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Surface condition-. —To keep a substance non-conducting it is necessary not
only that it does not itself generate carriers of electricity, but that these are prevented
from entering if good conductors are brought into contact with it. Vacuum and
crystals are insulators because the electrons from metal electrodes cannot leave the
metal on account of the work function. Water has electrolytic, not electronic con-
ductivity, because ions can be discharged at the electrodes, while electrons cannot
permeate the surface directly.

Space charge. —The possible types of space charge in a medium containing ions
of constant and equal mobility are discussed. It is pointed out that for the potentials
which are of interest diffusion plays a role only in the immediate neighborhood of the
electrode, and space charge is entirely due to insufficient recombination. Methods
of determining the data of interest from space charge curves are given. The number
of ions present is always below the equilibrium number.

1. THE NATURE oF PooR CQNDUcTQRs

GOOD conductor is a substance which contains a sufficient number of
~ ~

~

electric carriers (electrons or ions) having a sufficient mobility. What
groups of substances satisfy these conditions wi11 ultimately be answered
only by the new quantum theory, but a qualitative answer is well known
at present in that electronic conductors are, in the main, metals and a number
of salts, while ionic conductors are other salts in the solid state and a number
of solutions in which dissociation occurs. The physical conditions under
which dissociation occurs have been treated extensively, and shall not be
taken up here. But it is not quite sufficient that carriers are generated in the
substance, the substance must also be able to keep them. In the case of a
metal, this is due to an attraction between the ionic lattice and the electron.
The energy of this attraction has recently been estimated by Bethe' and found
to be of the order of magnitude of 15 volts. (We are going to measure energy
in the familiar manner in volts). This energy is sufficient to keep the
electrons in the metal in spite of a large internal pressure, which is, ac-
cording to Sommerfeld, ' due to their highly degenerated state. The re-
sultant of the two, the work function, is still of the order of magnitude
of about 5 volts, and accordingly is sufficient to make the equilibrium con-
centration of the electrons outside negligibly small at normal temperatures,
as each volt difference decreases the equilibrium concentration by a factor
e—~'I~ =10 ". Therefore, if we put two metal plates opposite each other,

' H. Bethe, Ann. d. Physik 87, 55 (1928).
2 A, Sommerfeld, Zeits. f. Physik 47, 1, (1928).
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the vacuum between them is an insulator because the work function prevents
electrons from passing in sufficient number through it. In the same manner
a solution of sodium chloride is a conductor because the ions are prevented
from evaporating by the heat of hydration which according to Fajans' is
about 70 k-cal. , or about 3 volts. It is an interesting problem, which has
not yet been solved, to determine why the condition which makes for the
generation of carriers makes, at the same time, for a sufficient energy to keep
them in the substance.

If now we put a substance which we call an insulator between two metallic
plates it is not sufficient that the substance does not contain carriers, but
it is necessary in addition that no carriers from the electrodes can pass through.
Let us first consider electrons and take as insulator a salt such as sodium
chloride. The experiments of Gudden and Pohl' have shown that if electrons
are generated by light in the salt they can move freely so that the mobility
of electrons would be sufficient.

Next, the conditions at the surface, that is the potential distribution,
have to be examined. When the electrons get to the boundary of the crystal
plate, they are able to enter the metal without a prohibitive resistance. This
means that the potential energy inside the crystal is not less than the potential
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Fig. 1. Work function for different surfaces.

energy (plus internal pressure) of the electrons in the metal. Furthermore,
it seems that they cannot enter the metal quite freely, ' but only if either a
sufficient electron concentration or a sufficiently high field has been reached
at the surface of contact. The same seems to be true for the discharge of
calcium ions if we electrolize solid calcium carbonate. From this it would
follow that there is a small hump of energy between the interior of the crys-
tal and the metal. As the results of thermionic emission do not seem to
indicate that on the side of the metal there is a hump preventing the free
entrance of electrons, ~ it is probable tliat this hump lies on the surface of
the crystal. The same conclusion can be reached from the fact that the el-
ementary experience shows that it is possible to charge the surface of the
crystal without making this crystal conducting. This means that a small

hump of potential energy prevents electrons on the surface from penetrating

' K. Fajans, f. e., Ber. d. D. Phys. Ges. 20, 712 (1918).
B. Gudden and W. Pohl, many papers in Zeits. f. Physik. See B. Gudden, Hand. d.

Physik 13, 103, Berlin (1928).
' B.Gudden, Forschr. d. Ex. Naturwis. 3, 150, Berlin (1924).

A. Joffe, The Physics of Crystals, New York, 1928.
L. Nordheim, Zeits. f. Physik 46, 833 (1927).
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into the space of lower potential energy inside. But this hump cannot be
very large as moderate fields can overcome it as mentioned before.

The fact that electrons do not pass straight through from one metal into
the salt and then out again must, therefore, be due to a high resistance to the
entrance of electrons from the metal into the crystal. [It can easily be shown
that this entrance is not prevented sufficiently by a space charge which
would be set up in the crystal. (See Mathematical Appendix I)]. This
means that the potential energy of an electron in the crystal must be con-
siderably higher (its work function lower) than the work function of the metal.
Unfortunately there is no way at present to know accurately the amount of
work necessary. Joffe' has tried to estimate the work function of the crystal,
and found it to 'be 3.9 volts which then would make the difference about 1

volt.
Coehn' has experimented with contacts between metals and dielectrics.

He finds that metals in contact with diamond are always charged positively,
which he explains by the assumption that a few electrons enter the diamond.
With other dielectrics metals giving off electrons easily are charged positively,
nobler metals negatively, which result Coehn explains by an over-compensa-
tion of the electron effect through positive ions. It seems quite possible that
the very few electrons sufficient to give a measurable charge can be in
equilibrium even at room temperature with the metal in presence of a work-
function-difference of I volt (corresponding to the state at 1500' for 5 volts),
but, on the other hand, the apparently rather high potential measured by
Coehn makes such an explanation doubtful. Besides, the surfaces with which
he experiments are moved against each other.

In a similar manner we can discuss the question why, if we put two metallic
electrodes in water and apply to them a potential difference, the current
is entirely carried by ions (which fact guarantees the fulfillment of Faraday's
law) instead of being carried by electrons which move simply out of the cath-
ode. These would then probably be attached to a water molecule forming
a negative ion H~O which would move with the same speed that ions normally
have and then be discharged on the anode. The reason that this does not
happen must then be that the work (here we always assume the effects of
the internal pressure of the electrons in the metal to be already subtracted)
for bringing the electrons from the metal into the water is too high. The
work function of the metal being about 5 volts, we can divide the amount of
energy to be gained by immersion of the electron into the water into two parts:
First, the work gained by attaching an electron to a gaseous water molecule
(the electron affinity of water vapor: nothing is known about it except
that it is very probably positive). Second we gain the heat of hydration by
bringing this negative molecule ion into the liquid water. If we assume this

A. Joffe, The Physics of Crystals, p. 142, New York (1928); P. Tartakovsky, Jour.
Russ. Phys. Chem. Soc. (1926).

~ A. Coehn and A; Lotz, Zeits. f. Physik 5, 242 (1921);A. Coehn and A. Curs, Zeits. f.
Physik 29, 186 (1924); A. Coehn, Fortschr. Ex. Naturwiss. 1, 174 Berlin (1922).
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to be of the same order of magnitude as for Cl it will correspond to about
3 volts.

We have then finally to inquire" how ions are discharged on the surface
of the electrode (we restrict ourselves to ions different from the metal ions
of the electrode itself). Assume that we have a positive ion of an electron
affinity higher than the metal itself. The following will be a simplified pic-
ture of the surface of the cathode: The interior of the metal with a certain
potential energy (minus effect of internal pressure); on the surface a rapid
rise of potential energy corresponding roughly to the work function; at a
distance of about atomic dimensions a layer of positive ions in the liquid in
which the potential energy is lower even than in the metal; in the sheet
between the surface of the metal and the center of the ious, a strong field
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Fig. 2. Work function near an electrode with a layer of positive ions.

simplified as being linear, and of the order of magnitude of the ratio of the
electron amenity of ions to atomic dimensions. The new quantum mechanics"
has shown that it is possible for electrons to pass through this rather high
energy hump (of about 5 volts )provided that it is sufficiently thin, "' in
other words, that the field is sufficiently high. The ease of transition is very
sensitive to the field, just in the range which appears reasonable for the
magnitude of this field, It can than easily be understood that the discharge
will go smoothly for small ions or for media where the hump is small,
while in less fortunate cases it might be possible to raise the field artificially
either by an accumulation of ions or by an outside field of sufficient strength.

In the case of negative ions, where the transition occurs from the ion to
the electron the qualitative statement is quite similar.

2. SPACE CHARGES IN LIQUID OR SOLID INSULATORS

The general equations for the distribution of charges in an electric field
as determined by this field, diffusion and the normal processes of genera, tion
and recombination of these ions can easily be stated but their exact integra-
tion in the general case has been impossible. According to the circumstances,
different assumptions for the purpose of simplification have to be made.
Many of them have already been applied to gas discharges and we can simply
take over the result. We start with a systematic discussion.

K. F. Herzfeld, to appear shortly in Zeits. f. Phys. Chem. Abt. B.
"R, H. Fowler and L. Nordheim, Proc. Roy. Soc. A119, 173 (1928).
"Physically this comes about as a result of the fact that electrons behave like waves.

A wave can pass through a plate to some extent however high its absorption coefficient, pro-
vided the plate is thin enough.
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A. The velocity of the carriers is mainly determined by the field. This
case applies to discharges in highly rarefied gases with long free paths.
It has been worked out especially by Child, Langmuir and Schottky, " and
gives the familiar results for vacuum tubes, but does not apply to liquids or
solids where the friction is large.

B. Due to frictional effects, the main velocity of the ions is the thermal
velocity, only slightly modified by the electric field. In this case, as has been
shown by Townsend, '4 the ratio between the diffusion coefficient D and the
electric mobility E is given by

E ee I'e

where e is the charge of an ion, e the dielectric constant, k = R)A" the Boltz-
mann constant (=gas constant R divided by number of molecules per mol
N) and e (= the Faraday equivalent F divided by N), the charge of an ion.

For the following we assume that q positive and negative ions are pro-
duced per cm' per second, which recombine at a rate given by nn+n .

We assume an infinite condenser with parallel plates at a distance 1 from
each other, so that everything depends only on the coordinate at right
angles to them which we call x, and measure from an origin in the middle
between the plates.

In the appendix we have made a study of the space charge distribution
which follows from the different approximations which have to be made.
The result is the following: Except for a potential drop of the order of mag-
nitude of a few volts the eRect of diffusion can be neglected. This can be
seen if we consider the relative importance of the current due to diffusion
and the current due to the electric field in the equation for the stream of
ions passing a certain cross section (V potential, k field):

de P d inn Ii p
D —— ~zh = De h = De—6 ln n+—AU

dx E.T dx RT Ax ET

Here the first member is due to diffusion, the second to the electric field.
Now even if n should change in the region considered from 10'" to 1 ion per
cm' log n would change only by 86, which corresponds to a potential of 2.1

volts. This means that if we are interested in space charges corresponding to
hundreds of volts we can leave diffusion out of consideration. But, then, the
space charge must be due to the fact that the electric current disturbs ap-
preciably the equilibrium between dissociation and recombination of ions.
This means further that we can have appreciable space charges only if the
current has values which lie in a restricted range near the saturation
current. If it were infinitely small compared with the saturation current, the
ionization —recombination equilibrium is sustained in the main, except in

"C. D. Child, Phys. Rev. 32, 492 (1911);I. Langmuir, Phys. Rev. 21, 419 (1923); W.
Schottky, Phys. Zeits. 15, 526, 624 (1914).

'4 Townsend, Phil. Trans. 193, 129 (1900).
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the immediate neighborhood of the electrodes. If the current is very close
to saturation, we have again a constant field, as the ions are then removed
so quickly that no space charge can accumulate, as has been shown by
Seeliger. " We can say that if we want a space charge amounting to the order
of magnitude of 100 volts or more, not restricted to a layer very thin com-
pared with the distance between the plates, the current must be between
the limits:"

The methods of getting from space charge and current measurements, both
in the stationary state, and if possible, measurements of the initial current,
all the data of interest, namely, number of ions present, mobility, number
of ions generated per second, and the recombination coefficient, are discussed
in the appendix.

One more point of interest should be mentioned. Joffe has found that after
cutting off a field which has acted long enough to build up a considerable
space charge, there is an increased conductivity which disappears slowly.
The same is true for insulating oils after reversal of the field. 'r Joffe interprets
this by assuming that there is an accumulation of ions which is set free
after the field is cut off, diffuses back into the main space between the
electrodes, and increases there the conductivity until it disappears slowly
through recombination. We have shown in the appendix that in the whole
region where space charge is considerable, the number of ions is always less
than without current. It is possible that there is an excess of ions present,
but this must then be due to a resistance to the discharging of ions at the
electrode, and they must be concentrated in an extremely thin layer close
to the electrode, so thin that the potential drop in it is only a few volts.

APPENDIX I.
SPACE CHARGE DUE TO ELECTRONS BETWEEN PARALLEL PLATES

The point of origi'n is between the two plates, the distance of which is 2l. If P is the
Faraday equivalent, A and B are constants, then Laue'g gives the following formula for the'
electrical density p and the potential:

RT 2A'
P=

F cos' Ax

RTV=—log cos' Ax+8.F
In the center where the electron density is lowest, p is given according to (4) by

p 2A'RT/F.

(4)

For not too small a distance between the plates the constant A is approximately m-/2l. This
gives at room temperature in the center a number of about XRT~'/2PF =10'/P electrons per

'~ R. Seeliger, Ann. d. Physik 33, 319 (1910).
"The first limit meaning space charge limited to about +5—'/~0 of the condenser space,

the latter a variation in the field of about 10 percent. j(46) and (48')]."Private communication of Professor Whitehead and Dr. Marvin of The Johns Hopkins
University.

M. v. Laue, Jahr. der Radio. u. Elekt. 15, 205, (1918).
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cm' as the number present if it were limited by the space charge and not by the surface forces.
This number is high enough to give measureable electron conductivity. Accordingly we con-
clude from its absence that the surface forces are responsible for the absence of these electrons.

APPENDIX II.
SPAcE CHARGE IN AN IoNIzED MEDIUM BEnvEEN Two PI,ATEs

We assume a uniform generation of q pairs of ions per second per cm. ' We call the number
of positive ions present in 1 cm n+, the number of negative ions n . The recombination per
cm and second is given by nn+n . We call the diffusion coefficient of the positive ions D+
for the negative ions D, and recall relation (1) between X and D. Let h be the electric Geld,
V the potential, y = UF/RT. We assume both ions to have the same charge which might be a
multiple of the charge of the electron, in which case F must be taken as a multiple of the
Faraday equivalent. e shall be the dielectric constant of the medium. All quantities referring
to the left plate (x = —l) shall be designated by the subs'cript 1, all quantities referring to the
right plate (x =+l) by the subscript 2. The zero point of the potential is taken at the origin
in the middle between the plates, the potential difference accordingly 2 U&. The current den-
sity shall be j.

The equations of motion of the ions are

d2n+ F d
D+ ———he+ =nn+n —qdx2 RT dx

d2n F d
D — — +——hn =en+6 —

q
dx RT dx.

dh 47fF—=—(n+—n-)
dx 6X

(7)

where the last equation is the Poisson equation.
As an exact integration is impossible, approximations have to be made, but can be made

in different ways, which shall now be discussed.
1. Longevin's approximation. "Langevin assumes the number of generated ions to be small,

and develops accordingly everything in a power series in q. He shows that this assumption is
the more justified the smaller the expression (ql2/noD) becomes, because in this case the loss
of ions through diffusion to the plate becomes more and more important compared with re-
combination. Accordingly he puts

0+~ s+ q+
g g q+ o ~ ~

h =(V,/t)+h'q+

In our calculations we are going to be satisfied with this approximation. The introduction of
these expressions into the equations of motion amount to a neglecting of the recombination
term because it would contain q2. It is then possible to give a first integral of the following
form

dl+
D+ —N+' — ———C++x

l dx
I

D —e '+ =C —x

where the left hand sides express the stream of positive or negative ions, respectively (divided
by q). The Poisson equation can then be written

dh' 4m.F
(n+' —N ').

dx eN

We introduce, then, the following abbreviation

(9)

tx+ =D+yl2/)2

~ P. Langevin, Le Radium 10, 113 (1913).

n =D y&2/P
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and the integration of Eqs. (8) with Langevin's method, but taking into account a generalized
surface condition leads to the following formula for the distribution of charges

ev]&/z —e ]I] 1—e]!](&/z ]) 2y]qe &l e * —e y]
n+= (n~)2 e ~]— +(n+)]— —— + ——1

1 —e ~~» 1—e 2&» Cl+ 1—e » n +

(n+)2—
2ylq

(n )]——e "] y]q—ee»&/z+ —- —+ (n+)]—(&z+)2e 2~»+—(1+e ~») ——(10)
e
—2» 1 —e '»

2y]q
(n )]—(n )2 ——. — e » y]q x y]q' 1

&l~/] — —+ (n )2—(n )]e 2»+——(1+e ~») — (10')
u 1 —e

These introduced into Poisson's equation permit a solution of the latter which gives the fol-
lowing formula for the distribution of the potential

V]x 4]]-F l' e &] 2y] q
V =—+———— (n.) - (n, ) ———(1-"»*")

l eN y]' 1 —e '~» o,+—
2y]q

(n ),—(n ),——(1 —e-»'/])
Cl

(12)

In (11) there is one term, the one multiplied with x(x —l), which is symmetric to the center,
while all others are anti-symmetric. This term is due to difference in the behavior of the two
ions, either in mobility or at the surfaces.

We assume now first that all ions are discharged immediately upon reaching the electrodes,
as in the case of gases. This means

(n+)]=(n+)~=(n )] =(n )2=0

The potential distribution then takes the form

2zrl'" 1 1 x~ 2' F 1+—ly]q —+— ——1 x+——— (n+) ]—(n+) ge3' o.+ a l' g N1 —e '»
1 1—(n )2+(n )]e»+y]q(j+e 2~») ——— x(x—))

Cl+ CX

4 F& 2yq 2ylq+ +g — +]——+ (n )]—(n )g ——e x. (11)
eSy' n+ n

Furthermore, we get from (8) as the components of the current carried by the two types of
ions separately, if N means again the number of molecules per mol.

F FD+ y& [(n+)& (n+)~e e»—] F 1+e e"' 1 x—(—C+q+qx) — + q't ——+-
N N l 1—e '&1 N 1—e ']'1 y]

F FD y, [(n )e—(n ),e 'e~] F 1.+e '» 1 e:—(C q
—qx)-——' ——' — —+—qlE 1 —e'" y

V x 8]]-F g2 e vJ] 1 e?I]&/l
V=————

q
~N y 1 —e -' a„

1—e !/1&//

Again we have the symmetric term with x(x —]]) which disappears if the two ions have equal
mobility (a+ =n ), but otherwise is present even without external field.

q/ qt—(—C q+qx) =— ——(1+e '») ——+ qx
N N 1 —e'»

jv I~' gl gl—(C q
—qx) =— —(1+e '») ———qxE N 1—e ~» y]
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give the components of the current

For very weak fields this gives Ohm's law j=2qLFy/3N but in the cases with which we are
concerned, where y& is several hundred, the current is approximately

F 1
j=2ql—1——

N y&

or almost saturation current 2qLF/N, where all the 2ql ions generated are discharged at the
plates.

Another possible assumption would be that at the positive plate the current is carried
entirely by negative ions; at the negative plate, entirely by the positive ions. This means that
for x = —l the left hand side of the first equation (8) would be zero; for x =+l the left hand side
of the second equation would be zero. This leads to the following connection between the
number of ions at the two plates

1 2e '»1
D+ [(zz+)z —(—zzz)ze '»~] =q/ ——— (1 e»—z)

L 1—e

yl 1 2e '»D=' [( )z,z—(zz )zez»'] =q/ —— (1—e- »)z
y& 1—e '»

But in this case the current is exactly saturation current since the diffusion is completelv over-
shadowed by the effect of the field.

It might be remarked in general that for the case (11') as well as for the general case (11)
(except if the expressions (n+)2 —(n+)& —2y&q/o. +, (n )&

—(n )2 —2y&q/a are very small) a large
part of the space charge will be restricted to a narrow layer adjoining the plates on account of
the very small values e»~*~' '& takes, except for x very close to l.

As Langevin's approximation gives so nearly saturation current for the voltages with
which we are concerned, it does not apply in our case.

2. Jape's approximation. '0 Jaffe gives for relatively small voltages a power development
in respect to U1, for high voltages a development of inverse powers. But we have to assume
with him that the mobilities are equal for both ions.

A) Region of Ohm's low. We put:

n+=n+'+n+" Vi+. . .

n =n '+n "V)+ (13)
h= h+'V+

/

Inserting this into Eq. (6) and (7) we get first equations for n+ and n, the numbers of the
ions that would be present without outside potential

D =an+'n '—
q

dx

d'n-'
D =nn+'n ' —

q
dx2

O=n+ —n; n+ =n =n ./ /, / / /

(14)

These values are then determined entirely by diffusion, dissociation and recombination, and
it is clear that the number of both kinds of ions should be equal.

D (n'h') =n(n 'n+"+n "n+') =nn'(n+"+n ")
dx' RT dx

// F
D +——(n'h') =0/(n 'n+"+n "n+') =nn'(n+"+n ")

dx' RT dx

(14')

~0 G. Jaffe, Ann. d. Physik 43, 249 (1914).
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are the next approximations for the number of ions with the Poisson-equation:

dh' 4~F
(s+"—n-") .

dx eE
(15')

As we are not interested in the number of ions, we subtract the two equations (14') and in-

tegrate once
—(n+"—n ")——(n'h') =-
dx RT DEVg

That the letter j, which we have used in the integration constant, is justified follows from the
fact that the left hand side multiplied with D Vi gives the difference of the streams of positive
and negative ions. We eliminate then n+"—n "with the help of (15'), and find for the field:

d' 8vrF2 4'—h= n'h+ ——.
dx' eERT eD

(»")

In this equation n' is to be found from the single equation into which the two equations (14)
merge if (15) is taken into account.

d'n'
D =cxs 2—q.

dx'
(14")

This equation gives in general upon integration n' as an elliptical function of x, as Jaffb has
shown, but a numerical evaluation is very inconvenient, and accordingly we pursue another
method.

(a) All ions are discharged on the plates as assumed in gas discharges and by JaEe. We
have then the border conditions

(n+)g ——(n+)2 ——(n )) -—(n )2
——0

If we introduce now as abbreviation np the number of ions that would be present without dis-
charge on the plate,

we get

q
Sp

CX

DSQ d2(S'/np) n"=——1
q dx' np'

(14"')

(14"")

We assume now that (q/Dnp)' 'x& 1 (16) and make for n'/np a power development according
to this expression, stopping with the first member. We find then,

n 1 q
(l2 x2)+

sQ 2 DsQ

This, introduced into (15"),leads to the following differential equation for the field h

d'h 4m.F2q 4~j
(l' —x') h+—or

dx' eRTND eD

d'h 4mF'q x' 4'rNl'
l4 1——h+

d(x/l) ' eR TND l2 eD

(17)

We find the following border condition from (15'): (dh/dx) =0 for x = +l. We then use the
abbreviation

4~F2 q 4~F'np q (»)
eRTN D eRTN Dnp

and assume that A is not large compared with 1. Except in the case in which sp l'/& i»arg« than
10' this is a weaker restriction than (16). We develop the solution in a power series of A

stopping with the third and find

3 RT A x' 2 A x4 AC AV= — jx C+ C—— ———C ——+-
A2 x' AC 4 A A2 xs ii 7A A CgA

+ + C A C+ + -- — (20)
360 lp 14 7 21 6048 l' i5 15 60 90
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where C means the abbreviation

7—(A2/16)C=1+—-
360 29 A' A'

1+—A+—+
320 960 3840

(20')

The current j in (20) is then determined by the condition that V= Vi for x =l. But formula
(20) does not give any stronger space charges with A not large compared with 1 than would
Langevin's approximation; in fact, the condition (16) is identical with the latter's condition
on page 797, and accordingly (20) is identical, at least in the first order, with (11 ) for small
values of A.

We try next the opposite surface condition, namely that no ions are discharged on the
plates under normal conditions without field. Then the number of ions without field is uni-
formly the equilibrium number throughout space.

n+'-n ' ——np=(q/~)»2.

We find then in the same manner which led to (18)
d~h 8~F2 4~j

nph+ (21)dx' eER T ~D
But this equation is even accurate to a somewhat higher approximation. If we put namely

n+= np+n" Vi+n+" Vg+

n =np —n"V&+n "Vz+ (22)

the value of n++n is not affected by the existence of n" V, and so (21) remains unchanged
even if we take these members in. The integration of (21) leads then to

ALERTh=— —A«ch Kx
2F'n. pD

where K' is the constant introduced by Debye" into the theory of strong electrolytes

8~F'np
«

eiVRT

(23)

(23')

It appears there for the same reason as here. 1/«has the dimensions of a length, A is an
integration constant. sh x and ch x mean the hyperbolic sin and cosine. Eq. (23) can then
be integrated and gives

V= —hpx+A (sh Kx—Kx).

There hp means the electric field at the origin which is, according to (23)

jERT—hp= -+A«.
2F'npD

If this field were present uniformly between the plates the potential difference would be

Vi'= —hpl.

The constant A is then defined by the excess in potential

Vi —Vi'=A {sh Kl —«l) .

We can then rewrite {24)

x , sh «x—Kxv= v, '—+(v, —v, ')
l sh «l —«l

{24)

(26)

{27)

From (9) and the assumption that the deviations from the uniform distribution are anti-
symetric for both ions (n+" =n "=0) it follows

eE F sh Kx
n =no+ A ' ch x=no 1+—(V —V ')

8~F RT sh Kl Kl
(28)

' P. Debye u. E. Huckel; Phys. Zeits, 24, 185, 305 (1923). See also E. H uckel, Erz. der
Ex. Nat. 3. 199 (1924).
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But then the condition that (22) should be a convergent series would demand that

F(U, —U, ')/RT &1

which would again make the space charge potential U~ —V~
' smaller than a fraction of a volt.

(8) The current is close to saturation. The formulas for this case are completely given by
Jaffe. They are

(12')

2qFl RT 2ql (qRT), 1 4

N N Uy k N JD+D 3 Vg'

3. Space charge in equilibrium. Another possible approximation would be given in the case
in which we assume that the equilibrium between dissociation and recombination is practically
established everywhere, and the action of the electric field is just counter-balanced by diffusion.
We neglect then the influence of the current on the space charges. This assumption would be
justified if the transfer resistance at the electrodes were very large so that the drain due to the
current is small compared with the exchange by diffusion, dissociation and recombination.
This case is present in the normal galvanic cells, and has been worked out there. '-

The distribution of ions will then be given by Boltzmann's formula which states the
equilibrium between external (for example electric) forces and diffusion, and which does not
violate the dissociation —recombination equilibrium.

an+n = q

n+ = npl.' = npc
I

n =npe~

The Poisso'n equation then takes the form

d~U 4~F
np(e & —e&)

dx' eN

which can be rewritten
d2y—

—,=K' sh y.dx,

A first integration of this gives, with A as a constant of integration

] dy 2

= «' sh y+3 ~'.
2 dx

(29)

(29')
(29")

(30)

(30')

This equation can be easily integrated only if A' is put —q. This turns out to represent the case
in which the electrodes are infinitely far apart. That shall therefore be assumed and x here
calculated from one of the plates, instead of from the middle. " We then get

d(y/2) d(y/2)= K sh (y/2) or ——= —sh (y/2) .
d(«x)(,. )

We find as a result of' integration
—«/~+~0

gh —(x+xp) = ].+
2 1—e «E~+

where xp is determined by the conditions at the electrode
FV, IRT

e
—«~P—

1+~
—FV, /RT

(32}

(33)

(33')

» Gouye, Comptes rendus 146, 612 (1908); Journ. d. Phys. 9, 457 (1910); D. L. Chap-

man, Phil. Mag. 25, 475 (1913); K. F. Herzfeld, Phys. Zeits. 21, 28, 61 (1920); M. von Laue,
and N. Sen, Ann. d. Physik 75, 182 (1924)."For other values of A the solution has to be made by two different developments «r y.
The calculation is rather lengthy and does not change the conclusions.
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or for a considerable value of FV~/RT

~
—EV~ /RT (33//)

But formula (33) shows that most of the potential drop, apart from a fraction of a volt, is con-
centrated in a narrow sheet near the electrode. If we call U' the value of the potential at any
place where it is higher than 1 volt, we can write for the position of that place

K~~2 (~
—FV //RT ~

—EV,(RT)

From this equation it follows that even if U' is not more than 10 volts ~x will be negligibly
small, or in other words even with the lowest possible value of a the whole potential drop,
except a few volts, is concentrated in a sheet of very small dimensions.

All the cases considered up to now have shown that whenever diffusion is considered as of
preeminent importance while approximations are made in other respects the space charge apart
from a few volts is concentrated in the immediate neighborhood of the electrode. In the next
case we are accordingly to neglect diffusion completely and will follow a method erst outlined
by J. J. Thomson. '4

4. Neglection of diffusion. In this case subtraction of the two Eqs. (6) and integration
shows immediately that the electric field is inversely proportional to the sum of the number of
ions. If we assume namely that the mobilities of all the ions are equal, the conductivity is
proportional to this sum, and the neglecting of diffusion makes the current dependent only
on the electric field.

In this case it is shorter to use directly the electric mobility X instead of the diffusion
coefficient D. The formula for the current density is then

j=ex(~,+~ )h, (35)

J. J. Thomson then expresses the N's with the help of this and Poisson's formula through h,
and eliminates n from one of the Eqs. (6). The result is

d2h2 16~/ ~ K2/2 dh2

dg2 K~ 4g2K2h2 64~2 dg
q— (36)

We introduce a new constant

p '=a~/8~eK. (37)

Langevin2~ has shown that P is always larger than 1, and should not vary very much with the
material. For air, it is about 4; for quartz, it would come out with Joffe's values about 1.
Thomson integrates (36) and finds

(
K2&2 dh2 2 '

qpQ&=j2+ — h2+Ch2~P
64m 2 dx 2w(1 —1/P)

where C is an integration constant. Furthermore, we have for the number of ions the equation

(39)

If we now neglect diffusion, there can be no negative ions on the positive plate, and no positive
ions on the negative plate. It follows then for the plates if we call h the maximum value of
the field, which is always located at the plate

Ee dh'

h=hm, @=l

With the help of this relation, we can eliminate the integration constant C. We get namely

0=——h 2+Ch,„»t'qeK&

2m (1—(1/P) )

and find the following differential equation

K h c' d(h2/hm. ') '
q K& h

64~2j2 dh 2~(1—j./p) j2
(40)
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This integration has been treated by Thomson24 himself and many others. o We try a more
convenient development in the following manner: we introduce a numerical constant y, to be
defined later, and furthermore the following abbreviations—

qeEe h '
G2-

4~p p
j 2 4~qe& i/2

X=&i/2G
Eh~2' hm Epe

u=(h —h)/h 0 u&1.

With these we rewrite (40) in the following form

yG2 du ' 2pG'=1+ [1 „(1 „)i&I]
X2 dx 1—1/p

We then develop the last expression into a power series up to the second power of u

yG2 du = 1+2PG2(—u+ u2/2P) = 1—G2P2+ G2(P —u) 2

dx

(41}

(41')

(4)II)

(40')

(40")

pQ
But instead of u —(u'/2p) we are going to use u ——where 7 is a pure number adapted

2p
to the value of p, because the table below shows that we get in this manner a better approxi-
mation.

(1 —u)'//' —(1 —u) p =1, (u —u'/2p) (1 —1/p) y =2, (u —u2/p) (1—1/p)
p=2 p=4 p=iO p=2 p=4 p=i0 p=2 p=4 p=iO

0,25
0.50
0.75
0.80

0.116 0.181 0.222
0.207 0.341 0.431
0.250 0.457 0.621
0.247 0.468 0.651

0.117 0.181 0, 235 0.109 0.186 0.219
0.219 0.352 0.475 0.198 0.327 0.427
0.305 0.510 0.686 0.235 0.457 0.624
0.320 0.540 0.730 0.240 0,480 0.662

Accordingly one sees that in the range between p = 2 and p = 10 p =2 gives a very satisfactory
representation up to u =0.8, or an h2 higher than h' /5. Accordingly we write, instead of (40")

= 1+2pG' —u+—= 1——+yG2 u—— (40I.I I)

01
-d( -p/~)-

u—— —1.
G2p2/~ —1 ~dx G2p2/~-1 (40I I I I)

This equation can be easily integrated. If we take into account that the field must be
symmetrical in respect to the center between the plates if the two ions have equal mobility,
as is assumed here, we find

h2 P G2P2 ~ 1/2—=1——+ ch )x.
h 2 p p2G2

(42)

The square root is determined by the condition that the field h must take the value h, at the
electrodes, x = +l.

G2P2 p 1/2 P
y2G2 y chW

(43)

'4 J. J. Thomson and G. P. Thomson, Conduction of Electricity through Gases, Carn-
bridge, 1928, page 193 and the following."P. Langevin, Comptes rendus 131, 177 (1903);0, W. Richardson, Phil. Mag. )0, 242
(1905).

2' G. Mie, Ann. d. Physik 13, 857 (1904); G. W. Walker, Phil. Mag. 8, 650 (1904);A. A.
Robb, Phil. Mag. )0, 237, 164 (1905); R. Seeliger, Ann. d. Physik 33, 319 (1910).
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The solution of this is

PG/y'~'= ctgh ) l (44)

As the field h close to the plates is rather difficult to measure we introduce instead the field
hp in the middle, which is according to (42)

We have then

(45)

h'= hp' («)

If we want now to evaluate a measured field, we try to determine ) by comparing the field h

at a given place x with kp and calculating ) for an assumed p from the equation

1—(1—y/P} ch Xl hP

ch Xx—ch Xl h' —hp'

We can test our assumed P by repeating the process at different places. Knowing then P, we
determine the number of ions np present without field by using (41') and (37)

(2y)'~' 1+— —1 . {47)

Knowing then np we can get X from the conductivity at very low fields, as we have then Qhm's
law j=hpeX2np. p will then permit the calculation of a and (14"') that of g. The equation
for the current is found in (44) and (41)

j= h tgh hl. (48)

If ) l is sufficiently small we can develop the hyperbolic tangent and find

16~pepj =qe2l 1— + =2gel 1——+
3EPeh ' 3

where 2gel is the saturation current.
But we get impossible results, namely a negative value for hp' from (45) if

P 1 P1+———1 (0 or ch )l)—.
chkl P—v

(48')

This is due to the fact that our approximation (40"') gives too small results for the gradient
of the field for large values of N, and to get this gradient to be zero at x =0, too small a value
is assumed for G. As we have mentioned on page 804 we have to limit ourselves to values of
uupto08or

h ~—hp' 1(0.8, ch Q(
h ' 1—0.8~/P

5/3 for p/y=2 or Xl 1,1

or according to (48) 0.73j««j &j «&.

To see what has to be done for lower currents we remember that J. J. Thomson" in his
discussion had divided the region between the electrodes into three parts. In the central part
the space charge was neglibible, the field constant, adjoining the two condenser plates, there
are layers in which the field increases to the value h due to the space charges mainly restricted
to these layers. For the thickness of these layers and for h Thomson gives as approximate
formulas

j l—x„j)—. (49) (49')
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At this critical point therei s a decided bend in the curve. From (49) one sees that the closer
the current is to saturation, the shorter the flat bottom of the curve, that is the region without
space charges, becomes. At sufficiently high currents the flat part disappears completely, and
the two layers merge in the middle. This is the case for which our preceding discussion applies

accordingly.
For the case of weak currents, we have to use Mie's~' approximation. He is forced to use

two different expressions for the central part where the space charges are small, and for the
parts close to the electrodes where the space charge is large. In his more accurate discussion,
the space charge in the center is not completely negligible, and accordingly the curves there
are not completely flat. He introduces then a field H defined by

H~=
4e'K'no'4P

(50)

This is the field necessary to uphold the current j if Ohm's law were valid up to the current j
with the resistance present at low current. It would also be the initial field if we kept the cur-
rent constant in time. The general formula is then

h'= H'[1+2(e—1)e+~]. (51)

Here c is a constant defined by (49')
We give a table for c.

pe 1 15 2 3 4 6 8 10
c: e{=2.72) 3.38 4 5.20 6.35 - 8.59 10.77 12.92

f has two different expressions, one in the flat part of the curve, one in the steep part. The
two are separated by the point xq where the bend is located. The values of f are:

c—1—{2p)i~' /sat
Flat part, x(xI, f=— —(2p)'~2—+ln ch (2p)'~'—

2(2P—c+1) j j
2p jsat p(2p —c+1) jsat x'

Steep part x)xpf= — —— — —1+—
c—1 j {c-1)' f'

2p gsat 2p —c+1 ysat x
+ln ch ——1+

c—1 j c—1 j
The position of the dividing point is given by

I—xI, j (c—1—(2P) '~') (c—1)

js«(2P) '~'(2P —c+1)

(52)

(53)

The value of the coefficient of j„&/j in (53) is shown in the following table:
po 1 15 2 3 4 6 8 10
Coeff. : 1.34 1.08 1.50 1.66 1.79 2.05 2.27 2.45

We remark that (53) differs from Thomson's estimate (49) just by this coefficient.
The evaluation of a given space charge curve will then proceed so: We first decide whether

the curve has a flat bottom or a continuous curvature. In the latter case, formula (46) will ap-
ply, the current is above & of the saturation current. The method of discussion mentioned in
connection with (46), (47) will allow the determination of p and X, (48) will then give the
saturation current and from this we get g. In the former case we locate the position of the
bend, and then with an estimated value of p, the degree of saturation j/j„&can be calculated
from (53). Then we test the two values by comparing more closely the fit of the curve to (52),
(52'). A method of trial and error will then lead to the actual values of p and the degree of
saturation. Knowing the degree of saturation and the actual current, we can calculate the
saturation current, and accordingly q. qp =8~no'eK and either H from (51) or a direct measure-
ment of the initial conductivity which give noeK will allow the calculation of no, the number
of ions present without current, and K the mobility separately.

To give an example we investigate the middle curve~' for quartz in Joffe's book, page 103.
The data given are scarce so that only a very rough calculation is feasible. We assume the curve

"Treating it as stationary.



COND UC TIVITY OI' POOR COND UC TORS 807

to be symmetric (which seems not to be quite true). Then hp is found to be 44/2l volts/cm.
At the place marked by a circle, which is given by x =0.8l, the field on the left side is found
to be 124/2l volts/cm, on the right 140/2l volts/cm. We take as average 132/2l volts/cm, or
h'=9hp' for x =0.8l. We take the bend at x=0.5l, and evaluate the formulas for P =1.5, 4, 8.
The corresponding degree of saturation would be j/j, , &=0.45, 0.3, 0.22. For the ratio hp2/H2

we get from (54) 1.12, 1.003, and 1.0002. This means that for this value of P the reduction of
the number of ions in the center compared with the equilibrium number would be 6 percent,
0.15 percent, 0.01 percent. For the field at x=0.8l, we find h'=1.75hp 4.59hp 50hp. Ac-
cordingly the suitable value of p lies around 6, the degree of saturation around 0.26, If the
current under these conditions were given we could then calculate j„g and q and proceed as
mentioned above.

We show finally that the number of ions present under these conditions is no where
larger than the equilibrium nu~ber n p. According to (35) the ratio h/j is inversely proportional
to the number of ions (positive plus negative) present at the place. Formula (50) if applied
to the center of the field

- —1- (2~)'~'
hp =H 1+2(c—1) exp — ——(2P)'~~—

Z(2P —~+1)
(54)

shows that even there hp is never smaller than H, and accordingly the number of ions never
greater than np. As the field has its lowest value in the center, the same is true for the number
of ions anywhere in even greater measure. To prove that this statement hold& also when we
make the transition to currents close to the saturation current, we proceed in the following
manner: If we call h, the average value of the field taken over the condenser, that is, the total
potential difference divided by 2l, we know that with increasing saturation the ratio of h/j
continuously increases. This means that the ratio h, /H continuously increases. In any case
the minimum field is in the center, but we can now write

hp hp h,
II h, H

In the preceding analysis, we have seen that close to the saturation current, the variation in

the field is less than for low currents (49'), and accordingly for strong currents hp/h is larger
than for moderate cu~rrents. " The same is true, as we have just shown, for the second factor
h, /H. We have then proved that the left hand side is always larger than 1 or even the minimum
field always larger than the field corresponding to Ohm's law, and therefore the total number
of ions present always smaller than the equilibrium number.

This argument is not quite strict.


