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ABSTRACT

To explain the fact that the resistance of a pure metal becomes zero at the
absolute zero of temperature it is necessary to take into account the restrictions
placed upon the electron scattering by the quantum statistics. When these are in-
cluded as a probability of transition, the Brillouin treatment of wave scattering gives
a very satisfactory law of the temperature dependence of resistance.

' 'N A previous paper it was shown that electrical resistance is caused by the
'- diffraction of the electron waves. ' The waves of the electrons which con-
tribute essentially to the conductivity are so long that if the ions of the cry-
stal were regularly arranged and stationary, they would pass freely through
the lattice without retardation. The irregular motion due to temperature
energy, however, causes a general scattering in all directions. This general
scattering produces a resistance which increases with the temperature.
For the computation of this increase, the work of Debye on the scattering
of x-rays provided a convenient method. ' This served admirably to show
the validity of the fundamental idea, but it is not quite correct at very
low temperatures. Frenkel and Mirolubow' have avoided this difficulty by
using the work of Brillouin4 on the scattering of light, and they find that the
resistance should increase with the third power of the temperature for very
low temperatures. In their work, however, the mean free path is not intro-
duced in quite the same way as in the work of Sommerfeld, who followed
Lorentz. ' A treatment by the method of Lorentz gives a slightly different
law of variation with temperature.

When account is taken of the fact that an isolated ion does not scatter
uniformly in all directions, the properties of the ion are found to affect the
temperature coefficient of conductivity as well as the value of the conductivi-
ty itself. This is in accord with the experiments which have shown that no
single function can represent exactly the temperature dependence of the
conductivity for all metals.

However, all of these treatments are based upon the idea that the resis-
tance of a metal is due wholly to the temperature motion of the ions in the
crystal lattice. Hence, if the resistance becomes zero at the absolute zero

' W. V. Houston, Zeits. f. Physik 48, 449 (1928).
2 P. Debye, Ann. d. Physik 43, 49 (1914).
' Frenkel and Mirolobow, Zeits. f. Physik 49, 885 (1928).
4 Brillouin, Ann. de Physique 1'7, 88 (1922).
~ H. A. Lorentz, Theory of Electrons; A. Sommerfeld, Zeits. f. Physik 4'7, 1 (1928).
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of temperature, it must be assumed that the temperature motion of the ions
also becomes zero at this point. But it is almost certain that this is not the
case. On the one hand, the quantum theory in its present form indicates
that a harmonic oscillator in its lowest state possesses a half unit of energy,
i.e. Eo= -', hp and therefore, presumably a considerable amount of' motion.
(If every standing wave which can exist in a crystal is present with ~ kv

of energy, the ions must be far from a state of rest. ) On the other hand, the
experiments which have been made to determine the intensity of the x-ray
diffraction pattern as a function of the temperature seem to point rather
clearly to the existence of zero point energy and a zero point motion of the
system. '

The solution of this difhculty also is to be found in the work of Brillouin,
when it is combined with the Fermi statistics. According to Brillouin, the
light reflected from an elastic wave has a frequency equal to the sum or the
difference of the frequencies of the incident light wave and the elastic wave.
Since the frequency of an electron wave is proportional to its energy, it is
evident that this means that the electron impacts are all inelastic, and that
the electron either loses or gains an energy equal to kp where v is the frequency
of the elastic wave. 7 But the electron can gain energy only when two condi-
tions are fulfilled. First, there must be a vacant state of higher energy to
which the electron can jump; and second, the elastic wave must be able to
lose the energy which the electron gains. This means that the elastic wave
cannot be in its lowest energy state before the impact. On the other hand, the
electron can lose energy only when there is a vacant state of lower energy
to which it can jump. In this case, the state of the elastic vibration is not
important since the elastic oscillator can always absorb energy.

It is not difficult to derive an expression for these restrictions; Sommer-
feld has shown that only electrons whose velocities are close to the critical
velocity 8 need be considered in computing the conductivity. 8 is given by
mo'/2k& = log A, where A is the constant in the distribution function of the
Fermi statistics. After an impact these electrons will have the energy
(6')mv'+kv. Thus the probability that there is a place of higher energy to
which the electron can jump. is

p& I I/I (I/g) [(mvsJ2)+Au]/kr+ j I
—I/(I+s —&&I&r) (j)

But at the same time the elastic vibration must be able to lose energy. The
probability that an oscillator is not in its state of lowest energy, i.e. that
Z = (++1/2)kv where n )0 is

Pl~ ~
—hv/ kT

For these two conditions to be satisfied at the same time, there is the probabi-
lity

' James, %aller and Hartree, Roy. Soc. Proc. A118, 334 (1928).
This fact and its consequences were first recognized by Bloch, Zeits. f. Physik 52, 555

(&928). However, he did not explicitly develop the law of temperature dependence which results
from it in the simple way given here.
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P, =P'P" = 1/(e""/»+1) .

The probability that the electron can lose energy is given by

P2 —
1 1/{ (I/g)vl(m7t /2/ —&vJ/&&pl }—I/(v&v/4r+ 1)

Then the probalility that one or the other of these processes can take place
is merely half the sum of the two probabilities

P = (1/2) (Pi+P.) = 1/(e""/'"+1) .

For T = 0, I' = 0, so that no scattering can take place regardless of the motion
of the crystal lattice.

We may now brieHy outline the application of this restriction to the com-
putation of the electrical resistance. Frenkel and Mirolubow have given a
concise presentation of the theory of Brillouin so we may use the equations
as given by them. When account is taken of the zero point energy, the inten-
sity per unit solid angle scattered in a given direction is given by

g =g, N2ivho//U{ I/(vi~&/» —1)+—' }

U is the volume of the crystal which does the scattering, and Q is the reci-
procal of the wave-length of the elastic wave which does the scattering.
Q satisfies the relation

Q=2q sin (///2) (7)

where g is the reciprocal of the wave-length of the incident electron wave
and 0 is the angle of scattering. m is the velocity of the elastic wave in the
crystal, n is the number of atoms per unit volume, and I~: is the compressibility.
S& is the intensity scattered by a single atom in the given direction. Frenkel
and Mirolubow treat this as independent of the direction.

As usual, we write the expression for the distribution function when a
current is flowing in the x direction, as

f(k r/ f) =f0(f r/ P)+&X(v)

where p, il, f' are the velocity components and fo is the function when no
current is fiowing. The expression for x(v) then is

—gxN'wh//U Jt Si{1/(e""&»"—1)+-,'}{1/(e""~/" +1)}($' —$)Q sin Hdgd/fi

8P r/f /7j
(=——+(—.

m 8( Bx

In Eq. (9), v is replaced by wQ, and $' is the x component of the velocity to
which the electron is scattered by the impact. In this equation the sma11 change
of total velocity, due to the exchange of energy, may be neglected. $' can
then be expressed terms of $, //, P. If the integration is carried out with re-
spect to/and the result is expressed in terms of 8/2, we may use Eq. (7) to
express the integral as follows:

' Reference 1, Eq. (6).
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8+xv'm hi~:t/" 1 1 eIi 1 Bf Bf—+ Q'dQ =———+— (1o)
q4 (cpa&at kr 1) 2(eptllalpT+]) ~ $ g$ gx

If we now assume that S& has the form given by Wentzel' and again use Eq.
(7) and simplify, we have:

2myZ284%2K hfdf Q'dQ eF 1 Bf Bf+
vp'v' (e""@'""—1)(Q'/4ti'c)' ra v gv fix

In this equation, c =)P/16pr'bp, where b is a measure of the extent of the ion,
and g'=1/Xp so that 4g'c=1/4pr'be=aQp If we let hwQ/kT=x, and
hwQy/k = xp we may write for the reciprocal mean free path, which is pro-
portional to the resistance:

2''e4e'If g k 1 x4dx

m'v' x p p (e*—1)(x'+ axp') ' (12)

The upper limit of this integration, at least for monovalent metals, may be
taken as 0/T where 0 is the characteristic temperature of Debye. For metals
where the wave-length of the electrons considered is less than twice the
minimum wave-length of the elastic vibrations, the upper limit may have
to be modified. However, the limit is always uncertain since the shortest
elastic vibrations are certainly not sinusoidal.

Eq. (12)shows that the resistance should become zero with the temperature
even when the zero point energy is considered. This is due entirely to the

.restriction imposed by Pauli s principle and the fact that all scattering is
with change of wave-length. This restriction is expressed by I' in Eq. (5).
Above the zero point, the rate of change of resistance depends upon the factor
a. When u is large, that is, when the scattering of a single ion is the same in
all directions, the resistance should increase with the fifth power of the tem-
perature for very low temperatures, and with the first power of the tempera-
ture for temperatures large compared with 0. When a is very small, the re-
sistance is proportional to T for low temperatures. The observed variation
lies, of course, somewhere between these limits.

The integral in Eq. (12) can be expanded for values of xp which are not
too large, and then integrated. The result is:

where

1 D X4d X 8 Cxo D&o'
+ + ~

xp p (e*—1)(x'+ ax ')' xp 2 12 720
(13)

2 =—,'I log (a+1)/a —1/(a+1) }
8 = I (3a+2)/2(a+1) —(3a) "~'/2) tan "(1/a'~')

C = ~p I (2a+ 1)/(a+ 1)—2a log (a+ 1)/a }
D=-,' I (a+1)'/2 —3a(a+1)+3a'/2+ac/(a+1)+3a' log (a+1)/a}

' G. Wentzel, Zeits. f. Physik 40, 590 (1926); Reference 1, Eq, (14).
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The resistance can be found by inserting the value of l in Sommerfeld's
equation. This gives for the resistance of gold 1.45&10 "if a is taken as
0.1. The observed value is 2,28 &10 ". With this value of a, the resistance
as a function of temperature is given in Table I. The values of R/Eo for high
temperatures are determined from Eq. (13), and for low temperatures by a
rough graphical integration. The agreement with the observed values could
be improved by adjusting the constant u.

TABLE I. R/Ro for gold with e =0.1 and 8=190.

T 20. 4 68
R/Rocal. 0.007 0, 15
R/Ro obs. 0.006 0.177

90
0.23
0.270

169
0.56
0.592

273 573 773
1.00 2.34 3.25
1.00 2.24 3.16

We may, also, write the expression for the variation of resistance with
pressure in a simple form. The resistance itself may be written:

E= Etf(O~/T)

where E is independent of the pressure. We then have the expression:

Since

this may be written

1 dE 1 dK T df dO~

R dp K dp fO~ dT dp

0= const/p'"r('"

dE 2Td 1 dz aT Gf
1+ +

dp f dT ~ dp 6pfdT

(16)

This gives the correct order of magnitude for the effect.
We may then conclude that the restriction of the transition probabilities

on account of the degeneration of the electron gas, not only explains why the
resistance goes to zero at the absolute zero, but when combined with the
scattering equations of Brillouin, gives a very satisfactory law of the tempera-
ture variation of the resistance.


