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ABSTRACT

The effect of collisions of ions moving through crossed electric and magnetic
fields is investigated. (a) Collisions of ions with one another are shown to be without
effect, the transverse current at right angles to the fields having the same value see,
where u is the velocity of progression, as would exist in the absence of collisions. (b)
Collisions of free ions with neutral particles are investigated for the case where u
is small compared to the speed v of thermal agitation. As the mean free path is in-
creased the current parallel to the electric field increases to a maximum and then
falls asymptotically to zero, the transverse current parallel to u rising from zero to the
limiting value neu for infinite mean free path. Calculation of the Hall coefFicient on
the present theory, which differs from the usual theory in that it takes account of
long free paths, shows that the coefFicient increases with increasing magnetic field.

' 'N AN earlier paper it was shown that ions in constant electric and magnet-
' ' ic field's progress at right angles to the plane of the fields with the constant
velocity

u = c [EXH]/H'

the projection of the path of each ion on the plane perpendicular to H being
a prolate, common or curtate cycloid in accordance with the magnitude and
direction of its initial velocity. In the investigation referred to, the ions were
supposed to suff'er no collisions. The object of the present paper is to examine
the effect of collisions on the paths of the ions and to calculate the current
densities and conductivities both in the direction of the electric field and in
the direction of the velocity of progression u. We shall limit ourselves to the
case where the electric and magnetic fields are at right angles, since nothing
essentially new is to be gained by including a component of the electric
intensity parallel to the magnetic lines of force. Then the velocity of progres-
sion at right angles to the fields is

We shall consider separately (1) the case where the only collisions are
between one ion and another, and (2) the case where the collisions are be-
tween ions and neutral particles, the number of collisions of one ion with
another being negligible in comparison.

(1) At/ collisions between ions. This case is easily disposed of. We trans-
form to a set of axes X1'Z moving with the velocity u given by Eq. (1) rela-

1 L. Page, Phys. Rev. 33, 553 (1929).
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tive to the observer's inertial system. By so doing we eliminate the electric
field, as was shown in the paper' to which reference has already been made.
Therefore we have a magnetic field alone in the system XYZ. Obviously
this field can give rise to no general drift of the ions. Whether they collide
with one another or not no current can exist relative to XYZ. Consequently
the ions drift relative to the observer's inertial system with the same velocity
of progression u at right angles to the fields whether they suffer collisions
with one another or not. If n is the number of ions per unit volume and e the
charge on each, the current density is simply

j= neu = necE/H

in a direction at right angles to the plane of E and H.
Of course the above reasoning is valid only for u&c and therefore E &II.
(2) Collisions betvoeen ions and neutral particles Now. we shall treat the

case where the collisions are between free ions and particles which are un-
affected by the fields, such as neutral particles in the case of gaseous conduc-
tion or fixed positive ions in the case of electronic conduction in a metal. We
shall assume that the collision of one free ion with another is too infrequent to
require consideration. In order to handle the problem analytically it will be
necessary to disregard the Maxwellian distribution of velocities and follow
Clausius' method of treating the particles as if they all had the mean speed
of thermal agitation. This approximation, however, can hardly do more than
introduce a small error in the numerical coeScients involved in the expres-
sions for the conductivities. In order to avoid consideration of the drag which
would be exerted on the free ions by a stream of neutral particles drifting
relative to the observer, all calculations will be made relative to the inertial
system in which the neutral particles, as a whole, are at rest. Finally, we
shall confine ourselves to cases where the normal velocity of progression I
relative to this inertial system is small compared to the velocity v of thermal
agitation. This condition is undoubtedly satisfied in the upper atmosphere
for electrons and protons if not for heavier ions, as the electric field in that
region is small compared to the magnetic field. '

If we orient axes so that the y axis is parallel to F., the s' axis to H, and
therefore the x axis to u, and put

(o =——eiV/rnc;

v =v sin 0 cos Q = V cos n+n,
v„=vsin 0 sin P = U sin n,

v, =n cos 8,

the integrated equations of motion' take the form

V
x=—lsin (a&t+u) —sin n]+ut, (4)

2 L. Page, Phys. Rev. 33, 823, (1929).
' L. Page, Phys. Rev. 24, 284 (1924), Eqs. (1), (2), (3).
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V
y=—[—cos (cut+n)+cos n],

s=v cos e.t.

An element of path is therefore

ds = sdt [1+2(uV/s') {cos (cot+a) —cos n }]"".
As u is small compared to v by hypothesis we can expand the radical as a

power series in u/s, retaining only the first order term. 4 Integrating we have

s =s/+ (mV/oe) {sin (cot+ n) —sin o.}—(eV/s) cos n t,

and solving for t we get

t = s/s [1—(u V/Ps') {sin (P+n) —sin n Pc—os a }],
where P has been put for &us/v. In the term containing u we can put v sin 8
for Vand P for n. Hence

p
1——sin 8 {sin (P+Q) —sin Q Pcos $—}

co Pv

Substituting this value of t in the expressions (4), (5), (6) for x, y, s we get

x =—sin 8 [sin (p+p) —sin p ]

+—[p —sin p —sin' 8 cos (p+Q) {sin (p+Q) —sin Q
—p cos Q j ], (&)

y =—sin 0[—cos (p+Q)+cos Q]

+—[—(1—cos P) —sin' 8 sin (P+P) {sin (P+P) —sin $—P cos Q }](9)

Qs=—p cos 8——sin 0 cos 8{sin (p+Q) —sin Q
—p cos $}. (10)

Equations (8), (9) and (10) give the components of displacement of an
ion as functions of the direction of its initial velocity —specified by the angles
9 and p—and of the length of arc traversed, s =pv/&o.

In order to find the x component of the current density we must calculate
the number of ions passing through a unit cross-section perpendicular to the
x axis. Considering x, y and s as functions of s, 0 and P we find that if x is
kept constant

4 This approximation is also valid for small magnetic. fields even if e is large compared
to v, provided the electric field is small enough so that its square can be neglected. For if H
is small the radical becomes: 1+(e/mv)Et sin 8 sin @+terms in H and E' and higher powers.
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where J is the Jacobian

Therefore the value of dNQ corresponding to a unit cross-section AB
(Fig. 1) perpendicular to the x axis is

ax(as
d0dg= ———.

J
If N represents the number of collisions made by the ions per unit volume

per unit time and if as many ions start off in one direction as in any other
after suffering a collision, the number of ions starting off on new free paths

Sih&d& dp

inside the conical angle sin added@ is (X/'4~) sin Odadp per unit volume per
unit time. Hence the number originating in a unit volume at 0 per unit
time so directed as to pass through the unit cross-section AB is

E 8x sin0

4g Bs J
and the number originating in a volume dx

dydee

at 0 per unit time so directed
as to pass through AB is .

A 8x sin0
dx

dydee.

4m- Bs J
But

dx dy dz =Jds dodg.

Therefore this number is

A' Bx——sin Odsdodg.
4m Bs
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If all the ions had exactly the same free path t the x component of the
current density would be

2m n l gg
jg= —sin Odsd0dg

o o o»
with corresponding expressions for j„andj„the letter e standing for the
charge on each ion.

The chance of an ion colliding before reaching AB, however, must be
taken into account, giving for j, the integral

2~

jx= e '~' —sin Odsdedg
o o o » (12)

instead of (11), where / is the mean free path. Corresponding expressions
hold for j„andj..

While Eq. (11) does not correspond to the physical conditions actually
existing, the current. will be calculated on the basis of this equation. for the
purpose of comparison with the current calculated from Eq. (12).

Differentiating (8), (9) and (10), substituting in (11) and the correspond-
ing equations for j, and j, and integrating, we get

where

I 4j =men 1+—cos y ——sin y
3 37

1 4j„=eeu ——sin y+—(1 —cos y)
3 37

j,=o.

e/H
v= —P=

Pl CV

El
number of ions per unit volume.

'V

Furthermore if we denote by 0. the conductivity

ee'l
0 =

3 mv

which would exist in the absence of the magnetic field, and define the con-
ductivities o, , 0„,0., in the x, y, z directions in the presence of both fields by
the relations

j 'JJ

0 y=-' &z=

we find

Oa 3 1
1+—cos p ——sin "j

0 p 3 3p



I.PIGH PAGE

oy 3 1 " 4——sin y+—(1—cos y)
0 p 3 37

0'g—=Q

Figure 2 shows j and j„plotted against y. The curves in this figure show
how the currents change with increasing free path, the magnetic field as well

neu.

Fig. 2.

(H constant)

as the electric field remaining constant. The current j„parallel to the electric
field increases from zero to a maximum, decreases to zero and reverses in
direction, finally oscillating about the value zero for very long free paths. The

1,0

H.
Fig. 3.

transverse current j„onthe other hand, mounts from zero to a maximum
greater than that of the current in the direction of the electric field, and final ly
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oscillates about the normal value neu of the current of progression at right
angles to the two fields.

In Figure 3 the conductivities o, and o„areplotted against y. These curves
show how the conductivities change with incieasing magnetic field for a
constant free path /. It is to be noted that while the transverse conductivity
o., is less than the conductivity o„parallel to the electric field for small
magnetic fields, the reverse is true for large magnetic fields. Again currents
in the direction opposite to the electric field are found for certain values of the
magnetic field. Both conductivities approach zero as the magnetic intensity
is indefinitely increased.

Next we will evaluate (12) and the corresponding expressions for j„and
j,. Obtaining the partial derivatives from (8), (9) and (10) as in the previous
case and evaluating the integrals we get

1 2 72
j~= seQ 1—

1+~2 3 (1+~2)2
(19)

(20)

j,=G, (21)

and denoting by 0 the conductivity

2 'Se l
0

3 mv

which would exist in the absence of the magnetic field in this case,

o 3 1 2
1 ——

(r 2y 1+y' 3 (1+p')' (22)

(23)

Oz—=0 (24)

Figure 4 shows how the currents change with increasing mean free path,
the fields being kept constant. The current j„parallel to the electric field
rises to a maximum at a value of y equal to 1.335 and then falls, approaching
zero asymptotically. The transverse current j, increases more slowly at the
start, becoming equal to the current paralleI to E for a value of y of 1.42 "j

and then approaching asymptotically the normal current of progression neN.
Comparison of Figs. 2 and 4 shows how the curves have been ironed out by
taking into account the variations in the free paths of the ions. In this con-
nection it must be remembered that the scale of. abscissae is different in the
two figures.
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Finally I'ig. 5 shows liow the (..(&n(luctivities change with ilicreasinl~

magnetic field for a (:(instant meal& free path. The conductivity parallel t(~

the electric field falls steadily with increasing 0 while the transverse con-
ductlvlty 1 lses to a rnaximulll at p e(Iual to 1.468. Both conc1uctlvltles

2. 3
ekH (H Constant)
N c IV'

approach zero for large magnetic fields. In fact a sufficiently large magnetic
field exerts a grip on the ions which makes the electric field impotent to
produce appreciable motion in any direction. Again comparison of Figs. 3
and 5 shows the ironing-out effect of variations in the free paths of the ions.

Heretofore we have considered ions of one sign only. If ions of both signs
are present, the total current in the direction of the electric field is the sum

L.O

&eH (E constant)

Fig. 5.

of the currents due to the two sets of ions. Ions of both signs, however,
progress in the same sense perpendicular to the plane of the field, and there-
fore the transverse current is the difference of the currents due to the two sets.
As the quantity denoted by p may have a diferent value for the one set from
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what it has for the other, either on account of a difference in mass or a differ-
ence in mean free path or both, the transverse current need not vanish even
when equal numbers of ions of each sign are present, except in the case of
infinitely large H.

If we put Og for the conductivity parallel to F—our previous o„asgiven
by Eq. (23)—and OJI for the conductivity at right angles to E—the 0, given
by Eq. (22)—we can express the current density in vector form by the
equation

H
g = o q."E+O.lq

—u.
c

Therefore, for any orientation of the xy axes in the plane perpendicular
to H, j,.= O-zE, +o-IIE„,

j„=—(rIIE,+O-zE„.

If, now, the current is entirely in the x direction j„vanishes and

Oajv= E
Og

and the Hall coefficieht obtained from the present theory is

ESj, Ei(or, '+ ~z. ')
(25)

Putting in the values of the conductivities given by Eqs. (22) and (23) we

3 1+3y'
7r— )

4mec 9
1+—7'

(26)

indicating that the Hall coefficient increases with the field, approaching for
very large magnetic intensities a value 4/3 of its value for zero field.

In contradiction to observation the computed resistance shows aslight
decrease with increasing magnetic field, approaching a limiting value 8/9 of
its value for zero field as the magnetic intensity is indefinitely increased.


