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ABSTRACT

Comparison is made of the lumped impedance theory of Stewart and the more
recent transmission theory of Mason. It is found that for the low frequency pass
and single band types the former theory gives to a very close approximation the same
frequency limits for the transmission region as the latter. The weak point of the
former is the high frequency pass type, where Stewart's formulae are semi-empirical.
The connection between these and the corresponding formulae of Mason is investi-
gated.

'HE development of the acoustic wave filter has been due mainly to
G. W. Stewart', who first presented the theory and constructed actual

filters. His theory given in the first of the papers noted below (hereafter
referred to as loc. c&t )assume. s lumped acoustic impedances in the main line

and branch lines postulating that the air in each section of the filter moves
as a whole and that the length of each is short compared with one wave-

length of the sound. More recently Mason' has worked out a more general
theory of the acoustic filter and has applied it to several special cases. It
does not appear, however, that anyone has clearly pointed out the relation
between the two theories to account in particular for thegenerallyexcellent
agreement with the experimental data of Stewart's admittedly approximate
theory. It is the aim of the present article to make this clear.

Considering the accompanying schematic diagram (Fig. 1) of an infinite
filter in which the branches (represented here for simplicity as simple ori-
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Fig. 1. Diagram of acoustic filter.

fices) are assumed arbitrary in nature, the lumped impedance theory, neg-
lecting viscosity damping, (loc. cit. p. 531) deduces the relation

Xmg&/Xm =~r

where

cosh V = 1+-',Zi/Z&.

G. K. Stewart, Phys. Rev. 20, 528 (1922); 23, 520 (1924); 25, 90 (1925).
' W. P. Mason, Bell System Technical Journal 6, 258 (1927).
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In these equations X denotes the volume current at the beginning of the
m'" section, while Z~ is the acoustic impedance of one section of the main
conduit and Z2 that of one of the recurrent branches. Both Z~ and Z2 are
here supposed to be pure reactances, so that their ratio is real. Trans-
mission without attenuation occurs only when F is a pure imaginary, i.e.
—1& cosh V&+1. Hence the limits of the transmission region will be
given by the equations

Z,/Z, = 0, Z, /Z, = —4. (3)

In the theory of Mason, which may perhaps be called the branch trans-
mission theory since it is most simply developed by considering transmission
through a conduit with a side branch it is found that the relation corres-
ponding to equation (1) above is

where

X ~g/X =ef~

cos W = cos 2kl + (iZ/2Z2) sin 2kl

(4)

(5)

There is a similar relation for the pressures4. In the Eq. (5) 2/=length of
one section i.e. the distance between successive branches, Z2 is the branch
impedance as before, but Z is not the same as Zi. Rather we have Z=poc/S,
where po is the equilibrium density of the air, c the velocity of sound and S
is the area of cross section of the main conduit. It is seen that Z is the
acoustic resistance of the plane wave in the conduit. As usual, k =co/c =2s.v/c,
where v is the frequency. Transmission without attenuation occurs only
when TV is real, i.e. for 1)cos TV& —1. Hence on this theory the limits of
the transmission region are given by the transcendental equations (Mason,
reference 2, p. 267)

(iZ/2Z )=2—cot kl, (iZ/2Z2) = tan kf. (6)

We have now to investigate the relation between Eqs. (3) and (6). Sup-
pose first that kl is very small, corresponding to short sections and low fre-
quencies. Neglecting higher powers of kl than the first, Eqs. (6) become

2i,kl Z/Z2 ———4, 2fkl Z/Z2 ——0

From the value of Z, it is seen that these take the form of Eqs. (3) provided
we set Z, =2ikfpoc/5 But th. is is precisely icdM& where M&=(mass of air
per section)/S' is the inertance of one section of the conduit. Now for
the low frequency pass and the single band type filters Stewart (loc. cit.
p. 541 ff) assumes Zi to be just of this form, and hence to the above mentioned
approximation the two theories give identical results.

The situation is different if / is no longer small and if high frequencies
are considered, as is the case with the high pass filter, the simplest type of
which is a tube with simple orifices as branches. Here since Z2=icuM2

' G. W. Stewart, Phys. Rev. 26, 688 (1925).
4 See the above noted article of Mason, p. 266, and allow for change in notation.
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(inertance only in the orifice) the lumped impedance theory can not define
Zi as above. In this case Stewart (loc. cit. p. 538) assumes that Zi is due to
a combination of inertance 3III and capacitance C~ in parallel, that is

Zi= pptMi/(1 —MiCipi') (8)

where Mi is as given above and Ci ——U/ppc'=21S/ppc'. As an alternative
choice, he also tried

Zi = p/Cipi (9)

corresponding to 3IIi ——pp in (8). There is little justification for either of
these, except on empirical grounds, as was pointed out by Stewart. There
is, indeed, some argument in favor of attributing capacitance to the conduit
in this case, but no one knows a priori howmuch. However, the choice
(8) led to rather good agreement with experiment, and we wish to see why.
Substitution and reduction of (8) yield

Zi ——ippc/S 2kl/(1 4k'P)—

and if Zp ipse%——p ia&p'p——/cp, where cp is the acoustic conductivity of the orifice,
the low frequency limit is given by

cp/2kS = —(1 —4kPP)/kl.

For the same limit the second of Eqs. (6) gives

cp/2kS=tan kl

(10)

whence there is agreement between the two theories for this case onlyif

tan kl = —(1—4k'P)/kl

which is not an identity but is approximately satisfied for kl in the immediate
neighborhood of (1/3)'". As a matter of fact this condition is met approxi-
mately in most of Stewart's data on the high pass filter (loc. cit. p. 548).
Recalculation, using the limit given by Eq. (11)gives somewhat better agree-
ment with the experimental results, which are, of course, themselves not too
precise.

It is perhaps worthy of comment that the assumption which attributes
capacitance only to the conduit (see Eq. (9)) gives low frequency limits
about ha1f as large as the experimental values. Thus if we assume' Zi ——

4f/C, pi—, the second of Eqs. (3) gives for the low limit

cp/2kS = kl (12)

instead of (11). If kl(0. 6, the difference between kl and tan kl is less than
13 percent and the calculated frequencies differ in percentage by roughly
half this This ex.plains why Stewart's F' values (loc. cit. p. 547 and Table
III p. 548) are about half the right order of magnitude.

5 Thi's fact has been called to my attention by Professor Stewart.
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The conclusion we reach then is that as far as the low pass and single
band type filters are concerned the lumped impedance theory is as good
in practice as Mason's branch transmission theory. ' The weak point of
the former lies in the high pass case, but the above discussion shows that even
here it is possible to give it a reasonably satisfactory interpretation. I ts
greater simplicity will undoubtedly continue to render it preferable to the
branch transmission theory in the practical constructionof filters. Refer-
ence may here be made to a forthcoming article by G. W. Stewart and
C. W. Sharp' in which further comparison between the two points of view
is made on the basis of more recent experimental data. The measurements
here referred to are of the so called characteristic or mid-seriesimpedance,
i.e. the impedance with which it is necessary to match a finite filter terminated
half way between two successive branches in order that it may act as an
irifinite filter. On the lumped impedance theory this is (Z&Z, +ZP/4)'",
while the branch transmission theory (Mason, loc. cit. p. 265) yields for the
same quantity

1 + 'Z/2Z t o M)"'
P /X =Z, =Z

1 —iZ/2Z& cot kl
(13)

For kl small, substitution and reduction show that to the approximation
already employed in establishing Eqs. (7) these two impedances are identical.

I am indebted to Professor Stewart for discussion of the material in this
article.

' This statement neglects the presence of the additional bands found in these types of 61ter,
which are perhaps more easily interpreted on Mason's theory. But see Phys. Rev. 25, 90,
(1925) for Stewart's interpretation.

' Stewart and Sharp, Journal of the Opt. Soc. Amer. 19, 17 (1929).


