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ABSTRACT

An approximate wave-equation (6) is set up which takes into account terms of the
order (v/c)' in the interaction of two electrons. This equation (6) is reduced to a form
(48) which can be interpreted in terms of electronic spins. Disregarding the effect
of retardation the two electrons are described by formula (10). This is reduced to a
form (36) which can also be described in terms of spins. It is shown that the retarded
equation (48) differs from the non-retarded (36) by terms which affect the fine struc-
tur of orthohelium and which have not been known so far.

The derivation of the wave-equation (6) is made first in configuration space and
later by the Heisenberg-Pauli theory of wave-fields. The latter method is used only
to terms of the first order in the Coulomb interaction. It is shown from the considera-
tion of (36) that it cannot be the correct equation and that the modifications due to
retardation introduced in (6) and (48) are necessary. These modifications are ap-
preciable only for spectra of elements with low atomic number.

1. INTRQDUcTIQN

IRAC'S equation for the electron enables one to derive the electronic
spin and to assign values both to its angular momentum and magnetic

moment. In applying his equation to spectroscopic problems it is usually
sufficient to express the two small components P&, P& in terms of the large
components p&, lf 4 and to carry through the calculation to within terms in
(v)c)'. This has been done by Darwin. The present paper is an attempt to
set up an equation similar to Dirac's for two electrons. The equation set up
is only an approximation to within terms in (v/c)' for the energy. One's first
guess in setting up such an equation is (10) below. The interaction-energy
is constructed analogously to the classical

e2

the first term referring to the electrostatic energy and the second to the
magnetic. '

~ This equation has been suggested independently by Pauli and Heisenberg. Heisenberg
arrived at the result by interpreting Dirac's a's as expressions for the velocity —(e/c) while
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Since in the classical theory the difference between retarded and non-
retarded potentials makes itself felt in this approximation it becomes neces-
sary to consider this difference in quantum theory as well. As a starting
point Darwin's classical Hamiltonian is used. Dirac's matrices n„are in-
troduced in such a way as to leave the canonical equations unaltered with the
same interpretation of the n„as in Dirac's equation. This forms the subject
of section 2. In sections 3 and 4 the retarded and non-retarded equations (6)
and (IO) are reduced to equations in the larger iP components and expressed
in terms of Pauli's two-row spin matrices. It is then possible to discuss the
magnetic interaction of the electrons in terms of their spins and to compare
them with the form which Heisenberg used in discussing the two-electron
problem.

Using the new Heisenberg-Pauli theory of wave-fields it is possible to
deriwe the retarded equation (6) to within terms of the first order in the
Coulomb interaction. This derivation is made in section 5. Although all
that can be maintained at present is that (6) is correct to within terms of the
first order in the Coulomb interaction it is likely, since (6) has been also
derived from considerations in the configuration space, that it is the correct
result in the approximation (ii/c)'.

It can be said with certainty that (IO) is not the correct equation to
within this order and that therefore Gaunt's work on orthohelium will have
to be extended to take into account the last term in the result of reducing
(6) ISee (48) ].'

2. DERIVATION OF RETARDED AND NONRETARDED EQUATIONS

IN THE CONFIGURATION SPACE

Dirac's equation for a single electron enables one to derive not only the
proper values of the energy but also the equations of motion of the electron.
This equation is

(
h 8

po+ g nipi+n4mc /=0, pii= — —+(e/c)Ao,
k=1,2, 3 2~1 cBE

h
pi —— +(e/c)Ai

27' z Bxp

Pauli got it by considerations forming an extension to those of Jordan and Klein with
quantizing wave-amplitudes. Essentially the same equation has been used by Eddington and
particularly Gaunt who applied it to the fine structure of orthohelium. Professor Pauli kindly
suggested to the writer to reduce (10) in a manner similar to that used by Darwin in reducing
Dirac's equation. The writer is very grateful to him for his advice and criticism. It is also a
pleasure to express his thanks to Professor Heisenberg for discussions about the new Heisenberg-
Pauli theory of wave-fields and his encouraging interest in this work.

' Estimates indicate that Gaunt's results are improved by this modification. On account
of not having sufficiently certain expressions for the proper functions of the 2'P state of He
it is not possible to speak definitely of agreement with experiment.

The results (6) and (48) are simply extended to the case of several electrons by summation
over electron-pairs. Also obvious extensions can be made for particles of unequal mass.
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the Cartesian coordinates of the electron being xx, xx, x3 the time t; Ao(Ax,

A2, Az) the scalar and the vector potential respectively, the charge of the
electron —e, and c the velocity of light. Solving for the Hamiltonian E we
have Z/c= —(e/c)A o pnx, (—px, +(e/c)Ax) —n4mc. We obtain with this Z.

k 1,2,3

dSjg 2' 1 2~i
[(8/c), xz, ] = (Exx, xx,E)—= —nx, (2)

cdt h h

and ~4o

dPI

dt

e
8 —Ag

c 2~i aA, 1 aA,
+ [E,px] = e +— +e(n, Hg —nzEI, )

0t h 8xi c Bt
(3)

where H= curl A. It is seen that in (2) Dirac's matrices nx are representa-
tions of —xx, /c and that (3) gives the momentum force equation, the left
side being the momentum and the right the electric plus the magnetic
Lorentz force. '

For two electrons it should be similarly required that the matrix expres-
sion for the energy should give consistent equations of motion just as Dirac's
gives (2) and (3). The approximate Lagrangian and Hamiltonian functions
taking into account the retardation of potentials have been derived on the
classical theory by Darwin. 4 These are respectively

I.= xxxzcz—(i —pz )zx xlzxc (—1 pzx )zx eze/zx—r

+(exezz/2c') [(rxrzz)r '+(rzr)(rxxr)r '] (4)

&=px'/2xxxz+ pzz'/2xxxxx —pz /Sc'xxxx' —pxz'/Sc'xxxzx'

—czA 0' —cxxA o"+ (cx/cxxzx) (S&xA') + (cxx/cxxxxx) (~zzA")

+ezezz/r —(ezezz/2 c'xrxzxxxzz) [(pzpzz)/r+ (pxr) (pzzr) /r'] (5)

Here the two electrons are distinguished by roman numerals I, II. Darwin's
notation is somewhat changed, the electronic charge being denoted by —e and
the vector z' and distance r without subscripts refer to the vector from elec-
tron I to II. The form of (5) suggests to try for two electrons

p + g (nx,'pz'+nz"pxn)+(n4'+n n)xxxc
k=1,2, 3

+t"/~)(z- -""-+t"&("")-&)~=o

where now
h 8

Po
——— +(%)(Ao'+Aoxx) —e'/cr

2mi cBt

~ Expression (2) has been communicated to the writer by letter by Dr. P. A. M. Dirac
in the summer of 1928. Essentially the same point of view involving also (3) has been subse-
quently published by Eddington (Proc. Roy. Soc. A122, 358 (1929)).

4 Darwin, Phil. Mag. 39, 537 (1920).
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h 8
p, ' =— + (e/c)A g', a' = (nP, ag', ().,')

27( z 8$@

h
p n y(~/~)+„Ir. aII —(~ n ~ II ~ II)

2~z Bxq~~

A, A ~ are respectively the potentials of electrons I, II disregarding their
interaction and the wave function lb has sixteen components which will be
written in what follows in the form P „(nz, n = 1, 2, 3, 4) the first index m

referring to electron I and the second n to II. The matrices o.~', o.~" operate
respectively on the upper and lower index. Thus by definition if a' and b" be
any of these matrices

(a'bu((() „= ga ),rb„("pzg

Equation (6) is thus equivalent to 16 equations involving 16 variables lb„„.
It is clear by performing a calculation similar to that used in deriving (2)
from (1) that using (6)

dxI,"= —cnI,'
dxjp' = —c

dt

so that the matrices representing velocities are the same as for one electron.
Similarly we find imitating (3) that

+—[—e'/r+ (e'/2cr) ((a'a ')+ (a r) ( r)()/r') ]
BX)s

and that the same equation follows from (5) on the classical theory provided
it is remembered that the p„ in (5) do not include the potentials as they do
in (6). The values for the energy from (5) and (6) are also found to agree to
within terms in (v/c)' provided it is remembered that a4 should be replaced
by (1 —I3') "(2 '

If instead of using (5) the effect of retardation is neglected and the
attempt is made to take into account only the magnetic interaction between
the electrons corresponding to an interaction energy (e'/r)(1 —v'v"/c') we
obtain instead of (6)

( + Z( '('+ "P")+( '+ ") +("/-)( ' ")) (' 0(»)=
~ If instead of writing (6) we try to use in the interaction term expressions of the form

(1/2m) ZI, pf, ++I, pf, ) then it is found that the simple form of (8) is no longer true and that
it also becomes dificult to get simultaneously the correct value of H and the equations of
motion. If the matrices represent the velocity components of a single electron, it would be
surprising if for two electrons the velocity components were represented in part by the dif-
ferential operators p.
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This is the equation used by Gaunt and Eddington', and claimed by them
to be correct. As we shall see the consequences of (10) are in some respects
unreasonable. Further (6) will be derived to within first order terms in the
interaction from the general theory of Heisenberg and Pauli. The work in-
volved in reducing (10) to a form convenient for spectrosc42pic applications
can be conveniently applied to (6). We, therefore reduce (10) first.

3. REDUCTION OI NONRETARDED EQUATION TO LARGER COMPONENTS

We follow here a method used by Darwin in discussing Dirac's equation.
It makes it possible to reduce equation (10) which involves 16 components
(see (7)) to an approximate equation with 4 components expressed in terms
of Pauli's spin matrices. The approximation desired is that needed in most
spectroscopic applications and includes terms in (21/c)2. The matrices n are
taken to be

(0 0 0

0 0 1 0

0 1 0 0

1 0 0 0

(0 D

&2=
0 —i

i 0

0 —'~ (0 D 1 01

i 0l 0 0 0 —1

0 0 1 0 0 0

0 0/ 0 —1 0 Oj

Writing

A4=
1 0 0

0 —1 0

0 0 —111

~I —
P I+zP I bI=P I ~P I cI =P I

the (16) equations (10) involve the following types
p2

(po+ 2mc)lp, , i+ b'lp4, 1+c'$3,1+b"lp, , 4+en/1, 3+ $3,3 0
cr

g2

(pD+2mc)lp22+a lp32C, lp42+a, lp23, C lp2 4+, lp4 4 —0
cr

(12)

(13.1)

(13.2)

g 2

(p0+ 2mc)lpi, 2+ b'I//4, +C'2p +i3an2lp, , 3
—cnipi 4+ (2lp4 3 lp3, 4)

—0 (13.3—)
cr

e2

P0$1,3+ ~ $4,3+C f3,3+ ~ $1,2+C Itl, l+ $311
er

(14.1)

g2

pDlpl 4+ b lp44+C $3 4+a $1 1 C lpl 2+ (2lp4 1 ip32) 0 (14.2)
cr

e2

pDLp2, 3+a'lp33 '
p 3C+,l—4bnlp22+ c"p ,+l2(2lp3 2

—ip4, ) = 0—(14.3)
cr

' Eddington, reference 3; Gaunt Phil. Trans. Roy. Soc. 228, 151-196 Pamphlet A662
{1929);Proc. Roy. Soc. A122, 153 {1929).



e2
POlt'2, 4+ ~ It'3, 4 c P4, 4+~ $2, 1 c tt 2, 2+ $4, 2

cr
S

e2

(po 2m—c)$3,3+b $9,3+c lp\ 3+bnp3$+c , lpga, f+ lpga, f 0
cr

e2

(po 2mc—)$44+a',$14c t,p24+a , $41c ,i/42+ , 1p 2g 0
cr

(14.4)

(15.1)

(15.2)

e2
(po —2m c)443+ b, 'pg, 4+c'fg, 4+an/3, $ c p, g+ (2lp2, $ lpga, Q) 0 (15.3)

cr

It is not necessary to write out the remaining 6 equations since they can be
obtained by interchanging I and II. Since po =2mc we see that p4, 4, lb3, 3,

f3, 4 1j/4, 3 are large while the remaining P are small. Using equations (13),
(14) we let to start with po =2mc and solve for lb~, &, lb~, &, p&, 3 in terms of the
four large lb's neglecting for the present all terms of order higher than v/c.
Equations (14) determine the order of magnitude of p&, 3, lb&, 4, tp2, 3, p2, 4 as
s/c. Using these values in (13) the order of lb/, g l//g 2, f2, 2 is (v/c)' and to the
first approximation these may be neglected. The results for the first approxi-
mation may be expressed most conveniently by means of Pauli's matrices
with two rows and columns which represent the spin. We let

[These are the negative of Pauli's matrices. It is for the present purpose
somewhat more convenient to have the sign changed as done here. ] The
two row matrices are used as operators on the suffixes 3, 4 only.

Using the relations:

((P ~')f) 8,3 = —(bk4, 3+48,3); ((P ~')4) 8, 4 = —(bk4. 4+ca,4); ((P d')4) 4, 3

= —(ap, cp, ); ((pd'—)tp), ,= —(ap, , cp, )—
(17)

((P6 ) p)3,3= —( lpb3, 4+ lpc3 8); ((P6 )lp)3 4= —(afB 3
—c$3,4); ((Pa ) p)4, 3

= —(bp, +cp, ); ((Pan)p), = —(ap, cp), —
,

((a'an)p)g, 3 p8, 3 ((d'dn)p)g, 4=2/4, 3 ps, 4, ((6'an)p—)4, g

(18)= V8, 4
—44.8, ((&'&n)0)4, 4=44, 4

and letting
X'=(P'd')0 X"=(P"&")1b (19)

we have to a first approximation

Po 2'mc j Ilt'1, 1 QI, 2 $2, 1 Ilt'2, 2

I I I
IPy 3= (2mc) y 3 3,' fy, 4= (2mc) g 3 4', 1b2, g = (2mc) y 4, g ,'P2, 4 =(2mc)

n n n n (20)
P3, &

——(2mc) 'x q, q, f4, & (2mc) 'x 4,3, tPq, 2=——(2mc) 'x 3,4,'$4, 2=(2mc) 'x 4, 4
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Substituting these values in (13.1), (13.2), (13.3) we derive values for
lPI, I, lpi, z, 1P2, 2, lpz, i to the order (v/c)2 which on using (17) and (18) again
reduce to

where
$1,1 g3, 3 j t|y 2, 2 g4, 4 j Pl, 2 g3, 4 ) $2, 1 g4, 3

e2 (Pl oi) (Pn oil)
n = — —(olo")4 +

4mc2 r 4ns2c2

(21)

(22)

Also substituting (21) in (14.1), (14.2), (14.3), (14.4) and again using (17)
and (18) we get to the order (Il/c)'

IP1,3 PO (X +F)3 3 j O'I 4 PO (X+V)8 4 j A, z PO (X +P) ,43j

lp2, 4 PO (X +V) 4, 4

lp3, 1 po (X +P)8,8 j 4'4, 1 pO (X +1' )4, 8 j lp3, 2 po (X +F)3,4 j

4'4, 2=PO '(X +V')4, 4

where

e2 (pioI) (pII oil) 2

$1 I (pII dII)( IZI (PI)(y lip)+2y 1(oIoII)(pII /II)lp I +
4mc2 4m2c2

(24)
e2 (pII ol I) (pI oI) 2

)li =
I (pi gi) ( IZI IZII) (y ll//) + 2y 1(dI 1ZII) (pI 3ZI)p I +

4mc2 4m2c2

We have now obtained expressions for all the 1P„, correct to the order (Il/c)2
in terms of IP8, 8; IP8, 4, lp4, 3 IP4, 4 We substitute these values into (15.1), (15.2),
(15.3). The term Po —2yyzc is itself of order yyzv2/c or (8—yyzcz)/c. Our problem
is to determine Z —mc2 correctly to within the third term in an expansion
according to powers of (v/c). Hence we should require that on dividing
equations (15) by c all the other terms should be known to an accuracy
(Il/c)4. Since 411/c, bi/c, cl/c are of the order Il/c the accuracy (s/c)3 in de-
termining lp4 „IPO, I etc. suffices and similarly since ez/czy is of the order (Il/c)
the accuracy (v/c)' in determining fbi I, lPI 2, 1P2 2, lP21 is also satisfactory.
Performing the substitution of (21), (23) into (15.1), (15.2), (15.3) we have
using (17), (18) once more

e2

(Po—2yyzc)lP (p'4Z')P—o '(X'+g') (p" ljn)Po '(X"—+t")+ (zj'zj")yj) =—0 (25)
cr a,P

where
u P=3 or 4.

This is the result of eliminating in (10) the smaller components and expressing
them in terms of the larger ones. It now remains to substitute into (25)
equations (19), (22), (24) and to make the result linear in o', o". We do this
by means of the formulas

&1O 2 ZO 3 ) O 2O 3 ~f71 7 (73fr1 = ZO 2

o,' =o,' =o, ' = 1, o;o 8+o Ool ——0 (zA b) .
(26)
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Performing the substitution and collecting terms we have:

(po —2212') —(p'd') po '(» 'd') (»
n—dn) po '(p" d")

g2

+ [(pI dI) (pII dII) (dI dII) r—I+ (pI dI) r—1(dI dII) (pII dII)
4m'c'

+(»"d")r-'(d'd") (» 'd')+r-'(d'd") (p'd') (» "d")]
(pI dI) 2 (pII dII) 2 s 2 ( dI dII) 2

/=0.
4m'c' 4mc' r'

(27)

(PI~I) (PII~II) (~I~II) (r—
11P)+ (PI~I) r—1(~I~II)(P II~II)P+ (PII~II)r—1(~I~II)(PI~I) 1P

+r—1(0I0 II) (pI 0 I) (pII ~II) Ip
—((pI ~I)r—1 )( (pI I I I)(~I ~II) + (~I ~II) (pI I~II))1p

+r—1((pI~I)(pII~II) (~I~II) + (~I~II) (pI I)(pII II))py ((pII II)r—1)((pI~I)(~I~II)

+ (~I~II) (pI~I) )P+ ((pI~I) (pII ~II) ( I~II) r—1 )P+r—1((pI~I) (~I~II) (pII~II)

+ (pII~II)(~I~II) (pI~I))p —2 ((pI~I)r—1)(pI~I)p+ 2 ((pII~II)r—1)(pI~II)p

+ &(p'~')(p"~")(~'~")r ')0+2r '((p'~')(p"~')+(p"~')(p'~'))4 =4 (rp'p")4

+ &(pI~I)(pII~II) (~I~II)r—1)py2( (pIr —1)pII) + ( (pIIr —1)pI)
—'[&p*.—) xp-]- —'[&p *.—) xp ]")p. (28)

Here the p&' and pA" were treated as ordinary differential operators because
on division by c the whole term is of the order (v(c)' so that the higher order
terms arising from the noncommutability of the p's may be neglected. Use
has been made in the above of formulas following from (26) IIis for any . two
commuting vectors A, B

The term e2(42222c2[ ] consisting of four members may be transformed con-
, veniently by using a symbol ( ) to indicate that the differential operators
p', p" apply only within the ( ). We have then, remembering that p'p"r 11p

= (p'r ")p"IP+ (p"r I)p'IP+ (p'p"r ')IP+r Ip'pnIPunderstanding p and Iras
vectors

(Ad)(Bd) = (AB) —i [AX8]d (29)

where [A X B] is the vector product of A and B Since the la. st term in (28)
is the result of applying (29) to 2 ((p'0')r —')(p"0')+2 ((p"o")r ")(p 0") only
one of p's operates on Ipwhile the other operates on r '. Again using (29) we
have

(p'a')(pnon)(o'o") = (p'~') [(p"I ')+i [p"XIIn Jo'}
= (pIpII) —2 [pI XpII ]uI+ 2 [ pI [pII X zII ] —2 [pI X [pII X 0 II ] J ~1 }
—(pIpII) 2 [PI XpII ](~I ~II) + (pII~I) (pI~II) (~I~II) (pIpII)

If this operates on I(r it is simply

((pI~I) (pII~II) (~I~II)r—1 )
—((pII~I) (pI ~II)r—1 )

(30)

(3O')
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We have therefore anally

e2

[(pI gI) (pII gII) (gI gII) y
—lg+ (pI gI) y

—1(gI dII) (pII dII)P
4m'c'

+ (pII gII) y
—1(gI gII) (pI gIg, +y

—1(dI dII) (pI dI) (pII gII) P ]
e2 e2

(pIpII) )P+— — — ((pII gI) (pI dII)y 1 )m'c'r 4m'c'

(3l)

e2

+ (((p'r ')p")+((p"y ')p') —2[(p'y '&&&p"]&'—2[(p"y ')&&p']d")0
2m c

In computing (pr(II)p() I(pI(II) we may not disregard the noncommutability
of the p's because this term on division by c is of the order (v/c)2. We have:

(p d')p() '(p'd ) =(2mc) '(p dI) [I—(2mc' '(E 2mc—'+eV)](p'd')

where
e2

U =A(p+20" —— (32)

or
h 8 e

(p' ')0 '(p'&')=(2 ) 'Z —+—& ') "((—(2 ') '(2—2
27cz t9xg c

—(2mc) '(p d')(2mc') '(E—2mc'+eV)(prdr)

where in the second part of the expression the difference between pI, and
(fI/22r2)8/Ox' is not essential since that part on division by c is of the order
(v/c)'. We have therefore

eh E—2mc'+ eU
(pI&I)p 1(pIeI) = (2mc) 1 Q(p I) 2 (HI (p) Q(p ) 2

4zmc' 4m'c'

where

h h
(fIpI) EIy gI

Sum'c' 8mmc' m

H'= curl A'.

8f' = —gradx U = — — — ) — U
8XI t3X2 C) $3

(33)

(33')

(34)

The term (p'd')'(p"(I' )', entering as (v/c)', we neglect in it 22 and obtain

(pI dI) 2 (pII gII) 2 —Q (p I) 2 Q (p II) 2 —(pI) 2(pII) 2
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Using (26)
(dIgII)2 3 2 (dIgII)

Substituting (31), (33), (34), (35) into (27) we have

E—2mc'+ eV
E—2mc'+eV ——1 —— Z((p")'+(P ")')

2m 2mc

he ehi
+ f(~'~')+ (~"d") l+ f(E'p')+(&"u") ]

47t.mc Sum'c'

fIX gI + fTIX yII

qII gI qI gII r—I + — pI + pII

s2/t rII rI pII I I rII pI (pI) 2(pII) 2

X—~'+ X—~»
4mmc' r' m r' m 4m'c'

s4 3 —2(dIa")
/=0.

4mc' r'

Solving for E—2mc2+e U

(pI)4+ (pII)4 (
2 pI pII

&—2~~'+« — ((p') '+(p") ')+ +-
2m 8m3c2 r mc

he ehi «II ~I
+ ((H'&')4. (~"&"))+ ( (2)+J ( s"(')+ 2 2')4+me 8~m'c' r3

&I —&II he pI pII-
+2e PII + gX—dI + ~"X—

r' Same' m m

~I ~II pII ~II ~I pI
-X—dI+ 2e —X—

r' m r3 m

eh e4
((2"d)(2'~").-')——(4 —Z(~ ~")).—I4=O

4nmc 4mc'
(36)

This is the result of reducing equation (10) with 16 components to equations
in the 4 larger components. Comparing this with equation (24) of Heisenberg2
we see that ali of these terms are included in his (24) with the exception of

(pI)4+(pII)4 22 pI g)II ( h2 rII I I
+———+ ((&s')+( » )2+ 2 "n')-

Sm'c' r mc mc Smm2c' r3

~I ~II el
y2s .pII (3—2(drdII)r —2

r' 4mc'

~ Heisenberg, Zeits. f. Physik 39, 499 (1926).
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The erst of these may be called the relativity correction to the kinetic energy,
the second is the magnetic interaction of the orbits, the third is characteristic
of using Dirac's equation, has been discussed by Darwin, ' for a single electron
and will be discussed in more detail below; the fourth term may be called a
higher order interaction of the spins but as we shall see later enters here with
a wrong factor on account of having neglected retardation. In particular we
observe that the Fine structure of helium should be exactly the same according
to (36) and (10) as according to Heisenberg's (24). In making the comparison
with Heisenberg it is necessary to remember that our 0 &~, o.&' are just the
negative of Pauli's and that Heisenberg's last term representing the dipole
interaction is given in (36) as —(e73/43r433c)3 (Vne') (prlr")r ').

REDUCTION OF RETARDED EQUATION TO LARGER COMPONENTS

We can now perform a similar calculation for the retarded equation (6).
The first approximation and therefore (20) remains the same as before.
Using (20), (17), (18) in equations which now correspond to (13.1), (13.2),
(13.3)

where
$1,1 'g 3,3y P2, 2 g 4, 4y $1~ 2 Q 3,4) tt2, 1 'Q 4, 3 (37)

q' = —(0'/8mc') ((6' d")r-'+ (o'r) ( dnr) r-') lP+ (p' d') (pub") lP/4333'c' (38)

use being made of equations such as

1
(( ar)( am)4), 3 (=(a'r)(dnr)Xu), ,

2mc

which follow on substituting (20) as well as

((arr)(a r)lp) =((g r)(gnr)lp) (33 433=3 or 4)

(39)

(40)

Using these values for (37) the quantities lpl, 3, lp3, 3 etc. are evaluated to a
highel' approximation than (20) and analogous to (23). This again is ob-
tained from the equations which now take place of (14) as

where
lpl, 3 p0 (X +( )3,3 $1,4= p0 (X0 +$ )3,4 etc. (41)

(pr dl) (pn grr) 3

+
4m'c'

Putting these values into the modified (13) we have

(Po —2433c)4' —(p'~')Po "(X'+h")—(p"e")Po "(X"+k"')
e' ( a'dn) (d'r) (dnr)+— — +— n
2t" t' a,P

8 C. C. Darwin, Proc. Roy. Soc. 118, 654 (1928).

(43)
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(44)

where

where n, P =3 or 4. Substituting into this (19), (38), (42) we obtain
g2

Po —(»'—')Po '(p' ') (»"—")Po '(»" ")+ -[(p'd')(p"d")X
8m'c'

+ (» 'd') &(p"d")+ (» "d")X(» 'd')+ X(p'd') (p"d") ]
(pidi)2(pIIdn)2 e4

X' /=0
4m3C3 16mc3

(di dii) ( dir) (diir)I=- +—
r r3

In addition to (31), (33), (34) we need also the following expressions:

(d'r) (d"r) (d'r) (d"r) (d'r)(d"r)
(p'd') (» "d")- +(» 'd') (pi i di i)+(pi i

di i) (pi di)
r3 r3 r3

(d r)(d' r) (x' —x ')(x"—x ')
+ —(p'd')(» "d")=4 Z— —P'p"

r3 r3

+2((piir —i) pn pi) 2&[(pnr —()+pi]dII 2&[(pir l)Xpn]dr

+ ((p'd")(p" d')r ')
which when combined with (31) gives

(44')

(45)*

g2—[(pi di) (pn dii) X+ (pi di) Q(pi i dii) + (pii dii) X(pi dI) +2t (pi di) (pi i dii) ]8m'c'

g2

2m c

S —X S —X.
'(n's")+ Z—— '

0 p;")r3

g2 e z

+— ((» "d')(» 'd") -')— —([(» "-')Xp"]d'
4m'c' 2m c

+[(p"r ')Xp']dn).

It should be noted here for future reference that ((p"r '), p" —p') in (45)
has been cancelled by a similar term in (31). Using (29) we also have

6—4( d' di') 2( d'r) (d'ir)
$2 +

r2 r4
(4't)

Substituting (33), (34), (46) into (44) and solving for E 2mc'+eV as has-
been done in deriving (36) we have

(p') '+ (p")'
E 2mc'+eV ((pi)'+—(p )')+ ——— +— (r '(pipii)

2m 8m'c' . 2m'c'

he
gr —3(x II x,i) (x,ii x i)p Ip,ii)+ [(Hidi)+ (Hiidii) I

4mmc

* For derivation see appendix.
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ehi he gi — ~II
+ [(EI~I)+(fzz~zz)]+ fIy vz+ fzz)(' vzz

xm2C2 Same' m m

~I ~II ~II ~II g
I ~I- eh 2

+ 2. ——X—d'+ 2e X—d" — ((~"d')(~'d")r-')
r' m r' m 4xnsc

(48)

This is the result of reducing equation (6) with 16 components to equations
in the four larger components just as (36) is the result of reducing equation
(10). This equation (48) is presumably the correct one to use since it has
bein derived using a correction for retardation in (6). It is further seen that
it contains terms

(es/2zrzscs) r 1(pzpzz) + Qr s( a,zz —a,z) ( g .II —g I)p I~ II

I

which are the quantum theory analogon of the classical (e'/2c') [(vzv")r "

+(v'r)(v"r)r ']. The e'ki/4 zrIzr'c'(r(p Ipzz)) occurring with (EJI) in (36) are
absent here. So far as the (Eg&) combinations go these terms would mean that
in an atom with nuclear charge Ze the whole bracket multiplied by efzs/Szrzzz'cs

1s

((Zerzrz s 3e'(rz —rzz))pz)—+((Zerzzrzz s 3es(rzz rz)r s)pz )

so that if the electron I is far out the effective screened nuclear charge for
pz is Z —3 instead of Z —1. In equation (48) however the effective screened
nuclear charge is Z —1. This argument is not conclusive because the terms
(rr s(p' —p")) can be absorbed in es/rrrPc')(p'Jz") provided this is changed
into (e'/2rzz'c')(p'r 'p" +p"r 'p') The quest. ion cannot be decided unless it
is possible to know in what order the factors p, p, r ' correspond to the
classical v'v" /r In (48). the order of factors in corresponding expressions is

readily verified to be immaterial.
Quite unambiguously we can see, however from the fact that (36) does

not contain the combination

(S,zpzz)+ Z, s(, , )(, z-, )p p. , . .

that it cannot be a correct result. 9/e must require that for cases where the
effects of spins are negligible the result should agree with Darwin's (5). This
is the case for (48) and not for (36) and therefore (48) rather than (36) is the
correct equation. A generalization to the cases of particles of unequal mass
can easily be made. The result is

E (zzzz+zzzzz) c'+—eU —(pzs/2zrzz) —(pzzs/2zzrzz) + (pz'/Szrzz'c') + (pzz'/Smzz'&')

' According to Jordan and Kiein [Zeits. f. Physik 45, 751 (1927)] the order f (fzzr zpzz

+p"r 'p ) is the correct one to use. This is in agreement with the results below.
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+ (e2/2mxmxxc2) [(px~xx) p x~— Qr —3(g II g,I) (g,II gI)P, IP II]
r

+(he/43rc) [(Hxox)m I+ (IInoxx)mxx I]+(ehi/83rc2) [(Expx)mx 2+(&II~II)m

+(he/82rco)(mx 2[—fxX&x]ex+mxx 2[—QIIX'&xx]exx+2(mxmxxro) xj [(rx rn)

Xg)n] d'+ [(r"—r') Xp'] dn }) —(eh/43rc) '(m m ) ' ((pnd') (q'dn) r ')
—(eo/4(mx+mxx)co) [(3—2(dxdx'))r '+(d'r)(d'xr)r 4] }/=0. (48')

For myy = ~ this degenerates into the equation for a single electron.

DERIVATION BY HEISENBERG-PAULI THEORY OF WAVE FIELDS

We use the results of Heisenberg and Pauli in the form of their equations
(109), (110)
—g&" = g e'h/42r)(g, &3+—hv„x) x(I0 oy1)AI, 0(xi, rx —ic,x)(dx «"+icx, '")

(109 II.I'.)+ g(e2/43rp x)Q 0(d rx+3c rx)i' 0(d rx+3c rx)

8$, r)t

applying to the case of Einstein-Base statistics for matter and for our purpose
an equivalent expression for the case of matter obeying the exclusion princi-
ple. Here E„Z& are possible energy values of a single unperturbed electron
neglecting therefore its interaction with other electrons. The system con-
sists initially of X,' electrons in state s, X&' electrons in state 5 and no light
quanta. On account of interactions between matter and radiation light
quanta appear. Their frequency is v„), where r refers to a particular set of
vibrations in Jean's cube and )x =1, 2, 3, 4. For the reasons which make it
necessary to introduce the index X the reader must be referred to the paper of
Heisenberg and Pauli. Ke use the notation

fX + O~N ~& r)dp
p p (101 II I'.).

grx&, rx 4, Ixrx& rx (97 II.P.)

meaning by u, ', the proper functions of Dirac's equation corresponding to 8,.
Also letting Ix„, 'A„, p„be integers po the scalar potential p, /c (i =1, 2, 3) the
vector potential

Q =I( 8/L)o' xgoxcos IVL xxx, g sin IIL 9 „y sin IIL xxx,s

40=(8/I')'Xoqor Sin IIL Ierg Sin IIL '1X«y Sin orL 'p«S
(84 II.I'.)

2Ip cp p 12
Ix 2+ix 2+xx 2 '

v «2(o+d) 0(1 d)p 2

In these formulas the integers rc, X, p determine the modes of vibration of
Jean's cube, 0 and 5 are sniall constants which are made zero i'n the limit.
They evaluate in their (116)
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—g(2mr„i) 'd, "i = J) r ' u *'(P)u '(P)u ~"(P')u ~(p')dVdV'

r„,~, being the distance between the point P = (x, y, s) and P' = (x', y', s').
Whenever the same dummy suffix occurs twice a summation is performed
with respect to it. They have also shown that to within the approximation
in which 8,—Z&,+hv„), can be replaced by hv„), the cross product terms
d, &c&, contribute nothing and that the terms c,&c&, give a term in

Jt r 'rr u, *'(P)n'„u.'(P) u„*'(P')0'„,u, '(P. ')dVdV'.

These two terms due to d„d„and c„c„giveas a result equation (10) which we
have used to deduce (36).

The way to get corrections for retardation is indicated also in their paper.
They state that the difference between (E,—Z, +hv, z) ' and (kv„z) 'gives
these corrections.

Since the c,&c~, terms contribute results involving products of two n's their
effects are of terms in (v/c)'. For the purpose of this paper we want only an
approximation to this order (s/c)'. lt is sufficient therefore to consider in
c„c„the first approximation to (E,—Zi+kv„&) '= (hv„i) '. The d„d„ terms,
however, are of order 1. For them we must expand (2,—Zi+hv„i, ) ". Now
their (112) is replaced by

(49)

The evaluation of the first term of this is performed by them by letting

Qr i—ir ri(p)r ~x(p&) ~G(p pf)

and then showing that for 6—+0

DiG(P, P') = 64m'L ' g sin rrL 'II„x sin xL 'X,y sin xL 'u„z

sin rrL 'II„x' sin 7rL 9„y' sin rrL 'u s'=Sx'g(p —P') (114)(II P)

whence it is deduced that

G(P, P') = 2xr 'pp. . — (115)(H.P.)

For reasons which will be seen presently it is more advisable for us to perform
here a direct calculation. We let L~~. In the limit we can then replace
summations by integrals. In order to be dealing with free particles we must
simultaneously remove them from the walls of the enclosure. Thus we also
increase x, y, s keeping x —I./2, y —I /2, s —I,/2 constant. Under these condi-
tions the walls of the enclosure recede from the particles to infinity and the
coordinates of the particles with respect to the center of the enclosure are
kept constant. We have then
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G(P, P') = —(64/x) (cu)s+eP+a&P) ' sin cu)x sin cozy sin cv&s

0 0 0

sin (ogx' sin co2y' sin eras'dcogdcv2du)3. (50)

The product of sines in the integral can be combined into a sum of eight
products of which (1/8) cos o))(x —x') cos co&(y —y') cos o)3(z —z') is the only
one. of importance. The others contain one or more factors of the type
cos k())(x+x'). These considered as functions of k0 alternate very rapidly
because x+x' —I.. The contribution of these other terms is therefore
negligible. We have further

4 cos u)X cos a»V cos co& Z = cos (&v,X+a&~V+ &o~Z) +cos ( —co)X+cu2V+ ~qZ)

+cos (cu)X —~2 V+ co&Z)+ cos (&v,X+&o&V—&o&Z) . (50')

ln using integrals such as (50) we are concerned therefore with

f f(~ +kkk~'+~ )3cos ~(X cos ~2K cos ra3Zdkukdco, da&3

0 0 0

+oo +oo +oo

f(Cdl +Q&o +kk)3 ) Cos (MkX+kk)2K+(k)3Z)dkk))d(02dkL)g
8

(51)

by (50'). Since the last integral extends over all the space k() it can be written

+oo

f )f+ '+ ', ') (,)k)d. ,d.,k ')(X'+Y'+Z' (51')
8

Substituting these values into (50) we have

G(P, P ) = (1/x) Jf f(cuk +kk& +era ) cos (e)R)d&vkd&oqd+3. (52)

For the three terms in (49) in the case of e= —1 (this procedure is justified
at the end of the paper) we need to evaluate this expression with f=0 ',
0 ', 0 4 where 0'=co '+co '+(vP We have

0 ' cos (co(R)de)dku&dcu3 = 2x'/R (53)

0 cos coque
—1 dcvqdvqdcv3= —

m +

0 ' Icos (a&kR) —1jdkukd~&d&va = const. (55)

By means of (53), (50)

which is (115) of H. P.
G(P, P') = —2~/R (57)
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Next in (52) we replace the summation by the first term corresponding
to (57). With this understanding we have:

(e'h/4m)(E, . E)—'d, '"d ""(hv ),)—'=
s, t,r,)

«r4-~) O. *'(~) '(~) *'(~') '(P)Z( ) ' ""(~) '9")(~ —~)'««
r, X

Writing

we find

F(P P') = Qv e()'"(P)v()'"(P') (58)

&(P)P') = —4)rc '
Jt 0 '(cos («)qR) —1)d«)(d«)~d«)3=4ir'c 'R

where (55) has been applied and 1 has been subtracte'd from cos (e,R. This
amounts to adding and subtracting in the integrand 0 4 four times. The
result is unchanged because as we shall see an additive constant in (59) has no
effect. Thus:

Q(e'h/4ir)(hv„t, ) '(E, E—,)'d„—""d(,""
s, t, r, X

Using (1) we have:

f (z —z) -'z *
(

* )'evzv'
s, t

(6G)

h 8 e—(e+ ~.).. + z — . +—~.)-,".+ -„"=D
C 2' Z BSIc C

1 h 8 e(e.+ A,),"+Q—— —+—A,)," .,'+, ' „'=D.
C 27l Z OXp C

Multiplying the first of these by zs, *', the second by u, ' and subtracting we
have:

—(e,-~)..""+Z .*-'—'-+—' —"—")=o
C Ic 2~1 ~&A: ~~4

which may be written on summation as

1 h 8
(E —E )I *'u '+—Q —— (u *'()( "u ') = G

C A, 27' Z BSIc
(61)

analogously to the conservation theorem being in fact that theorem for the
part of the current four vector due to cross product terms of states t, s.
Formula (61) shows that an additive constant in (59) can contribute nothing
since it disappears on partial integration. Similarly it shows using (55) that.
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the second term in (49) contributes nothing. Substituting (61) into (60) we
have

e'h (E,—E()' e' 4l(up*'c(p, "u,() c)(u.'*6()('.„u„")
42r (hv 2,)' 4 4lxi t9$I

Combining this with

and

("6(4 ) g(6. ) 4 "4 "-= —(~ /2) f ,.—* '* 4V4"(P
r, )

g2

( e' h/42r) Q(hv, )) 'c„—""c„""= —r ',„.u *'64 'u. (—(u„*(c4,'u ')'dVdV'

so that (118) and (119) of H. P. is still true but corresponds now to

c48g fg f yy Qp Qp Qg Qg Qp (Xpg Qg Qp, Clyde Qip

B(up 'c2pg u2 ) B(up ()(pg u )p
4, (=1,2, 3 (-'lx)6 t3$E

~lie
rpp. 'up*'u —'(u *'u ')' ——

(x), —x),') (xi —xi')

k, l ~PI"
,*' „','( „*' „.' .')'tppdP (62)

We have performed here two partial integrations and also used the fact that
terms due to retardation contribute nothing to 2„,«. By an accent put over
a parenthesis we mean that the parenthesis is to be evaluated at (x', y', s').

This result (62) means that the interaction energy in the conf)guration
space is of the form used in (6) since that form according to ordinary quantum
mechanics gives as a first approximation to the interaction energy the expres-
sion (62). The method of approximations used gives so far only the first
approximation in the Coulomb interaction between the electrons. It does
not necessarily follow therefore that (6) is correct to within all terms in
(e/c)'. But if we combine this derivation with the arguments given in the
f)rst section it seems at least very likely that (6) is the correct equation.

It is satisfying to note that just as Darwin's form (5) takes into account
retardation by considering second order corrections to the electrostatic poten-
tial so our retarded equation owes its retarded terms to the third member of
(49). The first order correction vanished both in Darwin's classical calcula-
tion and here.

The eq'uation (6) and its reduced form (48) differs, as stated before, from

(10) and (36) by the presence of —e4(8rr(c') '( r(i)(d" )rr4 which should
affect the fine structure of orthohelium. In order to see its effect it is con-
venient to combine it with the term just preceding it which represents dipole
interaction. These two terms together contribute to the energy the amount:
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(d'd" ) 3 2~'e'm eh
p + + (d'r) (de) where p =

r3 r5 h2r4 4+me

Only the second part of this expression contributes to the fine structure on
account of the presence of (d'r)(d"r). Retardation makes itself felt here
through the term in r '. Its effect is seen to decrease the inHuence of the
ordinary dipole interaction. For helium in the 2'P state the retardation term
is roughly 1/3 of the dipole term.

A preliminary calculation of the orthohelium fine structure using an
equation equivalent to (36) has been made by Heisenberg'. Recently an
attempt to refine Heisenberg's calculations has been made by Gaunt'. Gaunt
also uses an equation similar to (36). It is clear from Gaunt's calculation that
the result is uncertain on account of not knowing a sufficiently good approxi-
mation for the proper functions of the 2'P state of helium. Preliminary
calculations of the new term in (48) show it is not in contradiction with
experimental values for it improves Gaunt's present result. It is premature,
however, to claim agreement with experiment before the proper functions of
the 2'P state are worked out and the perturbation calculation for the fine
structure is made with them in such a way as to be sure about the accuracy
of the result.

All the terms in (48) with the exception of the last one due to retardation
in the action of the electrostatic potential can be interpreted physically in
terms of the spin model and in fact have been written down and used by
Heisenberg before the discovery of the Dirac equation. The effect of retarda-
tion is to introduce interactions which have no simple explanation in terms
of the spin. Since Dirac's equation is based on much more solid ground than
the spin model the new terms have in all probability a physical existence. In
the case of electrons they would be expected to be capable of experimental
detection only in the spectra of elements of low atomic number. There is
also a possibility of testing the formula on the fine structure of band spectra".
If Dirac's equation applies to protons it may also be possible to test the
existence of the new terms in such cases as radiation probabilities of ortho and
parahydrogen. If we are interested in higher approximations than (s/c)' it
is more convenient not to use the expansion (49) but to consider pairs of
terms

1V,'1V, '(L, E(+hv, g) '(d. ,—"" ic.)"")(d(,''+ic—„"")

+i' 0+ 0(E E +hv )
—1(d r'k zc rx)(d rx+ zc rx) .

The evaluation of this expression is laborious and need not be given in detail
here. For the limit 5 =0 we find for instance

(,2/g/4s. ) Pg 0@,0[d rkd sx(E E +Pv „)—I+d rxd rx(E E +Qv „)—1

rX

= e2 u*'u' cos 2xr»

—(1/2) (1+e ') (2rrrzt /X„) sin (2rrrI r /X, &) (1/rz~ ) (N~ 'u') 'd Vd V'

o H. A. Kramers, Zeits. f. Physik 53, 422 (1929).
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where

Applying the conservation of charge (61) we get for the second part of the
integral and similar expressions for the d', &c&,

—d'„c"„aswell as c",&c&", contribu-

t'B(u*'n"u') 27rrrI 2rrrrr '8(u*'n "u')'—(e'/2)(1+e ')
Jl

— sin —— dVdV'
Bs 8 XIt;

tions to the interaction energy. The first of these contributes only terms in
1+e "while the last gives (u*'n'u')(1/r» ) cos (2sr» /X, &)(u*'n*u')' combi-
nations as well. On adding all the terms it is found that 1+&

' disappears on
using (61) and partial integration. The terms independent of e combine
into

where

u, *'n—„'u.'{1/rpp }(u, *'n„.'u. ')')dVdV'

{1/rje ) }=(1/rpp ) cos (2rrrrr /X, ~)

(63)

may be said to be the retarded value of 1/r» for the transition (st).
The calculations can be shortened by observing to start with that all

terms in 1+& ' must disappear since otherwise the interaction energy would
become infinite for e = 0. This means that at this stage of the calculation we
may work with e = —1. The calculation then becomes quite short.

This short cut is a close equivalent of the procedure followed in classical
electrodynamics in deriving the retarded potentials. The non quantized
field equations of Heisenberg and Pauli can be solved as a sum of two parts
provided conservation of charge holds. The first part is given by the usual
retarded potentials in the form of the well known integrals. On account of
the conservation of charge these integrals cause the coefficient of 1+& ' to
disappear and can therefore be calculated as though e were —1. It is these
retarded potentials that determine the interaction between particles. The
other part of the general solution depends on e and is obtained by solving the
field equations as though the current s were 0. In the classical theory this
part of the solution has nothing to do with the interaction. The disappear-
ance of e is thus entirely due to the conservation of charge both in the
quantized and classical field equations.

In (63) the phase under the cosine is that which would exist for light waves
of wave-length ),&

(64)

corresponding to emissions and absorptions between states s and t.
The correction which we have used in (6) is from this point of view due

to the second term in the expansion cos x = 1 —x'/2 of the phase factor. We
expect the correction to apply therefore only for small values of r» /X„.
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APPENDIX. DERIVATION OF (45)

e let y. (x.II xI.)/r3j2 and expand as follows:

(d'r) (d"r) (~'~) (~"~)
+IgI) I'pIIgII) +(pIgI) (pIIgII)

r3 r3

(d'r) (d"r) (dIr) (6"r)+ (pIQI) (pII /II) + (pIIQII) {pI($I)
r3 r3

g (&~I& II&kl&llly y pkl plII +&kl&III&,III,IIpklp Illy y
.+&kl& IO,IIIIIll pkly y~p Ill

+ol' o 0. ' ok'pl"yiy;pk ) =A+B+C+D whereusing (26)

g (y'iy p"p "+p*'p "y'iy +p*'y'iyl p "+p "y'y p")
i=k j=l i,j

k. '11&Ill(y y'p'lplll p lpIIIy 'y +p''Iy''y'pill pllly'y~p&1)
i=k, j~l i j~l

2 &'kk (yiyI'pk PI —pk pI y'yI' pk yiy~ pl +pPy"'yl'pk —)
i&k,j=l j,i&k

D= p = p O'iltIkl& IItII (y'y~pk pl +pk plIIy, y' pkly y plII pllly'y'pkI),
i&k, j&l i~k, j~l

On carrying out the differentiations pi pj
~= E(4yiy p"pII+2(p"yiy )p "+2(p"y'y~&p" +(p"p"yiy ))

k 12

2 II I"(2—(pl"yiy )p*'+(p"pl"yiy ))
i,j~l

c= —E~"~k'(2( p "y*yl )pIII+( pkI pill y'yl ))
j,i&k

P~,l~„l~,ll~, ll( p Ip,oy, y, )
i~k,j~l

Using the value y, = (xi"—x )/r3)" we have

(p Ip Ilyly ') 2(p IplIIy'y')&'llk III P( pkIp 'Ily'y')Il'IIIkl O

i,jul j,igk

( (pIQII) (pIIIP)I I ) 2 P& II&III(plllylyl )p I — » [(plII I ))(pl]dII 2 P& I&kl( pkIy, y, )p,II
i, j+l i,jul j,i&k

= -»I(p" ') y(p" jd'

2 Z((P"yiyI)PI'I+(P;"y'»)P") =2((P'" ) (P"—P')).

Substituting these values into A, 8, C, D and forming A+8+C+D we get (45).


