problem to be solved in the future.

2. EMISSION OF CONTINUOUS X-RAY RADIATION FROID AN

INFINITELY THIN TARGET

In the case of the continuous x-ray spectrum emitted from an infInitely
thin target bombarded by cathode rays, we may take the cathode ray electron

' A. Sommerfeld, Phys. Zeits. 10, 969 (1909); H. A. Kramers, Phil. Mag. 46, 836 (1923);
G. Wentzel, Zeits. f. Physik 27, 257 (1924).

' Handbuch der Physik, Bd. xxiii, Chapter 4; H. Kuhlenkamp8, Ann. d. Physik 69, 548
(1922); 87', 597 (1928); W. Duane, Proc. Nat. Acad. Sci. 13, 662 (1927); 14, 450 (1928).
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and the nucelus of an atom in the target as one system. If we may speak
of a model-like atom, the cathode-ray electron might be assumed to be on
an hyperbolic orbit whose focus is the nucleus of the atom. The continuous
spectrum is emitted by the electron's transition between the two hyperbolic
orbits. The initial state is given by the applied voltage U for the cathode
rays —the energy W& ——mc'[1/(1 —P&')'" —1I =eV where P, =v, /c—and also
direction relative to the atom. When we use the suffix 1 and 2 for the initial
and final state respectively, the principle of energy conservation gives

n'i ——hv+ w2+ —,m)'.

Since the final momentum of the atom is of the same order of magnitude
a's the momentum of the electron and since its mass 3II is of the order of
104 times as great, its kinetic energy &2IIIv' will be negligible compared
with that of the electron.

From Einstein's idea, we can generally express the intensity I of the
continuous radiation per electron emitted from unit cross section of an in-
finitely thin target per unit time, by the aid of the transition probability
As', between two hyperbolic orbits (K = W~/Rh, ki, rn&) and (E„k„m2):

I=ÃpA 'hv,

where Xp is the number of atoms per unit cross section of the target in the
initial state at a time t=0. So far as we are concerned with the total in-
tensity without considering a special direction of the observation of the
radiation, the intensity is given by (2) and the transition probability As,
between two hyperbolic orbits in an atom of nuclear charge ¹ can be cal-
culated from the matrix element'.

Compare the expression for the hydrogen atom, Y. Sugiura, J. d. Physique, 8, 113 (1927).
The applicability of the matrix element (3) is restricted to the case where c/v is large com-
pared to the region of space over which the wave functions P differ appreciably from zero.
When we want to solve the intensity problem of continuous x-rays, since c/v is quite small
and P's do not converge to zero very rapidly, we have to take into account the phase variation
inside of the atom. (I should like to express sincere thanks to the Editors of the Physical
Review for their kind comments on this point. ) Consequently we should have to carry out
the integral

Q

instead of (3), in order to obtain the retarded coordinates matrix element required in the
present problem of x-rays, corresponding to the radiation emitted by the transition between
two states defined by the normalized wave functions p& and && in the direction of the unit
vector I, r being the radius vector. We have here to note that we are not treating the per-
turbation due to radiation in the present calculations, as has been done by A. Rubinowicz
(Phys. Zeits. 29, 817 (1928); Zeits. f. Physik 53, 267 (1929)).

Taking the direction of the observation of radiation as the s-axis, and expanding the
exponential factor exp|—2~iv&, &Z/cJ into series, we can easily find that the selection principle for
k, Ak = +1, does not hold for the second term in the expansion, the corresponding selection
being d k =0 or +2. The third and higher terms may be assumed to give very small contribu-
tion to the sum, Z=Zi+Z~+Z3+ . -, the first term Z~ of which and X-, Y-matrix com-
ponents are the same as those given by (3). Corresponding to the transitions b,k = +1, which
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Taking the sum of the matrix amplitudes square, we can express the intensity
IfeI le for each k~ and k 2

8Z2e2hR' V
4

I2,2, =Eo —————d g(X'+ F' +Z')z, z, ,
3PlG 80 R gfoI mIm2

(4)

where gf, , =2k~ —1 is the statistical weight of the initial state, and R is the
Rydberg constant. On the other hand

d ()0 2

Q(X'+lr'+Z')E)zz=ao'k ao'p'U(E„p)U(Eo, p)dp
d-E2 mImg 0

= &02k ~'f, I„
.k being the smaller value of k& and k2. We obtain therefore the intensity
of the radiation which lies between v and v+dv

kI kg j.

where according to the energy principle (1), E2 ——El —p/R.

(6)

give the principal contribution to the Z-component, the matrix elements are equal to those
calculated by (3), because the second term in the above expansion vanishes for these transitions,
higher terms being neglected. On the other hand corresponding to the transitions lS =0, +2,
the X-, V- and ZI-components vanish, and, in a first approximation, only the Z2-component
remains in the matrix element, which is of smaller order of magnitude than the matrix element
corresponding to the transitions Ak =+1. In a first approximation required here, the matrix
element (3) may, therefore, give a sufficient result to the present problem.

Strictly speaking, as will be discussed later in the section 5, regarding the polarization
and the angular intensity distribution of the continuous x-rays, we ought to apply the Dirac
relativistic expressions for the wave functions to the present calculations, where the idea
of retarded matrix element will play a great role.
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When we specify the direction of the cathode-ray electron and the direc-
tion of the observation of the radiation, we have to calculate the square of
the component of the electric moment in the direction of the observation.
This problem will be discussed later.

3. SQUARE OF MATRIX AMPLITUDES FOR CONTINUOUS

X-RAY SPECTRUM

In order to calculate the transition probability between two hyperbolic
orbits (E1, k1, n/1) and (E2, k2, n22), we have to integrate (5)

Iko'P'U(E1, p) U(E2, P)/fp
0

Putting z =2E""u in the integral for U(E, p), we can express U(Ep)by the con-
Huent hypergeometric function 3IIz,„as follows:

2( 1) 2—1—IN/E1/2

U(E, ) = — f(E)(2 E'")'-'
2pao~/2

Since

r x+—— r

I'(2k)
~

~N/ Elk-k/2(»E, '"p)

J
/
" F(v+1)

g
—~(~, /. +~Pi )f ~gp

I 2(E 1/2+E 1/2) 1 a+1

( 2) ky+kgS —+N(1/EBI2+I IEa112)

4 (E 1/2+ E 1/2) 2
f(E )f(E ) (2E 1/2) ky—1(2E 1/2) kg —1

2E1"' k' 2E 'I' k' F(kk+k2+2) 2E

E 1/2+E21/2 E 1I2+E 1I2 Z'(2k1)P(2k1) E11/2

~ '- '„, ~ '+-'"„, ~ '--'„,
id@ ilV

(k +k, +2, ,+,) 2, + —,, k, +—— .,)00 oo 1/2 1/2

Z Z—
ny=0 n2=0 (2k1, n1) (2 k2, n2) (1,n1) (1,n2)

2E &/~ &1 2jV l/2

p ~/2 +jVg&/2 jV &/2 + jVg&/2

where the symbol

1"() +n)
(X, n)= --—

P(&)

The above double summation is the hypergeometric function of the second
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type Fa(n, p, p', p, p', x, y) with two variables, ' whose parameters are given
by

Since

o.= k1+ k2+2

P = k/+iN/E/'",

y=2k1,
1/2

x= )
1/2++ 1/2

p'= k2+iN/E "'
y'=2k2

1/2+ g 1/2

2 N -»x"'I k

we get

iN
F2 k1+k2+2) k1+—

1/2

iN
k2+————) 2k1, 2k2, x, yg 1/2

NI'(k&+ k +2) I'(k&) I'(k2) x"'y"'
J' i kg+4

2I'(2k')I'(2k2) (E/Eg)""(E&'"+Eg"')'

( 'n'
( ~+ —'

—,,'-) 'n'(~+ —",—,'-) &"'

(l —/, 2+N/E&& &)(I —e 2~N/E~v&)'

where
2E'

(E 1/2+E //2) (E 1/2+E 1/2)

According to the selection principle for k, we have two cases:

k1= k,

k1 k+1 )

k2= k+1,
k2= k.

Regarding P and P, F& is quite symmetrical, so that by interchanging E&

and E2 in J, we can obtain the value of J for the second case from the first.
Putting k1 ——k, k2=k+1, we get'

iN iN
F2 2k+3,k+— ) k+1+——) 2k, 2k+2, x,y

1 g I/2
2

2k —1 I9 iN iN——F 2 2k+2, k —1+——) k+1+—
(2 k+ 2) (k —I + /'N/E/"') Bx g 1/2 g 1/2

2k —1,2k+2, x, y

P. Appell et J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques,
p. l3, Paris, 1926.

~ Formulae of the hypergeometric functions with two variables can be found in the book
by P. Appell, 1. c.
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2k+2
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iS iN iN iN x

k+ 1 —— ~1 k+, k+ 2 ——
~ k+ 1+— -) 2k ) x,—g 1/2 1/2 jV 1/2 1/2

(k+ 1+/'cV/E, '/') iN iN iN+— ——Ii1 k+— ) k+1———) k+2+ —)
1 —y g 1/2 1/2 1/2

.(1O)

By the aid of the following relations:

2k, x,—
1—y

8 pf
xF,(n+ 1,P—+1,P', v+ 1, x, y) + yF, (n+—1,P, P'+ 1,v+ 1,x, y)

=F1(n+1 P P' v, x, y) F1(n,—P, P', v, x, y),
(v —n) (v+1 —n) (v+ 2 —n)

(y 1)'F1(n—P P' v, x, y)= y—'F1(n, p, O', V+ 3, x, y)v(v+1) (v+2)
(v- n) (v+1-n) CL—3 —y'F, (n, P, P' —1,V+2, x, y)+3—yF1(n, P, P' —2, V+1, x, y)v(v+1) v

—F.(-,P, P'-3, v, x, y),

y —x
~ /-, /, S', /+/', , ~/ /~ ~/ F(-,/, /+/', =--

y —1

we can reduce the double summation in I"2 into the sum of the single sum-
mations I"'s, remembering x+y=2 in the present case:

iN iN
F2 2k+ 3,k+ — — —,k+1+,2k, 2k+ 2, x, y1/2 1/2

(2k 1)(] y)
—1—I—iN/Es /1—J, ~,P, P', &

—1,x,—
(2k+2) x 1—

y

—Z, ~—1,P, P';~ —1,x,
1—y

( —1)"(2k—1) x
E +N/E&&/2(1 y) iN(1/E—~l/2 1/E&1/2)— —

(2k+ 2) 1—y
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Putting (11) in (9) and multiplying the complex conjugate, we get the square
of the integral J~, ~,+1'.
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~
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~
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and I'* is the complex conjugate of I'. J2&, I„+1 can be obtained by inter-
changing EI and E2 in the expression (12) for J'2, )„+I. k in both expressions
for J'g„=g,„+1 and. J2q, „I„+1means the smaller value of kl and k2. Owing to the
convergency of the hypergeometric function in (12), it is not practical to use
the expression F (12). When we transform the hypergeometric function
with the variable xy to that with 1 —xy, by using the following formula:

r(v)r(v — —p)
F(~,P, v, x) = F((2,p, (2+—p+1 —v, 1 —x)

r(v —)r(v —p)
rh)r( +P —)+ ——(1—x)& 2F(v 42, v

-
p,

—v+1 —42 p—, 1 x), —(13)— —
r(~)r(p)
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it is practically sufficient for our purpose to take the first four or five terms
of the hypergeometric series. We can moreover simplify the expression P in
the following way: since we have the relations'

1 vIv —1 —(2v —n —P —1)x}F(n,P, v, x)
F(n, p, v —1, x) =-

v(v-1) (1—x) +(v-n)(v-P)»(n, P, v+1, x)

(v n+1)F—(n —1,P, v+1, x) =v(1 —x)F(n, p, v, x)
—In —1 —(v P) x—}F(n,P, v+1, x),

vF(n 1,P, v—, x) =v(1 —x)F(n, P, v, x)

+(v P)»—(n P v+1 x)

we get

F(n, P, vy2, xy)
(v+1—n) I (v —n) h —1 —n) x —(v —n)(v —2)

h —1)vh+1)

+ (v —1—n) (v+1 —P) 2y —(v+1 —P) (v —2)—+ (v+1 —P) (v —P)—}
y'

F(n, P, v+1, xy)

(v —1)v

where

'
h —n)(v —1—n)*—(v —n)(v —2)+ h —1 —n)(v+1 —P) 2y

1—(v+1 P) (v ——2)—+(v+1 P) (v P—) h—+—2) (—v —n)—,(14)
x x x

1—vh+2 —P)—+v(v+2)—
x2 x2

n= k+ia~, P= k+1 —ia2, p=2k,
x —2' 1/2/(g 1/2+@ 1/2) y 2~ 1/2/(g 1/2++ 1/2)

After some elementary calculations we can find easily

—2aj z ++1—A 1y= F(n, P, v+—2, xy) — 1——F(n, p, v+1, xy) . (15)
(v —1)v- v+1 x

Putting (13) iu (15), and taking into account the following formulae:

CY CL

F(n, p, v, x) — F(n, P, v+1, x) =—F(n+1,P, v+1, x),

F(n, p, v, x)+—F(n+1,P+1,v+1, x) =F(n, P+l, v, x),
7

(v-n-1)F(n, P, v, x) =(P n 1)(1-x)-F( +-1,P, v, x)+(v-P)F( +1,P 1,v, x), -
6 C. F. Gauss, Werke, Bd. 3, p. 125—162,
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we get

2a, I'(2k —1) I'(1+i(a p a—i) )
I'(k —iai) I'(k+1+iap)

'F(k+ I-b ia„k+1—~a„I ~(a, a—,), 1 —xy)

1——F(k+ 1+iai, k —ia„1—i(ap a—i), 1 —xy)
x

I'(1 —i(ap —a,)) (1—xy)" —
~&

I'(k+ iai) I'(k+ 1 —iap)

'F(k+1 —iai, 0+1+iap, 1 ji(ap ai)—, 1 —xy)

1
F(k+—1——iai, k+iap, 1+i(ap ai)—, 1 —xy)

x

in which the first term and the coefficient of (1 —xy)"" "' of the second
are complex conjugate to each other.

The well known expansion formulaev for the logarithm of the Gamma-
function give

1 ~x 1+x 1 —$2+g
»g I'(1+x) =—log . —Iog —+ g x'"+',

2 sin m-x 1—x „0 2r+1
1 1 ~r+ 1

I g I'(1+ ) = ( +—I g — +—I p2 + Q )
2 2 (2r+ 1)(2r+ 2) x'"+'

where si is Euler's constant and s„=1/I"+1/2"+. . . , and 8i, Bp, . . . are
Bernoulli's numbers. Hence, we find from (16)

F(2k —1) 2aio'~', (I—o '~', )(1—o
—2wag) 1/2I'==

I'(k)1'(k+1) iraq(aq —ai)(l. —e ~i~m ~~i)

{o i( a —aP+oa —Pa i(g+ &—2I) oi(oa —s +pa —oa +2oi(g —j21) }
where

20 = (a, —a,) log (1—xy),

1 $2t+1
g. =arctan o.—g( —1)~ o'~+'

r=0 2r+ 1

B„+l= o- 1 —10g o-+
„p (2r+1)(2r+2) + oP 4

a(2,

A+i8 =

'F(k+1+ iai, k+1—ia&, 1 —i(ap a,), 1 ——xy)

——F(k+1+iai, k —ia„1 i(ap ai), —1 —xy—)

7 N. Nielsen, Handbuch der Theoric der Gammafunktion, p. 38 and 208.
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Multiplying I' by its complex conjugate, we obtain

I'(2k —1) '8ale'«1(1 —e '«1)(1—e '«2)
jjl PQ (2 sin 0—2I cos 0') ', (18)

I"(k)I'(0+1) m. a (a . a—)(1 e—' &' ' &)

where
0=0.. .,+S.,-g.,+0.

Putting (18) in (12), we get the square of the integral required for the case
k2=kg+1:

T2
k2=kI+ I

271VEIE2 +=1
(xy) 2 l

x(l/R)'(F. '"+E "')

1+— 1+— 19

1 —e
—2~(a,—a, )

(A sill ON —8 cos O~) 2

Similarly the square of the integral for the case k& =k2+1 becomes

T2
kI=k2+ I

(20)

where
(A' sill 0' —8' cos O~) '

A+iB'=
I

F(k+1+'ial, k+ 1—i a2, 1—i(ap al), 1——xy)

1
F(k+—ia—l, 0+1—iap, 1 —i(ap —al), 1 —xy)

'
k —iu2

F(k+1+ia„k+1—ial, 1 —i(al —a,), 1 —xy)
k —iud

1
F(k+ 1+ial—, k——ia&, 1—i(a2 a,), 1 ——xy)

In these expressions (19) and (20) k means the smaller values of kl and kl.
The hypergeometric series to be computed numerically is F(k+1+ial,
k+1 —fa~, 1 —i(a2 —al), 1 —xy) and F(k+1+i kaia&, 1 i—(a2 —a,), 1 —xy). —
They converge fairly rapidly in the region in which we are interested (see
the next section).

Before entering into the details of the spectral energy distribution, we
shall here study the two limiting cases:

x=y=1
x=2) y=0

El E2

E2=0.
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In the first case, since Ez ——Zz —v/R, there is no radiation, but even in this
case the transition probability A s,'q,

' can exist. From (12) we obtain in
this limiting case

(k —ia) (k+1—ia) (k+ 2 —ia)I'= —F(k —1+ia, k+1—za, 2k+2, 1),
(2k —1)2k(2 k+ 1)

and since
r(v) r(v — —p)

F(n P v 1)= R(v —n —P))0,
r(v —)r(v —p)

I'(2k —1)(k —ia)I'—
I'(A+I —za) I'(4+1+ia)

Hence
E,(k'+a') I'(2k —1) ' e'~'(I —e "')'

E I'*=—
(2xiV) z (I'(k+1)) '

1+—,
IU

Putting this expression in (12), we get

g ]

zrz(v/R) 4
(21)

which is independent of k and the atomic number ¹ As the transition
probability 2 ~',~,

' we have

8Z'e'E'El
Elkl

3mc'm 2 2k& —1

k=k, for kz(kz,
k = kz for kz) kz.

(22)

In the second case, the applied energy'& is consumed totallyin the emission
of the radia. tion v/R. By the aid of the following relations:

F,(n, P, P', v, x, x) =F(n, P+P', v, x) =F(P+P', n, v, x)

p n —P
F(n+1,P, v, x) =—F(n, P+1, v, x)+ F(n, P, v, *),

px
F(n+1,P, v, *) F(n, P, v, x—) =—F(n+1 P+1 v+1 ')

7
F(n, P, n, x) =(1—x) e,

we get from (11)

iX ix
lim F2 24+3,k+- & k+1+ — —

& 2k, 2k+2, x, y
jv2 —0 1/2 1/2

= tF(2k+3, k+ia, 2k, x)],=z

( 1) z,+le—m c

I (k+ z.)(k+1+za)(k+2+ za) -6(k'+") (za)
2k 2k+1 2k+2

4ia(3k+1 —a') (—1)'+'e "~
(k i a) (4+1 z—a) (k—+2 i a) I

=— —
2k(2k+ 1)(2k+2)
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Therefore from (9)

r(k)e 'e "'(3k+1—2N'/E )
lim J'z, z ~z = ( —1)"+'(2i)'"+zX "+'

r(2k+2)(E '") '+'
k—1 g2 1/2

rr 1+,

from which

] ~
—2 AN /E 1&I2

I'(k)
]jm J2 —24k+4@2k+4
E2 ——0 r(2k+2)

e 2NIE / —(3k+] 2+2/E )2 Q(1++ /pzE )
@=1

(v/R) Ez"+ (1—e 'zz~ ~")

Similarly starting from (10), in the case where kz ——kz+1,

limFz(2k+3, k+1+zaz, k+zaz, 2k+2, 2k, x, y)
E2=0

j33
= lim

E2=0 8$
83

= ljm
E2—-0 8$3

(2k+ 2)

(2k —1,3)
Fz(2k, k —2+ zaz, k+zaz, 2k —1, 2k, x, y)—

(2k, 3) (k —2+ za„3)
x (1-y) " "~

I'1 k —2+~a1) k —iu2) k+ia2) 2k —1)X,—
1—

y (2k+2)(k —2+zaz, 3)

1 83
F(2k, k —2+zaz, 2k —1, x)

(k —2+zaz, 3) zlxz

1 8
k —2+zaz 1 —x "+' "~

(2k+2)(k —2+iaz, 3) Bxz

+(k+1—zaz)(1 —x)
—"+'-"

I

( —1)"+'2za e ~~~

2k+2
Putting this expression in (9) and multiplying the complex conjugate, we

get

e
—2~Ã/zqz/2 g(1++2/zzzE )

r(k+1) ~
@=1

]jm J2 24 k+2+ 2 k+2 (24)
E2=0 r(2k) (y/R) 4E (I zze z~zrlE~llz)—

In the region intermediate between these limiting cases i) and ii), it is

not easy to get a simple formula for the square of matrix amplitudes. We
will evaluate the values of J' for each special p/R by taking some definite
numerical values of E1, E2, k1, k2 and specia1 elements for the target, by the
aid of the expressions (19) and (20).
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4. SPECTRAL ENERGY DISTRIBUTION OF CONTINUOUS
X-RAY SPECTRUM.

Since the intensity of the radiation which lies between v and v+dv
is given by (6) or

00 k v k v 4

Idv = const. g — —J's, r,~i=+ J I, , y2+g dv, 25
2k —1 R 2k+1 R

the effect of the atomic number X of the element of the target and of the
velocity of the cathode ray election defined by E& on the intensity is so com-
plicated, that we cannot see easily its general features, unless we put numer-
ical values for Z~ and v/R in (19) and (20) and sum them over all possible k.

As an example, we will take Zn(%=30) as the target and apply 12.16
kV to the cathode rays. We have then

E,=8',/Rh = 900, Pg ——0, 2145, s, =X/Ey't' = 1.
As shown- in the following tables, the convergency of Idv with k is fairly
rapid. Moreover, since the values of 1 —xy are so small, it is quite sufficient
to take the first five or six terms of the hypergeometric functions in A, P,
A' and P', in order to get the sufficient accuracy required here.

TABLE I. Zn, 12.16 kV.

v/R
g 1/2

/
1 —xy
sin 0
COS O~

800
10
3
1/4—.16024

, 98708

675
15

2
1/9—.35759

~ 93388

500
20
1.5
1/25—.40927
.91237

275
25
1.2
1/121—.32780
.94475

TABLE II

A
B
A'
Bf

A
B
A'
Bl

A
B
A'
Bl

A
B

B'

.35381—.11373—.09798—.41525

.33742—.06302—.11979—.08138

.57443—.09502—.10757—.01422

1.29837—.21)24—. 10464
.01027

. 16825—.13126—. 13681—. 18549

k=2

. 17768—.08070—.08540
—.03570

k=3

.24856—.09238—.06408—.00017

k=4

.4055—.1561—.06175

.01216

. 11025—.09289—.07030—.10510

.09421—.05231—.05254
—.02469

. 10559—.05092—.04197—.00458

. 1312—.06031—.03717

.00392

.04651—.04496—.03826—.04588

.03813
—.02149—.02866—.01406

.03730—.01664—.02383—.00561

.0388—.01545—.02112—.00183
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By the expansion formulae of 8, (17) we can calculate the values of 0
for given v/R and R&, which are given in Table I. By the aid of (19) and
(20) we obtain the values of A, B, A ' and 8' for given k, x, y, which are given
in Table II for k =1, 2, 3, 4. 'The following table gives the values of

/ y/" 0 (1+—)(1+—)I (1+—)/A i 0—3 8)'

g 2

+— i+—/~' o —a' ~ H/ I2k+ j. k'
for different p/R and k.

TABLE III

1
2
3
4
5
6
7

k&7
&a

v/R =800

0.0856
.0324
.0053
.0004
.0001

. 1238

675

0.0414
.0139
.0033
.0009
.0003
.0001

.0599

500

0.0142
.0058
.0022
~ 0008
.0003
.0001

.0234

275

0.00383
.00147
.00071
.00038
.00019
.00010
.00005
.00006
.00679

M ultiplying

EEIEg

v

(R 1/2++ 1/2) (I &
—2w(n~ —n~))

TABLE IV. Intensify measures for diferent freglenci es.

(.)
by these values (Table III), we get the intensity measures for different

frequencies:

v/R 900 800 675 500 275
2i(v/R)' ~ k , +

k 10.442 10.449 10.455 10.565 10.589J k2- kI+I + J kI-k2+I
2 P I 2k —1 ' ' 2k+].

In Table IV the value for v/R = 900 is computed by (23) and (24).
As shown in the table we get a spectral energy distribution which is nearly
independent of the frequency v of the radiation. This result agrees with the
classical quantum theoretical result of Kramers'for an infinitely thin target.

When we take into account the thickness of the target, the problem
becomes very complicated. We have in this case to consider the stopping
of swiftly moving electrons through matter (something like Thomson-
Whiddington law), the absorption of emitted rays in the target, the deffection
of electrons during its passage in the target and so on. There is, however,

8 H. A, Kramers, reference 1.
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still no quantum mechanical theory on the stopping of swiftly moving elec-
trons through matter, corresponding to the Thomson-Whiddington law.
We will not enter here into these complicated problems. Since we have now
sufficient experimental data' for the continuous x-ray spectrum emitted
from a thin target, we will be satisfied with the transition probability be-
tween two states with positive energy in an atom.

As shown in the computed results described already, the spectral energy
distribution is nearly independent of the frequency of the radiation emitted
from an infinitely thin target. We can therefore discuss the dependency of
intensity of the continuous radiation on the atomic number and on the vel-
ocity of the cathode ray electrons by taking the limiting case, where the ap-
plied energy is totally consumed in the emission of the radiation v/R=E&.
From (23) and (24), taking the expression of the intensity (25), we get.

where

8s'e'hR' 4 1Pe '~~ " (4s)'I'(p)
I„dv=NO

3mc' 1 —e '
q q=I'(2P)

(26)

2k —1 k 2k+1 2k+1

a =Ã/E, "'
In order to find the dependency of the intensity of the continuous x-rays
on the applied voltage, and to compare the computed results with those
obtained experimentally by Kuhlenkampff" we will take A1 (N=13) as
the target. In the case of the alminum target, the values of I„/CN', where
C=NO 32s'e'hR'/3mc', corresponding to several values of a, which is re-
lated with the applied voltage by the relations: a = N/E, '", and 8& ——e U/Rh,
are given in Tab'e V.

TAaz, H V. Al (X=13)

1/4
5/1+
2/7
1/3
1/2
2/3
1
3/2

I„/CN2

0.1334
0.1380
0.1460
0.1604
0.1856
0.1749
0.1184
0.0661
0.0381

E1——e U/Rh

2704
2440. 36
2070. 25
1521
676
380.25
169
75.11
42. 25

V (in kV)

36.53
32.97
27.97
20.55
9.13
5.14
2.28
1.01

Taking Kuhlenkampff's empirical formula

I„=CN(v, —v)

and the Thomson-Whiddington law, we get the isochromat as hyper'bola
I„~1/Vfor the continuous radiation emitted from an inffnitely thin target.

' H. Kuhlenkampff, reference 2,
'0 H. KuhlenkampE, Ann. d. Phys. 8'7, 597 (1928).
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The experiment shows, however, that the steepness of the curve I„(V) de-
pends on the direction of emission in such a way as the isochromat for 90'
is the steepest which is still fiatter than the hyperbola 1/V. In Figure1, the
curve I represents the calculated intensity values I„(in certain scale) given
in Table V, curve II the observed values (Kuhlenkampff) for the radia-
tion filtered by Zr in the azimuthal angle 90' and curve III the values
expected from the 1/U law. The sudden fall of the experimental curve at
V=20 kV is due to the X-absorption of Zr whose head is at ) =0.687A
or about 18 kV. Although we cannot, from the present calculations, speak
of the dependency of the isochromat on the azimuthal angle, the calculated
results are, as shown in the figure, better in agreement with the experimental
than those derived from the 1/U law.

l.o

D o

0.5

0,00

I
I

I0
I

l0 2O 50
Potential (kilovolts)

Fig. 1,

The dependency of the intensity on the atomic number X of the element
of the target is not simple. Since the number of atoms per unit area

¹

is very roughly proprotional to 1/N, and since the computation gives I„/C
approximately, we find I, N.

Finally we shall note that the isochromat for any element of the target
can be computed from the values of I„/CN' given in the second column of
Table V, as the function of the applied voltage which is rela, ted to e by
the formulae: a=N/R"' and Z, =eV/Rh

5. PQL'ARIZATION AND ANGULAR INTENSITY DISTRIBUTION
OF CONTINUOUS X-RAYS

When we assume the cathode ray electron and the nucleus as one system
and take the quantum mechanical expression for the so-called hyperbolic
orbit, whose angular part is P'-",(cos8)e'~f&, we cannot define the direction
of the cathode ray electron. In reality, however, the cathode ray has its
definite direction, and at a great distance from the nucleus it ought to be a
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plane wave which has a definite direction of propagation. So far as we were
concerned with the problem of the total energy of radiation emitted from an
atom, it was not necessary to consider the direction of the cathode ray
electron. The intensity expression obtained in the previous section represents
the intensity of the continuous radiation emitted from an atom orientated
at random, or in other words the mean integral intensity for the whole
space, just as for the intensity of a spectral line in the usual sense. When we
want to find out the angular intensity distribution and the polarisation of
the radiation, we have to take intoaccount the initial directionof the cathode
ray electron.

Taking the initial direction of the cathode ray electron as the s-axis, we
have the wave function" for the initial state

e"='G(iag, 1, ik, g)

where

2&mpy E& I/2

kg=-
6 ap

(27)
E

a& ———
r rl= r(1 —cos 0) = r z, —

P 1/2

(ia„rp)
G(iag, l, ikgq) = Q —(ik,q)", "

„p t(1, n) I'

g being the parabolic coordinate, in which the waves associated with the
electron have a symmetry about the z-axis. The asymptotic expression for
large r of the wave function is given by

(()}()"1)

F(1—iag) „p (1,rp) k gq

(28)

where (X, m) =F(X+n)/F(X). The wave function for the final state, which
might be perturbed by the radiation emitted by the encounter of the electron
with the nucleus, is to be that corresponding to the modified wave scattered
by the bare nucleus and associated with the electron which now has less
energy than the initial by an amount hv. The unmodified scattered wave
has the wave function expressed asymptotically by

I(&— ))'(—
)"2)Z—

ikpqF(iap) „p (1,g) kpq
(29)

Even if we could apply (28) anti (29) to the problem of the emission of
continuous x-rays, after taking the matrix elements by integrating

X
v = y P,P*,dv-

Z Ei,R2

for the whole space, we cannot get the intensity formula for the angular
distribution. We may hope to solve the problem of the angular intensity

"G.Temple, Roy. Soc. Proc. , A121, 673 (1928).
"The function G(ce, y, x) has been studied by Kummer, Jour. reine u. angew. Math. 15,

139 (&836).
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27ri

distribution, either by assuming some light emission process in a similar
way to the classical theory of Sommerfeld, " or by carrying out the per-
turbation of the scattered electron by the radiation emitted. In the present
state of the quantum mechanics, however, we cannot say anything about
the light emission process regarding time and space. It is an important
point of the quantum mechanics, that we do not need to assume any other
light emission process than the matrix elements g„=l'qP„P *dr to get
a right answer for the intensity problem. '4 In the case of the continuous
x-rays also the matrix elements should give a reasonable solution of the
angular intensity distribution problem, when we take correct wave functions
for the initial and final states.

After some elementary calculations we can get the wave functions
which are physically admissible for the initial and the final states in the
following integral forms:

(e
—2+ a~ 1) oo

'tl'z =8' " zz +' '( zfzz g+'zz)'' '8 "dzz, (30)
0

(e z~a, 1)
pz

—t, zk~r ( zz)
—ia~(zpz~ zz)

—+Isa~ sudm
271 Z 0

(31)

which are not normalised. We will not here enter into the detail of the
calculation of the matrix elements by (30) and (31), but we can see that
the radiation emitted in this way is perfectly polarised. When polarised
].ight is emitted, it is natural to take into account the perturbation of the
final state by the polarised radiation emitted, just in the same way as
in the case of photo-electrons. We should, therefore, take different wave
functions of the final state for the different direction of the observation
of radiation, or in other words the expression for the wave function of
the final state contains the angle between the initial direction of the cathode
rays and that of the observation of the radiation. We may hope that one
can get, by 'this method of calculation, the angular intensity distribution,
but it seems to be very complicated to carry out a rigorous calculation.

" I should like to express here many thanks to Prof. A. Sommerfeld for his kindness in
showing me his paper before publication (Nat. Acad. Washington). In this paper he has
taken the classical idea of the stopping process for the light emission, and has taken the arith-
metical mean velocity during the emission process. I am afraid, however, that the standpoint
of his theory is rather unsatisfactory from the point of view of the quantum mechanics. In
spite of this, he has obtained results in a very good agreement with the experimental values
of Kuhlenkampff. I hope to see his discussion on this very point, which will be published in
the near future in Ann. d. Phys.

&4 When we calculate the retarded coordinate matrix elements, where the direction of
cathode rays is specified, we can get a right answer for the angular intensity distribution.
Without either the Sommerfeld's classical assumption for the light emission process or the
calculation of the pertubation stated here, I could get the angular factor

&&+&s' I / ( 1——— 8 )',
2G

which is just the same as Sommerfeld's (Proc. Nat. Acad. Sci. 15, 393 (1929) }. (Note
added in proof. )


