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ABSTRACT

Measurement of absorption intensities.—The intensities of the first nine lines
of the negative branch of the first harmonic absorption band of HCl at 1.76u have
been measured with a prism spectrograph, using a galvanometer and thermo-relay
to observe thermopile voltages. The positive branch, not being resolvable, was
measured as a whole. The areas under the lines in a plot of percent absorption against
frequency were obtained for 5 different tube lengths, namely 74.5, 25.0, 14.96, 9.90
and 4.88 cm and the integrated absorption coefficient of each line was calculated
from the slope of the curve of area against tube length at the origin by methods
developed by Bourgin. The probable error of the intensity measurements for the
stronger lines was 6 percent.

Correlation with theory.—A calculation is made of the intensity ratio of the
band as a whole to that of the fundamental based on a solution of Schrédinger's
equation obtained by Morse for an anharmonic oscillator, and the value so obtained
is within 6 percent of the experimental value. A second order perturbation calculation
based on harmonic oscillator functions did not give concordant results. An unpublished
analysis of the effect of rotation on the relative intensities of the lines in a band by-
Kemble is given and the relative intensities calculated for this band, giving agreement
with experiment within 5 percent.

INTRODUCTION

HE discovery of the harmonic band of HCI at 1.76u by Brinsmade and

Kemblelwas of importance in establishing the fact that the HCl molecule
behaves as an anharmonic oscillator and in showing how this was to be inter-
preted on the basis of the quantum theory. Since then the constants of the
molecule have been determined from the frequencies of the band lines? ® and,
in particular, the anharmonicity of the oscillator has been determined from
the discrepancy between the spacing of the centers of the different bands as
observed and the spacing predicted by the ‘‘one, two, three” rule for harmonic
frequencies which one would expect classically. The harmonic bands would
be entirely absent in the spectrum of an ideal linear oscillator, so that the
intensities of the different harmonic bands provide another means of measur-
ing the departure from harmonicity.

The work on intensities of absorption bands in this region is very meager
because most measurements, using only one length of absorption tube, do
not give an accurate estimate of intensities except under particular circum-
stances (see below in the discussion of Dennison’s work), and in order to get
good results it is necessary to adopt the more tedious procedure of using a

1 J. B. Brinsmade and E. C. Kemble, Proc. Nat. Acad. 3, 420 (1917).

2 E. S. Imes, Astrophys. J. 50, 251 (1919).

3 “Report on Molecular Spectra in Gases,” Nat. Res. Council., No. 57, 1927 especially
pp. 52-68. This will be referred to hereafter as “Report.”
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number of different tube lengths and caluclating the absorption coefficients
by a process involving extrapolation to zero length. Bourgin* has measured
in this fashion the intensities of the lines of the absorption band at 3.46u and
this paper reports measurements on the first harmonic band at 1.76u with
essentially the same method and apparatus. The absorption of the first nine
lines of the negative branch was measured for five different tube lengths, and
their integrated absorption coefficient obtained by the methods developed
by Bourgin?, and in a similar fashion the intensity of the positive branch as
a whole was measured. Owing to the fact that the positive branch was not
sufficiently resolved to give reliable data for its component lines separately,
the branch was treated as a whole. The theoretical intensities of the lines
have also been calculated and agree satisfactorily with experiment.

EXPERIMENTAL WORK

The spectrometer and thermopile were the same which Bourgin? used
and were set up in the same fashion, except that a larger prism was used
which measured 9.8 cm wide by 6.7 cm high. The prism angle was 60°. The
wave-length range falling on a slit 0.04 mm wide was about 17A and for
slits this wide, the resolving power, which was just insufficient to resolve the
isotopic doublets (separated by 14A), was limited principally by the size of
the prism. »

The source was an ordinary tubular 250-watt projection-bulb of
the type sold commercially for portable moving-picture projectors. The fila-
ment is arranged in six parallel strands, all in a vertical plane so that when
looked at edgewise, it appears to be a narrow and very intense strip of
light. The energy from this source, in the region of 1.76u was about twice
that of a Nernst glower and it had the added advantage of being simple to
operate. The current was supplied by a motor generator run by a synchro-
nous motor from the 550-volt mains, so that therewas no trouble from fluctuat-
ing intensity of the source.

The absorption tubes were of glass, about 5 cm in diameter and of five
different lengths, namely 74.05;25.0;14.96;9.90; and 4.88 cm. The windows
on the ends were of fused quartz, optically flat and about 1.5 mm thick. The
light beam from the source passed through a focus in the tube so that the
beam never acquired a diameter of more than 2 cm inside the tube, and, as
the tubes were 5 cm in diameter, it was not necessary to insert diaphragms
or to make other provisions to reduce reflections from the side walls.

The HCl was generated by dropping concentrated sulphuric acid on pure
NaCl, and passing the gas through concentrated sulphuric acid to dry it
before passing it into the absorption tube. Between the generator and the
tube there was only one short length of rubber tubing, all the rest being glass
and, as the gas was passed through rapidly, the chance of contamination
by the rubber was slight. The exact correspondence of the curves obtained
with those of other workers in this region ! 2 was taken as evidence that the
HCl was pure.

The thermopile was the same Coblentz, silver-bismuth, twenty-six junc-
tion thermopile which Bourgin used. It was enclosed in a glass tube which

4 D. C. Bourgin, Phys. Rev. 29, 794 (1927).
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was evacuated by an ordinary ““Cenco’”’ pump. The current from the ther-
mopile was observed by a thermo-relay manufactured by Kipp & Sons in
Holland." The primary galvanometer, connected directly to the thermopile,
was a Kipp instrument with a sensitivity of 1.2X10~? amps. per mm and
the secondary galvanometer (or observing galvanometer) was a Weston,
gravity controlled, moving coil instrument with a sensitivity adjustable
between10~% and 10~ amps. per mm and ordinarily used in these experiments
at a sensitivity a little below 1071 amps. per mm. With these galvanometers
the limit to the total sensitivity attainable with the relay was set by the
Brownian movement’® of the primary galvanometer which became noticeable
at sensitivities of about 1072 amps. per mm. The set was used just short of
that point. It was found necessary to shield the entire primary galvanometer
circuit against magnetic disturbances, as random magnetic fluctuations in-
duced appreciable currents in the circuit. Zero-drift troubles were obviated by
having the spectrometer and galvanometers in a separate room from the
observer and source, and by thoroughly lagging the thermopile.

The absorption tubes were mounted on a rack which could be swung back
and forth so that the tube was either in or out of the light path. A dummy tube,
not filled with HCI though otherwise just like the others, was also mounted
on the rack, so that when the filled tube was not in the light path the dummy
was. For a given spectrometer setting the absorption was measured by rapid-
ly interchanging the filled and dummy tubes and noting the resulting de-
flection of the galvanometer. This gives Al the amount of energy absorbed.
The total intensity, I, of the beam could then be measured by closing a
shutter in front of the entrance slit of the spectrometer while the dummy tube
was in the beam, and the ratio AI/I gives the percent absorption. Inasmuch
as there are no absorption bands of air, water vapor, or CO, in the region
around 1.76p of sufficient intensity to be observable, it was not considered
necessary to evacuate the dummy tube. It was also assumed that there was
no appreciable selective reflection from the tube windows.

The positions of the spectrometer were read from a dial on the end of a
rod which was attached to the tangent screw of the spectrometer so that the
table could be turned from the observers position in front of the galvanome-
ter telescope. The readings of this dial could be calibrated in terms of fre-
quency by two methods. One method was to calibrate the dial by the divided
scale on the table and then go over to frequency by the usual formula for
the dispersion of a prism, and the known refractive index of quartz in this
region, and the other method was to compare the separation of the peaks
of the lines in the negative branch in dial degrees with their frequency
separation as given by Imes.2 The mean of the results of these two methods
was used.

CALCULATIONS

The absorption of light in a gas follows the exponential law so that if
I, is the initial intensity of the beam and I the intensity after having passed
through a certain length x of gas, then I/I,=¢7#, where uis the coefficient
of absorption. g, of course, is a function of frequency. The intensity of a

8 Ising, Phil. Mag. 1, 827 (1926).
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line,$7 or the integrated absorption coefficient «, is defined by the equation
a=[” u(r)dv, the integral being taken over the line in question. The per-
cent absorption for any given frequency is given by (1—I/I,)=1—e**
and the area, 4(x), under a line is given by [;* (1 —e™#)d», from which one
can immediately verify that

This explains the necessity of using a number of different tube lengths and
calculating the areas under the lines in order to get the true intensity. Den-
nison® has developed a theory for calculating the relative absorption coef-
fcients of the lines in a band from observations on one tube length, but he as-
sumes that the tube length is great enough that the absorption at the center
of the line is nearly complete. To have fulfilled thiscondition for the harmon-
ic band would have required impracticably long absorption tubes, since
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Fig. 1. Percent absorption plotted against spectrometer dial setting.

the greatest absorption for the 75 cm tube was only 31 percent. In his work
there are also a number of special assumptions about line shape and slit
width so that it is open to question whether his theory would give reliable
results even if the absorption were sufficiently intense. Besides, Dennison’s
method, giving only relative coefficients for the lines in a band does not make
it possible to use only one tube length if absolute intensities are desired.
The percent absorption was plotted against dial settings, of which a typi-
cal curve is shown in Fig. 1. In view of the closeness of the peaks it was
decided to draw the best straight lines through the points on each side of a
peak. The area could then be calculated by considering each line as a
trapezoid superposed by a triangle. Of course the area under a line strictly
6 R. C. Tolman, Phys. Rev. 23, 693 (1924).

7 E. C. Kemble, Phys. Rev. 25, 1 (1925).
8 Dennison, Phys. Rev. 31, 511 (1928).
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speaking extends over an infinite frequency range. However, it is a good
approximation to assume that the line area is given by the area bounded by
successive minima because, where the heights of successive peaks change
linearly with frequency the net loss in area by overlapping is zero, and where
the peak heights are not linear in frequency, the change in height is small
enough that there would be no appreciable correction.
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Fig. 2. Areas under absorption curves plotted as function of ordinal numbers of lines.

The areas determined were plotted as a function of ordinal number
(Fig. 2), one plot to each tube length, and the best smooth curve drawn
through the points. The areas of the various lines were then read from the
smoothed curves, so that the area of a line was checked against that of its
neighbors. In Table I are given the areas both “smoothed” and “un-

TABLE 1. Areas under absorption-curves for tubes of various lengths. ‘O heads columns of

the original, “‘unsmoothed” areas; ‘S’ heads columns of areas as read from ‘‘smoothing curves’
of the type shown in Fig. 2.

75 cm 25cm 15cm 10 cm Scm

Line No. 0 S (0] S 0 S 0 S 0 S

1 355 345 176 176 135 127 100 85 56 50

2 471 477 246 246 182 185 128 131 87 80

3 575 572 292 295 216 216 164 163 90 94

4 597 597 309 309 224 221 156 163 86 87

5 540 547 279 279 191 191 135 131 68 63

6 444 444 216 216 155 152 98 99

7 318 318 150 150 113 109 67 68

8 185 190 98 98 83 75 44 43

9 113 113 63 63

smoothed.” These “smoothed” areas were plotted against tube length, one
plot for each line of which Fig. 3 is a sample, and it was the slope of these
lines at the origin that gave «.

Bourgin has developed two analytical methods for getting the slope of
these curves at the origin, and they are superior to graphical or Taylor-
series methods because they make greater use of the part of the curve lying
at a distance from the origin in determining its slope at that point. That is to
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say, they use all the data to derive « instead of depending largely on the two
shortest tube lengths.

The first method? gives only the ratio of the a’s of a given line to that of a
standard line, and does not give the absolute value of @. The basic assump-
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Fig. 3. “Smoothed” area as a function of tube length.

tion is that all the lines have approximately the same shape, though it is -
not necessary to specify what shape, and then it can be shown that if x’., and
x'm+ are values of the abscissae for the given line (m) and the standard line
(m') which have the same ordinate, then

Fig. 4 is a graph of x’,/x’, for the various lines referred to line 3 as a
standard, and the extrapolation of the curves to the axis of ordinates is the
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Fig. 4. Graph of x'n'/x'n for various lines, referred to line 3 as a standard.

ratio of o to 3. Bourgin discusses at some length the theoretical curvature
of these curves on the assumption that the absorption lines are really close,
unresolved, doublets, due to the existence of the two isotopes of chlorine,?

®F. W. Loomis, Astrophys. J. 52, 248 (1920).
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but for numerical values it is a good approximation to use straight lines. The
relative values of the coefficients obtained in this manner are tabulated in
Table II.

TasBLE II. Relative values of integrated absorption coefficient. -« is in frequency units per
centimeter tube length; b is in frequency units. Columns 2 and 3 are respectively, absolute and
relative values as given by method 11, Column 4 gives relative values as given by method I; Column
5 is weighted average of Columns 3 and 4.

LineNo. aX10™ /a3 an/as an/as calc.ratio  An2/A2 X107

method II methodI ave.

1 0.329 0.494 0.468 0.485 0.501 0.360 1.37
2 0.574 0.862 0.796 0.840 0.859 0.696 1.42
3 0.666 1.146
4 0.620 0.931 0.961 0.941 0.942 1.087 1.92
5 0.500 0.751 0.737 0.746 0.755 0.914 1.99
6 0.348 0.522 0.521 0.522 0.503 0.603
7 0.205 0.324 0.338 0.329 0.325 0.308
8 0.118 0.177 0.177 0.181
9 0.057 0.085 0.085 0.088

Rbranch 4.14 6.21 5.91

Bourgin’s second method!? assumes a definite shape for the lines, namely
that u=a/[(v —v2)2+b% where a and b are disposable constants and »; is the
frequency of the center of the line. Let y¥(y)=/"(1—¢e¥/0**®)dy; then ¢
is fitted to the experimental A by changing the scale of y and in this way a
condition is obtained for ¢ and b. From these, « is directly calculated by the
simple expression @ =ma/b. The half-width of the line is . The values of «
and b obtained by this method are tabulated in Table I1.

The positive branch was not resolved sufficiently to get individual line-
areas from it, so the branch was measured as a whole and its absorption
coefficient obtained graphically from a curve of the type shown in Fig. 4.
This value is also given in Table I1I.

Dennison’s work can be used, as already mentioned, to calculate the rela-
tive absorption coefficients of the lines in a band. He arrives at a formula
(reference 8, p. 510) for the area under an absorption line, which is essentially
A?=Kax where K is a constant, and this shows at once that the approxi-
mations he used are not good at short tube lengths, since according to the
formula, (d4 /dx).—o is infinite. For a given length of tube this formula indi-
cates that a is proportional to A2, so 42,,/43 was calculated from the data
on the 75 cm tube and the values are given in Table II. These, of course,
should be the ratio of the intensities of the different lines in comparison to
that of line 3, but the divergence from the relative intensities calculated by
Bourgin’s methods and from the theoretical intensity ratios is sometimes
more than twenty percent, which means that Dennison’s approximations are
not good for bands of such small intensity as this one.

AcCCURACY
There were two principal sources of error in the measurements. The first
was the limit of precision to which the galvanometer could be read. The
mean deviation from the mean of 75 galvanometer readings was 0.3 mm and

10 D. C. Bourgin, Phys. Rev. 32, 237 (1928). Bourgin assumes several specific shapes, but
arrives at the conclusion that this one is the best.
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this is 7 percent of the average galvanometer deflection (4 mm). Of course,
for the stronger lines and the longer tubes, the percent error was somewhat
less, and for the weak lines and the short tubes somewhat more. The fact that
four readings were taken at each point makes the corresponding probable
error in the determination of one point 3.5 percent.

The second main source of inaccuracy was a zero error. It was found that
the deflection on exchanging tubes with the spectrometer set for a wave-
length outside the band, was not zero and this residual deflection changed
from time to time. It was impossible, on this account, to avoid an error of
about 5 percent in the absorption values.

A consideration of the effect of these errors on the areas, the fact that
each band was measured four times, and the effect of smoothing in increasing
the accuracy, indicates that these two major sources of inaccuracy would
give a probable error of 5 or 6 percent to the value of « for line 3. It is not
to be expected that the less intense lines would have as high a degree of
accuracy, but in view of the smoothing to which the data were subjected the
error is not to be considered as being proportional to the faintness of a line.

CORRELATION WITH THEORY

The first matter of interest in a discussion of the relation between the
experimental data and the theoretical intensities is that of the intensity of
the band as a whole. To find the theoretical intensity it is necessary to calcu-
late the matrix component of the electric moment for the two vibrational
states involved, namely the states 0 and 2, and to do this we must know the
wave functions for these two states. Morse!! has obtained an exact solution
of Schriodinger’s equation foran oscillator with a potential function composed
of exponentials. The wave functions he obtains are to be preferred to those
obtained by perturbation methods because with them the computation of
intensities is less tedious. Morse has shown that his analysis gives the correct
energy level formula, namely

Eu=}lVo(ﬂ+%)“*hVox(%+%)2 (1)

where # is the vibrational quantum number; », is the frequency of a small
classical vibration about the equilibrium point and x is the usual constant
of anharmonicity, so these functions may be supposed to give correct in-
tensity relations also.

The potential function which Morse introduces is

U(r) =D(e2e(r—rd —2¢=a(r=10)) (2)

where D is the energy of dissociation, r the nuclear separation, 7y the equi-
librium value of » and a a disposable constant. This function has a minimum
at » =7, approaches zero asymptotically as » becomes infinite and has a very
large value (not infinite) when »=0. It is therefore of the correct general
shape, and by a proper choice of D, a, and 7, can be made to fit the data of
any particular molecule quite well.

u P. M. Morse. To appear shortly. Dr. Morse kindly supplied Professor Kemble with a
manuscript copy, which I have used.
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Schrédinger’s equation for the radial part of the wave function of a
rotating oscillator may be thrown into the form
@R jG+1DR  8x%u
— e C(E-U)R=0 3
- FREREET ( ) (3
where, if X is the radial part of ¥, R=7X and u=mms/(mi+m,), is the
ordinary mass coefficient. Morse has worked out the solution, R,, if (2) is
used for the potential function, and the term j(j+1)R/7* is omitted as
being small (cf. below in the discussion of relative intensities). His solu-
tion is
Rn(f) =Ane_(k/2)e—-a(r—ro) [ke—a(r—-ro)](lc—h;—l) /2Lkn(ke—-a(,r—r“)) (4)

where k=47(2uD)Y?/ah and L;,(ke=*"="9) is a polynomial in (ke—2(—0),
closely related to the generalized Laguerre polynomial and defined by

Li.(x)=x"—n(k—n—1)x" +inn—1)(b—n—1)(k—n—2)x"2% - .

A, is given by the formula

a(b—2n—1) 12
An_(n!(k—-n——l)l‘(k—n—l)) '

The constants a and k appearing in (4) are related to the observable spectro-
scopic constants by the relations

a=(8w2ucvox/ h)1/? k=1/x (5)

where v is in wave-numbers and x is the anharmonicity constant appearing
in the energy-level Eq. (1).

With these wave functions we are in a position to calculate the matrix
component of the electric moment of the molecule for the transition 0—2.
The electric moment p(r) is a function of the nuclear separation and, for
HCI, may be assumed to be linear in  within the range of » for which the
wave functions are noticeably different from zero. So we can express p(7) as
P(?’o) + (7 "7’0) (dp/dr)r=ro or, if we let (dp/dr)r=m =P0,y P(r) =P(70) +(7’—70)P0,-
The matrix component P,,, of p is given by [pR,R.dr, and, if we change to
the variable # =7 —7(, we have, due to the orthogonality of the R’s

Pom=po’ f wR,R it (6)
0

Substituting the values of R given in (4), one has
Poy=po/Aodsk*3{ k2T 11— 2k(k—3)T 1_g+(k—3)(k—4)J 13} ©)

where Jp_;= [ e~k " g~ (h=auydy,
To evaluate these integrals one first makes the transformation x =e—**
under which J becomes -

Jr—i=—(1/0a? f e ket Jog xdx. (8)
0
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Inspection shows that (8) can be expressed as :

1 d © ) 1 d /T(k—1)
Jj—i=— — f e""”x"*“‘dx) = — ‘——( —) (9)
a? di 0 a? di Rkt
1 I(k—1i) _
= — o og k=y(k=9)

where ¢ (x) =d log I'(x)/dx=T"(x) /T (x). ¥(x) can be expressed as a sum!2:13

ki 1 1
WD ==C+ 2, (;rm) (10)

where C is Euler’s constant, but this summation is not in a form suited to
numerical computation. A much more manageable form of (10) can be em-
ployed if x is an integer, say #, in which case (10) can be written

n—1 1
Y =—C+ 2 —- (10a)

This summation can be evaluated approximately to a high degree of ac-
curacy by the formula

n—1

2.1/i = C+log (n—1)+13). (11)

t=1
We are using # in the neighborhood of 50 and for such values this approxi-
mation is good to one part in a hundred thousand. Now the right hand side
of (11) is defined for non-integral values of #, and, in view of the regularity
of (10), one can use (11) as an interpolation formula for finding ¥ (x) when x
is not an integer, giving

¥(x) =log (x—1+43) (10b)
We now return to the J’s and substitute (10b) in (9) which gives
1 T(k—1) k
Ti= g T 18 <k—i—%>' (12)

Substituting (12) in (7) the latter becomes

P "4 oAk 3{1 ( k > 2k—31 ( k )
= ~33 log{ —— )— o
0= podods & k—13 k—2 & k—23

* <i:i> tog (k—ksz)}

and it is only necessary to substitute the numerical values of ¢ and % in (13)
to get Pys. The spectroscopically determined constants of HCI are 415
v9=2940.7 cm™! 70=1.279X10"% cm
vox= 53.58 cm™! Jo=2.645X10"%% cm? gm
and these values when substituted in (5) give
a=1.777X10"8 cm™! k=154.885. (14)
12 Nielsen, Handbuch der Gammafunktion: B. G. Teubner, p. 15.
13 Jahnke und Emde, Funktionentafeln: B. G. Teubner, p. 27.

14 Birge, Report, p. 230.
15 E. C. Kemble, Jour, Opt. Soc. Am. 12, 1 (1926).

(13)
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Py; can now be calculated and is
P02=’7.16X10_u Pol (15)

Similarly the matrix component P, for the fundamental band can be
calculated giving

P01=7.67X10_10 POI (16)
Now « the absorption coefficient, is connected to the P's by the equation
Qnm=const. XPpXe " ¥y, (Ppm)? an

where p is the average of the statistical weights of the initial and final states;
E’’ is the energy of the initial state, and v, is the frequency associated with
the transition. If we compare corresponding lines in two bands, the ratio of
their o’s is given by

Pos\? T16\?
(22—> =@<—1’3> =1.983% <——> =0.0173. (18)
o1 /cate.  vo1 \Po1 7.67

The experimental value of this ratio is readily calculated. From Bourgin's
data the intensity of the third line in the negative branch of the fundamental
band is 41.3X1071% and from Table II the intensity of the same line in the
harmonic band is 0.666 X 107%. So

a, 0.666
—)  ="—=0.016l. (19)
o 41.3

Qg

These two results differ by only 6 percent which is within the limits of ex-
perimental error. ‘

The original justification for supposing that Morse's potential function (2)
would fit the facts adequately for HCIl was that the energy level formula
given by Morse is of the right form. As far as vibrational energy levels are
concerned, it is accurate, but when the information given by the rotational
energy levels as to the shape of the potential function is taken into account,
certain discrepancies are found. If we let (r —7,)/7o=£, then we can express
U in the form

U(§) =Kg(1+ak+bE+ct+ - - -),

and it is possible to compute K, a, b, and ¢ from the rotational and vibrational
energy levels. Kemble ¥ has computed these constants for HCI on the basis
of the Bohr theory, and Fues, applying second order perturbation theory to
an harmonic oscillator, has shown that at least K, a and b are the same as
those given by the Bohr theory. Consequently Kemble’s evaluation of these
constants can be taken over into the wave mechanics.

To compare Morse’s potential function with that given above, it is only
necessary to expand (2) in powers of £ about £=0 and compare coefficients.
The numerical values of the coefficients obtained in these two fashions are:

16 E. Fues, Ann. d. Physik 80, 396 (1926).
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Morse Kemble
a —2.27 —2.421
b 3.00 3.905
c —2.93 —2.86

The constants a and b as obtained from the two analyses are seen to be
materially different, and it is an interesting question, therefore, how ac-
curate the intensity calculation based on Morse’s wave functions would be.
It is not possible to distinguish between the intensities given by Morse's
method and the values determined experimentally, because the former do
not fall outside the limits of accuracy of the measurements, so an attempt was
made to see if a calculation of the intensities considering the molecule as a
perturbed harmonic oscillator would give different results. The third and
fourth power terms in £ were introduced as perturbing terms and a second
order perturbation carried out on the wave functions. The intensity calcu-
lated in this fashion was 60 percent higher than the experimental value, and
it appeared that it would be necessary to carry out a third order perturbation
to obtain precise results as the process does not converge rapidly.

The relative intensities of the lines in a band are more easily calculated,
to a first approximation, as the contribution to each from the vibration is the
same and hence cancels in considering only relative values. The two most
important factors which vary from line to line are the Boltzmann factor and
the statistical weight. Kemble® has shown that the average of the statistical
weights for the initial and final states should be used and arrives at the
formula «=Const Xpe~E"/*Tf(y) where f(v) is a small correction term de-
pending on the frequency and is due, largely, to the effect of centrifugal force
on the oscillator. This function has been worked out by Kemble for the
harmonic band, but, as his work has not been published, I shall give the
analysis here.

We go back to Eq. (3), retaining, this time, the term in j, j being the
rotational quantum number and R the vibrational wave function obtained
from the entire wave function¥, by the relation¥ (»6¢) = (R(r) /r) Y(8¢). The
individual wave functions have two subscripts, one referring to the particular
characteristic value which E (in Eq. (3)) takes on and the other to j. We
shall assume that Eq. (3) with the term in j left out has been solved and
wave functions R,, obtained, though it will not be necessary to give these
functions explicitly. The effect of the term in j upon these functions can
then be determined by considering it as a perturbation.

According to the ordinary procedure in perturbation problems!” we start
from the fact that Eq. (3) is of the type

L(R)—\M (r)R+BER=0 (20)

where L(R) is a self-adjoint differential expression; AM;=j(j+1)/87* and
B=8n%/k* The wave functions and energy levels are expanded in a series
in A

17 A, Sommerfeld, Wellenmechanischer Erginzungsband p. 170 ff.
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Ry j= Ryo+Nug; (21)
Eyi=Ero+Ner;

urs can be given by
Ukj= ZijiRiOy
=0

where
‘ I ! M ;R Riod
1-:— D e ee—— . l 1’,
JVk Er—FE;: E—E; EASIREAS )
so that
, Rio JG+1 _
R,;=Ruo+ Z E"_E‘f — R.oRidr, (22)

where Z.-/ means that in summation the term for which ¢=# shall beleft
out. We are, of course, interested in the matrix component of the electric
moment p(r) given by

P"Ii/nniu= fp(r)Rn,i;Rnu]-ndr (23)

Introducing the abbreviation
1 RnO R‘iO

wi=— | ———dr,
72

and substituting (22), (23) can be written
_Pnl,'ln/lill= f p(r)Rn’ORn"O dl’

; SwaR ,
+ [ (’){R"’Of”<f”+1) S A R (1) 2
! 1

ntt — L
The last step assumes that in Eq. (22) the terms in S are small compared
with those in R, and that consequently in (24) the products of two terms
in .S will be negligible, this assumption being justified by the fact that the
rotational distortion of intensities is small.
If we define I by

SaniRio }
— 24
E. — E (24)

Lyigr = f;b(r)R,,roR,,uo dar, (25)

it is easily verified that, owing to the orthogonality of the R.¢’s, and the fact
that they are normalized, I, =po and I,,=p¢"[7R.Rnodr. That is to say,
the I's are simply the matrix components of the transitions for the unper-
turbed anharmonic oscillator. Again, since (r —7,) /7o is small compared to 1
whenever ¥ is appreciable, 1/72 can be expanded in a series about 7o and the
expressions for .S simplified, the result being

2 Inm
am = ""[8703 ?0, if n=m
. (26)
= —— if n=m

Bro?
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Substituting these expressions for .S and I in (24) gives

(2 1 N ‘II+1
//IIn,l ,,Ht{] '+ >+] (J )} . @27
E.,—~E;, E,. —E,

2
) NNy S ——
e " Brop Xl:
In substituting the values for the harmonic band where #’=2 and »'' =0,
we know experimentally that Iy3<< o and it is evident that oo 2112159, SO
we need consider only 3 terms in (27) (i.e. /=0, 1 and 2) and, if we substitute
E,—E, =hvo(n—m) and carry out the summation over three terms, we get

o _~2 ':120100.,(.,+1)
S Y
Il Iyl
n 21 01{],,(].,+1) —j"(j"-f—l)}“ﬂj"(j"-i-l)] (28)
7o 2hvy

Now 1/hBro*=B, and Bo(j'(j'+1)—j"'(j''+1)) =v—v. where v, is the fre-
quency of the center of the band, and if we substitute this relation, together
with the value of I, into Eq. (28) we have

2(v—w,) (po  Ial
Pzi’oi"=120[1"“ - {*—O-I- = m}]- (29)
ropo'vo \ 2 Io .

The second term in the square bracket is small compared to the first so that,
in taking ratios of the P’s we can expand in series and omit second order

terms. If we let 2
az_ﬁ_{_i’ﬁ+_{2} ,
ropavol 2 Toy

then Py =Ipe[1—aAv]. By Eq. (17) we have the relation

2 [1_ _
corm _ v Lor® [1—advn] P o r— 0y 11

ages s Loo? [1—11AV3] D3

(30)

Vi Pm
=-"{142a(Avs— Av,) | — e En /=B DIRT
V3 D3
Taking the values of » and », from Imes’ work,? that of p, from Bourgin's
paper and using the empirical values of Iy; and Iy, as found, respectively, in
Bourgin's paper and in this one, o, /a3 was calculated for the first nine lines
of the negative branch and the values so obtained are tabulated in Table II
column 6 and a graph of the values of the ratio of the calculated to observed
values of the a’s is given in Fig. 5. The difference between observed and
calculated values is never over 4 percent and the extreme range of the points
is only 5 percent. The mean of the ratio’s of the calculated to experimental
values is within 1.5 percent of being 1.
In Table II the values of b, the half-width of the lines, are given for the
first five lines as calculated from Bourgin’'s second method. Owing to the
steepness of the curves, this method does not give b with any precision, as
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can easily be seen from the great spread of the values. The increase of the
isotope doublet separation® is the obvious place to look for a cause of the
increase in b with ordinal number. On the basis of Loomis’ formula for isotope
separation®® one can readily calculate that in the first five lines of the negative
branch of this band the change in separation of the doublet would be three
or four percent of the total separation. The tabulated values of b are the
widths of a symmetrical, somewhat arbitrarily shaped line which is made to

i1

0.9
Xcale S
T obs |

0.7

0.5

0 [ 4 6 8 10
Line number

Fig. 5. Graph of the values of the calculated and observed values of the a's.

fit the actual doublet. If the small satellite line materially overlaps the
larger one, it is possible that the value of b would be extremely sensitive to
the doublet separation. Without going into a quantitative treatment of this
broadening which would, at best, be extremely cumbersome, one can say
that the observed increase of b with line number seems plausible.

The author wishes to acknowledge his indebtedness to Professor E. C.
Kemble who interested him in the subject and whose advice and suggestions
have been indispensable in carrying out this research.

18 . W. Loomis, Report, p. 260 fI.



