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ABsTRAcT

An earlier treatment of the propagation of sound in mixtures of two gases is
generalized and simplified somewhat. The essential point of the theory is the con-
sideration of the internal energy variations by the assignment of fictitious internal
state temperatures which, in the simplest case assumed here, are taken to be constant
for each of the component gases. The long wave-length velocity expression is directly
interpretable as a Laplace formula for a gas of mean reciprocal mass and averaged
specific heat. From a more general point of view the velocity of propagation of
infinitesimal waves is always given by the Laplace result provided a frequency
variation of specific heats be recognized. Explicit mention is made of the detailed
effect of viscosity and the two conductivities. Experimental data support theory.

'N A recent paper, ' the writer presented a theory of the propagation of
- sound in a single gas and mixtures of two gases. The present article ex-

tends the results on mixtures to the case of n gases and provides simpler
forms for some of the earlier formulae. It also comments from a kinetic
standpoint on the roles of viscosity and translational and internal energy
conductivities.

The point of view taken is that the internal energy Auctuations of the
various types of molecules are not of the same amount or synchronous in
phase with the translational energy variations. We suppose however that
each gas H/ may be characterized by a parameter co~ such that if the trans-
lational temperature variation in a given region be 6T the changes in the
number of molecules in the various energy levels correspond to a temperature
change co~6T. The assumption that co~ is independent of the quantum state
considered, is, of course, a strong restriction. (An assumption tantamount to
it for one gas has been used by Herzfeld and Rice' in their important work on
sound propagation in a pure gas. ) The very general analysis in I for the case
of a single gas shows that some arbitrary postulate regarding the dependence
of co~ on the internal state considered is essential in order to make headway.
It would seem worthwhile to investigate the consequences of various other
functional relations between internal state r and cog „.

The symbols to be used exclusive of those whose connotations seem suf-
ficiently obvious are: 3II = number of distinct gases comprising the mixture.
nz~ ——mass of molecule of gas TV. X~= number of type TV molecules.
Xs „=number of type W molecules in the quantum state r. S/ill'= ZXs/%ms
= mean value of the reciprocal molecular mass of the mixture. Ps = half the

~ D. G. .Bourgin, Phil. Mag. Vol. 7, 821, (1929). This paper will be referred to as I.
' K. F, Herzfeld and F. O. Rice, Phys. Rev. 31, 691 (1928),
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number of normal coordinates' in the internal energy of a type 8' molecule.
IV wÃzzLwzz =energy increment in gas W/ unit time due to collisions of Wand
R type molecules, for unit energy difference (3k/2) between translational and
internal energy of the gas W molecules'. Pw = +~IVwlVzzLwzz Xw ——. kinetic
energy of a type I/V molecule. The equipartition principle indicates E'I/I —=X.
x =dx/dX z=2.zrzz, where sz is the frequency.

The equations for this work' are written for a one dimensional problem
(i.e. , an infinite plane source)
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p is the coefficient of viscosity. The last terms in Eqs. (1.3) and (1.4) are the
heat conduction terms and it will be observed that because of the use of E
instead of T, lk is 2k/3 times the value of the usual conduction coefficient.
The presence of the coefficients of conduction and viscosity outside the double
differentiation is justified by the order of the approximations we shall make.
For the same reason terms representing the interdiffusion effect and the
dissipation' function have been omitted from Eq. (1.3). It is, of course, clear
that Zz, f and yw„z are functions of Xz,

Since double and higher frequency terms are to be neglected we may
assume that the variables vary sinusoidally about equilibrium valuesand
that coefficients of products of harmonic functions are vanishingly small. The
amplitudes of the harmonic terms are distinguished by the customary varia-
tion symbol 6 as prefix. It can be shown, Cf. I, that the collision increments
may be written

DE=RE P Pw(caw 1)—
M

z1zVw, =&&(1—~w) &'w, g &ws &'s

(2 . 1)

(2.2)

' This definition is preferable to the one involving the ambiguous term degrees of freedom
used in I.

' Cf. I, Eq. (28}, for the expression in terms of transition probabilities.
' Cf. I for the most important terms in these equations.
' Lamb, Hydrodynamics, p. 518.
~ That y~„ is of the nature of a heat conductivity coefficient for the internal energies is

immediately obvious on multiplying Eq. (1.4} by e„and summing over r and W. W'e should
then get the internal energy change equation. The ratio N~, .jN~ occurs with the differentiating
operator because this term is obviously to be independent of change in concentration alone.
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Another useful relation is

8E
8$g, = Xg..„—+(vg Xp', . 6K.

The solution for a)Ii is

&W. g CWB&R
4)~ ——

jVÃWr+SWr g CWREB+ YWrirrNV /V

An argument given in I leads to

CWR = 31-WR/2PW

Hence

(3 1)
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V2 p 2

I t is to be remembered that the internal energy change* is

fz, (1 —Biw)&w8KdT and is to be compared with the translational energy
increment detailed by the terms exclusive of AK in Eq. (1.3). In both cases
the lowest order term is the one in v. Accordingly the) in pkase increase of
internal energy depends for its rate on the specific heat and finite transition
time; the lag. , or ~' term, on internal conduction besides. Viscosity and ex-
tei nal conduction appear in di (Cf. Eq. (3.2)) to modify the relative amplitude
of internal energy changes in the next higher term.

The fiction of an internal temperature may be waived and instead one

may employ a variable specific heat B(v) determined either from the fact
that the internal energy increases by an amount Bw(v)k5T for a change 6T
or that the rate of variation in internal energy is VB(v)k5T cos vt. There
result the two equivalent definitions

BW(V) =RiWBW(0) ( = —,'RiWPW)

(1 RiW) Q A BIWR

After some not very difficult eliminations of the amplitude terms in Eqs.
(1.1) (1.4) we may write the key equation

~ It may be pointed out that if ~~ is to be independent of r to the second order in v, it is

necessary to drop the subscript r from &~ „.
f I contains a minor error of statement as regards this point.
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~here
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From Eq. (5) the low frequency velocity is approximately

(5. 1)

The first order approximation for Vp, as contrasted with the absorption term,
is practically independent of the assumptions made about the dependence
of cow, on r (Cf. I). To the next approximation

4 ~~ SgPg 2 E 2—+, 0+ QvwN—wPw
2 9 Q~Nst ws &o'

V=Vp ]+jv- +—,—,+" (5 2)

'~ ("-."--)(-':"- --)
The interpretation of the remarkably simple result for the long wave-

length velocity is that the mixture behaves like a single gas of averaged
specific heat and averaged reciprocal mass* and that Eq. (5.1) is the Laplace
value for the velocity in this hypothetical single gas' (clearly the ratio in
Eq. (5.1) is proportional to the effective specific heats at constant pressure
and constant volume).

It is instructive to make a further step and to look upon Eq. (5.2) as a
Laplace formula still, with specific heats, functions of the frequency. More
explicitly the translational specific heat at constant volume (3k/2) is affected
to the next order by the translational conductivity while the numerator which
refers to constant pressure involves, due to the relative motions implied in
expansion and contraction, the viscosity term as well. Similarly the internal
specific heat P(v) which has already been explicitly characterized (Cf. Eq.
(4)) depends on transition times and internal conductivity and to a still
higher order on viscosity and translational conductivity.

This point of view makes the study of sound propagation more in-
tuitive. It is, then, only necsesary to know how the internal and trans-

* Not as has sometimes been supposed the averaged mass (Cf. H. Benndorf, Phys. Zeits.
4, 97 (j.929)).

The form of the analogous expression (which is now seen to be reducible) appearing in
I obscured this direct generalization of the Laplace formula and the above interpretation was
given there for the case Lg~=—Lp, only.

R
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lational energies change at constant volume and constant pressure respec-
tively. Inclusion of new terms or modifications of the theory can start directly
with the extended Laplace formula and the real meaning of the changes seen
immediately without necessity of recourse to the original differential equations.

Chapman' has given the value of f and p, for a mixture of monatomic
gases. From the form of his results it seems that to a first approximation in
the general case the coefficients would involve the ratio of quadratic forms
in the concentrations at the least. " Even for the comparatively simpler
problem assumed by Chapman a theoretical computation would be most
awkward —hence. for a test of Eq. (5.2) it would be necessary to obtain p,
ys and f experimentally as functions of the concentrations of the gases.

The absorption term" depends on the ratio of a cubic to a biquadratic in
the concentrations (not including the change in Us)." The extreme assump-
tion L~ =—L~ would allow us to treat the mixture as a single gas of averaged

R
P'/I. so that experiments on the component gases might be used to predict
that part of the absorption due to the finite time required for internal energy
transitions. This should be a fair working assumption for gases of similar
natures.

One of the first tests of a theory of sound in mixtures ought to be the
derivation of the velocity of sound in air. Clearly since i3 is the same for Os

and N2 we have

Vip 1 1 1 4m2+ mi 1

V2 mi 2 mi, 5 mim2 mi

1, 2 and 12 refer to N2, 02 and air respectively.
Lechner's" value 315.5m/sec for Us leads to Uts 332.5 m/sec which is in

very close agreement with Pierce's result 331.94 m/sec.
For application of Eq. (5.1) to a case where the gases are of different heat

capacities we shall consider the inAuence of water vapor in air. It is readily
substantiated that

9 Chapman, Phil. Trans. 98, 252 (1915).
The occurrence of P in higher order terms is due to its associated factor 1/U' (Cf. Eq.

(5)). The presence of p+. is only partially due to an analogous cause (Cf. Eq. (3.2)). Hence
although both conductivity coefficients enter the phase lag expression in a parallel way and
may in fact be conveniently reduced to the single effective coeScient P+(2 /3)QNrrt3srvrr
the next and higher order approximations show asymmetry in their action."The form given is somewhat more perspicuous than the special expression occurring in

I which is reducible Cf. note 9."Our theory has been illustrated for an infinite vibrating plane —a case which may not
correspond to the experimental practice studied. For effects due to motion in two or three
dimensions, slight modifications (amounting in general to symmetrizing the expressions as
regards x, y, and s) are to be made in Eqs. (1.1) to (1.4). Then, retaining the harmonic form
of the time factor, the space coordinate dependence may be obtained by solving the equations
under the limitations of small variations and the appropriate initial and boundary conditions.
In a very general case, besides the causes taken account of in our treatment, attenuation
may be due to wave spreading, lateral and radial diffusion, vorticity, change of wave form,
wall reactions, double frequency effects, etc.

1' Lechner, Wiener Ber. 11, 1035 (1909).
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where 1V&/X is the moisture ratio of air, m& is the m&z defined in Eq. (6)
and the subscripts 1, 2 refer to air and water vapor respectively. Substitution
of the appropriate values leads to 5V/V 0.006+ for X.T.P. Recent"
unpublished experimental work by Professor Pierce's students suggests a
variation of almost 0.005. The two figures are satisfactorily close.

The writer is further informed by Professor Pierce that the latest work in
his laboratory does not support a frequency dependence of the velocity in
air." This is in complete accord with theoretical prediction since the values
of the dissipation terms in the case of air are very small ~ The previous posi-
tive results were due to the fact that the apparent measured velocity varies
with distance from the source. This latter anomalous eRect is probably a
matter of experimental method rather than a characteristic of the physical
situation though the energy dissipation progressively increases the wave-
length very slightly. It may be that corrections for the displacement of the
node from the boundary of the vibrating source or consideration of the
sphericity of the waves forming the stationary wave pattern may account
for the result but it is perhaps unprofitable to speculate in the absence of
details.

"Earlier negative results (Proc. Am. Ac. Arts and Sci. 60, 271 (1925)), are explained as
due to a hitherto unsuspected effect. Cf. the concluding remarks of this paper.

"A curve of the type published by Pierce for air, i.e. , involving maxima or minima could
be formally accounted for by a large fourth order effect of opposite sign to the second order
term. In any particular case, however, the parameters involved could all be estimated from the
low frequency velocity and absorption and independent data and hence the permissibility of
the explanation tested. It is clear too that neglected terms in our equations would affect the
higher approximations. Cf. also Note 12. In this connection it may be remarked that a falling
velocity-frequency characteristic is not impossible, for Eq. (5) yields for the v~ velocity correc-
tion the following negative sum, besides the usually predominant positive terms

0+3&Pwvw 4 ~ Nwgw'

V.2 Vo' 9 ziv RLWR

&+kg&wPw/&'
Comparison with the positive terms involving the conductivities indicates that in general their
effect is in the direction of decreasing velocity (Compare Herzfeld-Rice, reference 2),


