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ABSTRACT

The calculations of dielectric and magnetic susceptibility in quantum mechanics .

previously made by Van Vleck are extended to include higher powers of the field
strength. This is necessary in fields so strong that the moment is not linear in the field
strength.

Electric Polarization. As noted by Debye the electric polarization of a gas results
from two effects: '(a) a change in the spacial orientation of the rigid or permanent
moment of the molecule, (b) the inducing of an elastic polarization or deformation of
the molecule,

1. Rigid molecules. The effect of (a) is calculated in $2 to all powers of the field

strength and yields exactly the classical Langevin function

L(p, Ii, T) =p[cotgh(pF/kT) —kT/p Ji]
provided only the (rotational) energy changes in "allowed" transitions are small
compared to k T. Here p, is the permanent moment of the molecule.

2. Deformable molecules. The part of the moment resulting from the effect (b)
(induced polarization, described with matrix elements whose frequencies are large
compared to kT/h), and the part arising from the superposition of (a) and (b) is
calculated in $3 to terms of the third order in the field I". The complete formula for
the moment is to this order:

P3
43kT J 4 kT k'T' 45k'T3

where po, qo, gI, g2 are constants whose explicit expressions in terms of the individual
matrix elements are rather complicated. The expression is of the same type form as
that of Debye's, except for addition of the term go and reduces identically to his type
form if, following Debye, we specialize the model by supposing the restoring forces to
be simple harmonic,

Magnetic polarization of atoms. -Brillouin showed that if we neglect the "spin, "
the magnetic polarization per atom in a monatomic gas is

-)eIPH/kT+ ($+ ])e
—(I+1)PK/kz'

mH=P — — ——— =J3(l, P, II, T)H eIPH/&T e
—(&+1)PK/&F ePH/&T

where )t+1 is the azimuthal quantum number of the old quantum theory and P the
Bohr magneton. We show that the reason this "Brillouin" function differs from that
of Langevin is because the various Cartesian components of the angular momentum
matrix do not commute in multiplication, a complication not found in the electric case.
The appearance of a Brillouin function (which is expressible as the difference of two
Langevin functions) instead of a single I-function obviates Debye s objection that
the classical Langevin theory yields infinite entropy at T=0 in contradiction to the
Nernst heat theorem.

Magnetic polarization of atoms 7)I/itk spin. When now the spin is included two
limiting cases can conveniently be considered; viz. those in which the spin multiplets
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are very small or very large compared to kT. In the first case the magnetic polariza-
tion is the sum B(l, P, H, T)+B(s, 2P, H, T) of two Brillouin functions representing
the orbital and spin eR'ects respectively. In the second case we need consider only the
component of the magnetic moment parallel to the total angular momentum associ-
ated with the inner quantum number j. The polarization per atom then becomes
B(j, gp, H, T) where g is the Lande-factor.

Magnetic polarization of diatomic gases. With narrow multiplets (Av& &kT/h)
the polarization is L(O-Ip, H, T)+B(s, 2p, H, T) while with wide multiplets the formula
is instead L((o-I+2o-,)p, H, T) where o I and 0-, have their usual spectroscopic meaning.
The reason that the Langevin function appears whereas the Brillouin function alone
was encountered in the atomic case, is that now only the component of orbital
angular momentum parallel to the axis of figure is of the important low frequency
type and with only one effective Cartesian component no questions of non-commut-
ability can arise.

f 1 INTRODUCTION

'HE dielectric constant e is connected with the average molecular electric
moment nz, in the direction of the field F, according to the relation

e —1=4~Nm. /F,

where X is the number of molecules per 1 cm' of the gas. In the usual cal-
culations of dielectric constants, it is assumed that the electric moment
ns, can be taken proportional to the field strength. This is an adequate
approximation in fields of ordinary magnitude, but in strong fields one should
differentiate nz, with respect to F instead of dividing by F in order to obtain
the most convenient definition of the dielectric constant. Furthermore
higher order terms in the development of m, in F must be considered, thus
giving a dependence of dielectric constant on field strength and a tendency
to saturation, whereby the electric moment approaches a finite value in-
stead of increasing linearly with F, when F becomes very large. Actual
dielectrics usually exhibit only a very small tendency toward saturation
at any field strength obtainable experimentally so that only the terms in

nz, which are proportional to F and F come within the range of observation.
The correction term in F' is calculated for the general molecule in $ 3, but
Erst in f 2 we calculate tn, correct to all powers of F for a rigid molecule with
only a permanent moment, as with this restricted type of molecule the ex-
tension to all powers of F occasions no difficulty.

Similar calculations of the saturation effect will also be made for the case
of magnetic rather than electric polarization, as there is considerable simi-
larity between the electric and magnetic cases, although some important
differences arise from the non-commutativeness of the angular momentum
matrices involved in the magnetic case. The magnetic saturation is experi-
mentally much easier to detect than the electric.

Throughout this paper we follow substantially the method of Van Vleck, '
which has the advantage of freeing one from special models of atoms or
molecules. He showed that the Langevin-Debye formula Nn+NIp'/3kT
for the susceptibility in fields too weak for saturation could be obtained by

J. H. Van Vleck, Phys. Rev. 29, 727 (1927); 30, 31 (1927); 31) 587 (1928).
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assuming only that the energy levels of the molecule can be separated into
two categories: the "low levels" which are characterized by the fact that
the spacings between them are small compared to kr, and "high levels"
whose excess of energy above the normal states is large compared to kT.
For greater detail in discussing these two categories of states, we refer to p.
730 of Van Vleck's' paper I.

Xo/ation. In the present paper small letters a, b, .
, will be used for

the "low" states and capital ones A, 8, , for the excited states. Greek
letters n, P, y, , will be used to denote collectively states of both types.
Thus symbolically we may write P =P,+P~ where P, means a sum-
mation over the low states a, f&, c, , and P„ that over the excited ones.
A frequency of the type v& is a low frequency, while one of the type v&

is high and )((, can be either. Van Vleck used three indices (n, j, and m)
for one state and sometimes we shall use this notation too. The index n
then represents the entire group of quantum numbers whose effect on the
energy is large compared to kT, m is the axial quantum number quantizing
the angular momentum about the axis of the field, while j signifies all the
quantum numbers (except m) such that an "allowed" change in them causes
only a change in energy small compared to kT. Commonly j symbolizes
one or more quantum numbers associated with the rotational fine structure.
In low levels n is to have the value no and for the excited ones n&no. A
state a in our notation would be the same as nojnz in the Van Vleck notation
b, c, , similar to (noj 'm'), (njo"m") . , while A or B would mean

rjsm or nj''m' (or n'jm) etc.

$2. THE QUANTUM-MECHANICAL DERIVATION OP THE COMPLETE

FORMULA FOR THE ELECTRIC POLARIZATION OF GASES OF RIGID
MOLECULES WITH A PERMANENT ELECTRIC MOMENT

In the present section, we are concerned with molecules having only a
permanent electric moment, and we neglect the "high frequency" part of
the moment involved in transitions to excited states, so that the matrix
elements of 1II' will all be of the type (ab) and none of the type (aB). We
choose the electric field F along the s-axis and W, (F) denotes the energy
of a molecule in the state a and in the presence of the field I". Such a mole-
cule has then along the s-axis an electric moment, whose time average' is

m, = ()W,(P&/(&F. W—e assume in the calculation of the susceptibility that
the molecules are concentrated practically entirely in the low states. For
their distribution over these states we use the Boltzmann distribution law,
so that we obtain for the average of nz, over all molecules:

gpss

(E)/()F .c—w~( ) ) kT gg
mz= =AT—

c—wa(+& /kT gF
(2)

with g —
1(&g Q s w~(P) IAT- (2a)

Let us expand the exponentials as a power series in (W, (F& —C)/kT about

I Cf, J. H. Van Vleck, Phys. Rev. 31, 585 (1928), footnote 21.



256 E. F, NIESSEN

some common origin C for the energy. The choice of C is not important,
but should presumably be chosen so as to make the convergence as good as
possible, and C might therefore conveniently be taken as the average value
of W' for the low levels; i.e. , C= P,W, :N, in which N, denotes the total
number of low states. We find then

Z= C/kT—+log N, +log [1—s.&+7r2 —s.3+ ],
where

s.p= g(W, &~' C) "/p—!k'T'N, . (4)

In these 7r„we could substitute the development

8 (z) —C= W 0 C+IiW (')+F'W (')+

Explicit formulas for W ', S' ', , could be obtained by the perturbation
theory of Born, Heisenberg and Jordan, but the convergence of this develop-
ment might not be good for such high powers (all powers are here required!).
Such explicit formulas however are fortunately unnecessary in the present
special case of only low frequency matrix elements 3'', b. The sum in 7r„
namely can here be evaluated by means of the general theorem that

In the presence of an electric field the Hamiltonian function is

therefore

' H(~) = II' —PM'.

g(W. &~~ —C) = g[(H' —C —FM') ]„gS,.S.,

In the absence of excited states the indices P and y can only indicate low
levels b, c, . Thanks to this restriction we now have:

QS..S,&,
= QS, S b 8&,

'=
a a

therefore g(W, &~' —C)'= g[(H' C FM') "]&&,=—g—[(H' C FM') "], —(5)—

Let us now for a moment neglect the rotational energy which is just what
Langevin did in his classical theory. We shall then derive the Langevin
formula for m. . Actually this neglect is not legitimate. Therefore we shall
afterwards take the rotational energy into account and show the reason
why the final result remains the same. Neglecting first the rotational energy,
and throughout the whole section also the spin, we may put W '= Wb'

=C, so that the matrix II' —C now becomes identically zero.
We then have from (4) and (5)

s.„=(—1)"F"Q (M.')../P!k"T"N. . (6)
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Here N„ is the number of levels in which n always equals no, so that we have

S,= QX;p; = Q(2j+ 1)X;

where p; denotes the weight of a low state; i.e. , the number of possible
values of nz when j and n = no are given; and where further N; is the number
of possible indices j with n =no. Therefore ¹

=1 if we neglect the electron
spins. A summation over the low levels a can be split up into P, = P;P
In accordance with the meaning of statistical weights, we evaluate the quan-
tum mechanical average P.(M.")„/X, by averaging first over the m's

and then the answer over j, indicated by a bar with j attached. Hence

g(zMz )aa. +a g(~z )(azZ'm, azZm) Pj (7)

Now a quantum mechanical average of (M,")~„„„„&over the axial or
so-called magnetic quantum number m, which involves a discrete summation,
yields the same results as a continuous classical average by means of an
integration over a continuous distribution of axes. Thus:

g (Mz ) (azZ'm, az jm) PZ Jt'
(8)

Here p, corresponds to the value of the electrical moment of the molecule
in the classical theory, while 0 is the angle between p, and the s-axis, so that
on the right side m, & has been averaged classically over all possible orienta-
tions of the molecule in space. This theorem which has been already proved
by Van Vleck for p =2 holds for every value of p, as is shown in the appen-
dix, but only on the assumption that the moment is not substantially changed
by the rotation, in agreem'ent with the fact that we deal here with rigid
molecules. Consequently p; can be taken independent of j and so we obtain
from (7) and (8)

(M,"),:S,= p'cos&0,

where the bar with cl denotes a classical average. Substituting these values
in (6) we find:

cl
1—s.g+s 2

— = (e~~ aaz e~~r)

from which and (2), (3) the Langevin formula

pF kT
nz, =p cotgh — =1(g,P, T).

kT pF

is derived in a well known way.
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Correction for rota~ion. Let us now include the rotational energy in our
calculation. Then we have to go back to (5) where H' —C does not vanish
any longer. The procedure is best explained by evaluating the sum (5)
for a definite value of p. For p = 5 we have:

Q[(H' —C —FM')'],.= Q G(,a) (a, ) (,d) (d ) (8.)
a, b, c,d, e

where G&;a) = (W; C)8a'—FM'&—;a),

since Iv is a diagonal matrix with elements W, ', Wb', . Let us first
consider a definite term of the sum; e.g. :

[(H C FM—') —]aa= g G&a»G«-&G( .)G& p&G&pa&

2, m, n, 0

When we write the right hand side as a polynomial in F, the highest power
of F that occurs is F', namely in:

Q (—1)'F'M'a)M) M „M„pM()a (—1)'F'——(M', ')aa
l,m, n, 0

which we get by taking from the five G-factors each time the term —F3II'.
To build up the term with F' in the polynomial we have to take from four
G-factors the term —FM' and from the remaining one the term (W —C)

, where i, j mean kl, les, or ok, depending upon the place of the "remaining"
G factor. Since this last term is zero unless i =j, the summation will not be
extended over four indices l, m, n, o, but only over three, the missing one
again depending on the place of the remaining G factor. So there are five

possibilities, two of which are:

( 1)F Q(Wa C)Ma M MpMpa=( 1)F4(WaP —C)(MP)aa
mn0

( 1)'F' +Ma)(—W)P —C)M& M pMpa (—1).'F'(Wa' —C)(M.')aa.
ino

The last equation does not hold rigorously but only if we neglect the differ-

ence between W~' and W~'. lf now all matrix elements with two low indices
were different from zero, we should have to put all low energy levels equal
to WI, ', since we have to sum over l, i.e., over all low levels, and that would
be the same as neglecting the rotational energy entirely, so that our approxi-
mation would be as poor as the previous one. Using note 26 of Van Vleck's
paper" I, we remark however that the number of intermediate' levels (here
denoted by t, rn, n, o) will be very small, if we start from some initial level

k, to which we have to return again as a final state after a few transitions.

' The name intermediate level is chosen for those levels which belong to the intermediate
indices in the range of indices occurring in products as M' b' M'h..' M.d' Md ' etc. They lie there-
fore between the iriitial and final state, not with respect to energy but with respect to place in

the matrix prodiict.
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There are namely selection principles for the rotational quantum number
in virtue of which all matrix elements vanish which relate to two levels which
do not lie close together (or at least nearly vanish in case the selection prin-
ciples for some reason do not hold vigorously). All we need to assume is
therefore that the energy levels in the neighborhood of W&' may be taken
equal to WI.'. S„o the five possibilities will give us a term of order F4 in (11)

5 (—1)4F4(Wg' C)(M.4—)ag

and the same assumption enables us to calculate the terms with I", etc. ,

the numerical coefficients being of course the binomial coefficients belonging
to the fifth power:

10(—1)'F'(W~' C)'(M—') xx 10(—1)' F'( Wg' —C)'(3l ') j,l, etc.

We only considered the term [ ]zz in the sum (10). To evaluate the sum
itself we have therefore to suppose that the very few energy levels in the
neighborhood of W, ' may be taken equal to W ', those around W&' to W&',

in general those around an arbitrary level WI, ' equal to WA, '. This assumption
is by no means so drastic as our previous one which includes putting all
low levels equal to one another. Only when we chose instead of p=5 for
example p=50, we might encounter an intermediate level bound to the
initial one by a range of non-vanishing matrix elements and yet far away
from it. There our assumption would be very likely about as bad as our
previous one, but terms with a great value of p. contribute very little, since
they belong to the outermost part of the development which we assumed
to converge. Changing our special case p = 5 into that of an arbitrary power,
we find thus in a fair approximation, from which one could obtain our pre-
vious approximation by omitting the term W, ' —C. Instead of (6) we now
obtain

(13)

I-Iere we have written W„„'; instead of W„-,;,„' for W„' since it signifies the
energy in the absence of an external field and therefore does not depend on
ns. This fact is very important for the next transformation, as it permits
us after the development of the pth power to bring W„„—C in each term
before the summation sign P . The expression I I in (13) is there-
fore a collection of quantum mechanical averages instead of the one (6)
which appeared previously. But on each one our theorem (8) can be applied,
taking there p=0, 1, 2, . p so that'we obtain a collection of classical
averages, giving us:

The degree of approximation is still higher than it is merely because of the fact that only
evels lying close together had to be taken equal. If we namely assume their energy values to

vary linearly, i.e. to show constant differences P, this X would only appear as X~ and higher
powers in the final result the term with X cancelling oat on account of symmetry.
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I = (Wo„„C —F14;—cos 0)"

where the bar of course refers to 0. This had further to be averaged over j
to find ir„ in formula (13). For such a double average we use a bar with
indices cL, j. We find then:

+~ & +. . . —(e
—1WO C To . .—8—o)oIo4T)

Since we assumed that p was not appreciably affected by the centrifugal
force and therefore independent of j, we have

log (1—ori+ or2 —or4+ ) —lng (S (WO . 0114T) +lng (STO cos 814'T)

The function Z defined in (2a) (the logarithm of the so-called "Zustand-
summe") thus separates into two parts, a purely rotational part independent
of I" and a "magnetic" part which is the same as the Langevin value of Z
we previously obtained when we neglected the molecular rotations. The
first part is the same as the value of Z in the absence of a magnetic field and

by (2) contributes nothing to the polarization. The inclusion of the rotation
thus does not impair the validity of the Langevin formula for the polariza-
tion provided the temperature is high enough so that the quantum frequen-
cies of rotation are small compared to k Tjk

$3 THE ELECTRIC POLARIZATION OF A GAS OF DEFORMABLE

MOLECULES IN A STRONG FIELD

Deformations due to rotation, i.e. to a centrifugal force, will be neglected.
Only those owing to the static electric field will be considered, so that we
shall give here the quantum mechanical analog of the well known classical
corrections which Debye added to the Langevin function in the case of
electric polarization. Since the molecules are no longer rigid, we have here
also to do with high frequency matrix elements which describe the defor-
mation in the matrix language. This fact complicates our calculations very
much. We again have here to use the equations (2), (3), (4) for 4TI„Z and
ir„but the evaluation of ir„ in the fashion of f2 was only possible in the ab-
sence of excited levels (in the derivation of Eq. 5) i.e., in the absence of
high frequency matrix elements. We must therefore find another way here.
We shall be content with a development of the polarization in powers of
F exact through terms in Ii'. At the same time, we assume that the tem-
perature is large enough to make an expansion of the polarization in powers
of kv(kT legitimate. Calculating with Debye only the terms with F and F'
we see immediately from the form of the Boltzmann law that we can omit
in the polarization all terms with (kT) 4 and higher negative powers. We
need therefore for the logarithms in Z an expansion exact in terms with
(kT) ' on account of Eq. (2). Since ir„contains (kT) o we write:
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log (1—iri+ir2 —ir3+ . )

X1 Ã] Jl 1 1r2'
'7rl+ +~2 + +~1~2 ~3 + +&1 ~2 ~1~3 +~4

2 3 6 2

26i

From the above we have to develop the 7r's in a power series of F but need
not go beyond Ji', again on account of Eq. (2). Therefore we substitute:

(F) g7 0+P~ (1)+F2' (2) +F3'' (3) +F4+7 (4) (14)

in the right side of (4) and find thus

~p!A,T,1V g(W 0 C),+ g F~ Plt '

A:=1,2,3,4 a
(15)

introducing X,~ "as the coefficient of F~ in the expansion of (W, '~' —'C)". It
can be shown that P.X." " vanishes for an odd value of k, so that ir„will
become an even function of F. The proof is based upon the fact that:

z 8
~(n jm, n' j'm') ~(n, j,—m', n', j',—m')

the ground of which is that a change of the magnetic (or axial) quantum
number both in the initial and final state can be interpreted as a reversing
of the direction of z. From this and from the fact that m ranges symmetri-
cally over negative and positive values, it follows that:

z z z

~(n jm, n''j'm') ~(n' j'm', n" j"m") ' ' ~( ~ ~ ~,n jm)
m'm" m'"

(16)

is multiplied by (—1)', k being the number of matrix elements in each pro-
duct, when we replace m (i.e. the axial quantum number in the initial and
final state) by —m From its definition we know that X,~" contains only
terms which can be written as

CR' (j)5'.(j')8'.(j") . 8" (" with j+j'+j"+ . . t=k. (17)

From the theory of Born, Heisenberg and Jordan (compare also the explicit
formulas for W, ', W,', W,', and W,4 in (22@)) we know that W, 'consists only
of terms with j matrix elements arranged as in (16) and summed in the same
way over the indices m', m" and over other indices which do not play
a role in our proof. Therefore the term (17) and consequently also X," "is
multiplied with ( 1) '+" ' =(—1)~ if we choose instead of a (=noj, I) an-
other state noj—m. N, owin the summation p,X," " each state noj, m may
be combined with another no,j,—m so that all terms cancel out if p=odd,
and thus we have proved

gE.& "» =0 for 0 odd.
a

Let us for the present neglect the rotational energy since we may expect from
our results in (2 that this part of the energy would only affect the value of
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the "Zustandsumme" Z but not that of the polarization itself. Afterwards
we shall correct our result again for the omission of the rotational terms. We
now have

E('» =0 for k& p, (19)

since in its terms there occurs always at least one factor ( W, ' —C) which van-
ishes by taking W, '= W|,"= = C. From (15), (18) and (19) we obtain:

x~NgkT=F gE ' +F4 pit, ~ ~ ' x N3,3!k~T =3F +4K, &

a a a

s,N.2!k'T'=F2 gE ~'2~+F4 QK ~4" s. N 4~k4T4=F4 QE &44&
(20)

The quantities P,IC,~" now become also very simple, thanks to the assump-
tion W, ' —C= 0. These are the coefficients of Ii~ in the expansion of
P (FW "+F'W"'+ )" and we have

g' (4&) —p' (4) E,("'=38' ("8' ("W',("
(20a)

(42) —2g (3)g (~)+g (2) g (2) / (44) —t/y (&)g (&) g (&)P/" (&)

So we need now to calculate S' ', S',', S'„' and W,4. As is known, Born,
Heisenberg and Jordan have developed a general method for the calculation
of 8 ~ from the matrices II', II', IP occurring in the perturbed Hamil-
tonian and they gave explicitly the formulas for S',', 8',', and S'.'. Since in
our case II(') =II(') = . = 0 it may be useful to follow another method which,
although substantially equivalent, is perhaps a bit more lucid. We denote
the eigen-functions and eigen-values of the Schroedinger equation in the
absence of the field by u„', 8"„'and in its presence by u„, O'„. Pn account
of the assumed completeness of the u„' we can make the expansion:

I„= g(8„+Fc „+F'c „+ )u '
m

(21)

so that u„reduces to u„' when F=0. Substituting this, together with the
expansion (14) for W„ into the Schroedinger equation:

(EP+FZ"')I„=W„N,„ (22)

and equating the coefficients of equal powers of Ii in the left and right hand
side, we obtain several relations in which the operators II' and II' work upon
u&' u&' u3' . etc. The effect of the operator II' is simply given by the
Schroedinger equation IX'u„'= 8 „'u ' and if we introduce matrix elements
by means of

then our relations (22) become merely linear forms in the u„' themselves.
Because of the linear independence of these u„' the coefficient of each u„'
must vanish, yielding us the following equations:
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0 {1) (1) (1) 0 m {1)
~mCmn+IImn Cmn~ n On ~ n

(3) ~ (1) (2) (3) (2) (1) (1) (2) (3 )~ m Cmn+ ~IImk Ckn Cmn~ n Cmn~ n Cmn~ n ~n ~ n
Is

(4) (1) () ()
0

(3) () () () ()
Wm &mn+ QIImL &kn &mnWn &mnWn &mnWn ' &mnWn = pn Wn

originating respectively from the terms with F, F', F' and F4 in the develop-
ment of equation (22).

Putting nz =n in the first equation we find 8 „'=II„„'since the unknown
c„„" then cancels out. For nrem, it gives c „'=II„„'/(W„'—W ') =
II '/hv„. Putting m=n in the second equation we are able to find W„'
since c„'has been found already and c„„'and c„„'cancel out. So we get suc-
cessively the values for 8' ', W ', lV,3, and S',4. The calculation goes on very
easily since we always get rid of many terms, when we collect each time those
with c„„'. These coefficients only play a role in the normalization of the new
eigen-functions, but the energy is of course independent of them. We thus
find, on writing II'm

Z Z

w.(»= —m.„, w. (»= , M,pMp,

p hV~p

Z Z Z

~ap~py~ya ~ ~aa~ap~pa
12

py h V~pVgp p 4 V~p (22a)

Z Z Z Z Z Z Z

W, '" = MapMpyMV8M8a MaaM'aaMapMpa—+
3

ppp k &appaypap p k pa p
3

Z Z Z Z Z Z Z Z

1 2MapMpyMpaMaa+MapMpaMayMya pap+ pap

pv h3 V apV ay

where a dash above a summation sign denotes that P, p, 6 always must be
unequal to a. When we now exclude the rotational terms, the indices P, y,

can only indicate excited states and have to be replaced by 8, C,
D . . and the dash is no longer necessary. These equations permit us to
calculate the X," "of (20a) and so also the functions s.„in (20). Substituting
the last ones in the development of the logarithms in Z and applying the rela-
tion (2) between m, and Z, we find:

m, =PF+qF3

P2 4 P1 P2 P3+——Po+ +-
2k T X, 2kT 6k2T2 24k3T3
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Introducing the abbreviation:

(apyf& a)*= M,»M&&2 vV~2M 2,

we have for I'p, I'y, I'g and JP3 the following values:

(aI3CDa)' (aaaDa)'
Po +

aBCD k VaBVaCVaD aD k V aD

1 2(aCDaa)*+ (aCaDa)' v.c+v.D
2 aCD h' V~ CV ~D

(aaCDB)* (aaaDa)' (aCaDa)*—2
1 '2h VaCVaD aD h V aD aCD ri VaCVaD

12 2 k2

(23a)

(24)

aD

(aaaDa)*

hV~D
P2 = Q(aaaaa)*

We could also express p explicitly in E,~ ' or in summations over matrix
elements, but this can be omitted since p has already been calculated by
Van Vleck. His result reads in our notation:

p 2

3kT 3h

~(npn') ~ (n'np)

& (npn')
(23)

where the summation over j and m has already been carried out. The first
term containing the permanent molecular moment p represents the rotational
terms (those with low frequency matrix elements), while the second term,
contains the high frequency elements of the matrix M defined by

The diagonal elements of the square of the low frequency part of the matrix
3II are assumed to be equal ( =p2) (cf. Eq. (33) below).

Since the rotational terms of p are already included in Van Vleck's
value, we have only to examine what corrections are occasioned in I'p I'3
if we will no longer neglect the rotational terms. We have then to build up
the quantities E,"v with the aid of W', ' W.' in which &3, y, &3 now
can denote both the "low" indices b, c, d, for the rotational terms and
8, C, D, for the deformation terms and furthermore can denote partly
"low", partly "high" indices for the interaction between rotation and defor-
mation. Also we may no longer neglect terms with W.' —C in E,"v (cf.

'

20a) and we have at the same time to take into account the quantities
K,2v with k(p, which in (19) only vanished by neglecting the rotational
energy. The calculation is therefore very complicated, but for the case that
low frequencies such as v, &, vt„etc. may be considered as very small' compared
with high frequencies as v,& the final result can be put in a comparatively
simple form. We find:

5 Of course also small with respect to k T/h since only then the development has a meaning.
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(aBCDa)' (abcDc)'
Pp +

aBCD i4 ~aB&aC&aD abcD h & aDtl 1'3 3

2(aCDca)*+(aCbDa)' v, c+v,n

abCD

abcD

abCD ~ ac~aD2

(abCDa)' (cbcDc)* (aCbDa)'
1"2 h2 2 L2h VaCVaD abcD h ~a D abCD r»aC&aD

(abcDa)'
P3= Q(abcda)'

h~aD abed

(26)

Comparing this result with that of (24) we could find a rule as to how to
construct. (26) from (24). As we said already, the derivation is very complica-
ted and laborious and will therefore not be given here, since the result is
already obvious enough, when compared with that of (24) Still we might
derive some equations needed in the proof and giving an idea about the way
in which to reach the 6nal result.

We shall first prove the relation:

1 1 11 1L=— + +
VabVacVaD VbaVbcVbD VcgVcbVcD VaDVcDVbD V aD3

(27)

neglecting vf/v~4 in comparison with 1, where vf denotes a low frequency and v~ some high one.
On account of kv D = W —WD there will occur many negative frequencies. We write more
cyclically:

(VbcVcDVDb)+(VcDVDaV ac) —(VDaVabVbD)L=—
VabVbcVcaVaDVbDVcD V

The nominator U vanishes if we assume Wb' ——W ' or W, ' = W, ' or W, ' = Wb' and U can
therefore be factored into

+—fVabVbcVca

introducing a function f which we now will determine without any calculation. Although
contrary to the physical meaning of WD we may still mathematically determine the value
of U for one of the assumptions

5'D'= 8' ' or 8'D'= 8'b' or le'= Wc' ~

For each of these assumptions we find immediately U= —v bvb, v, and from that we suspect
that for an arbitrary value of WD'

U = (VbcVcDVDb) +(VcDVDaVac) (VDaVabVbD) = —VabV bcVca ~

To prove that this equation holds identically, we consider it first as a quadratic equation for
the determination of WD'. From the above we already know three solutions: namely, the
values (29). But a quadratic equation with three dif'ferent roots must be an identity. Using
this value for U we get for L the second value in (27) and in an allowed approximation the third
value.

This relation (27) is a typical one and we shall show how it is used to oust the low fre-

quencies from the denominators containing both low and high ones. This of course is always
very important since our final result consisted solely of terms with only high frequencies in the
denominator. From f2 we know, that we do not need to pay attention to terms which contain
entirely low frequencies and corresponding matrix elements, since they may affect & only by a



constant and have no inHuence on the polarization. . Let us therefore consider some "mixed"
terms, such as':

Z Z Z' Z

M pMp M gMg, aP y 8 u

aping h &ap&ay&a8 apeak

(30)

occurring among others in 8', and so in Po and of whose indices P, p, 6 we will take only one
"high. " It contains then among other terms:

ub c Da z abCda z aB cda

Since we have to sum over the indices a, b, c, d, A, 8, C, D, we can arbitrarily change the name
of the indices in the three terms independently. This means only that we arrange the terms in

the entire group in another way, gathering each time three others together.
We take now:

b, c, D, a instead of a, b, C, d in the second term
c D a b ". "aBcd" "third

This alteration of names is so chosen that the symbols then appearing denote the same product
of matrix elements, so that e.g.

(abcDa)'= (bcDab) '= (cDabc) z
v

This only means that lVabzggb ZMcDZMDaz —MbczMc+z&+azMabz etc. and has nothing to do with
commutativeness of matrices. Our sum so becomes:

cb cDa * bcDab ' cDsbcI*+ v-"v-'+ 2a a b b c c

Although the "arguments" { ~ }'contain the same product of matrix elements, we cannot
yet combine these three sums together into 3. single one, on account of the various secondary
conditions of inequality between some of the lower indices. Therefore we make a division in the
following way:

ab cDu ' abcDa z appDa z

+
a a all unequal a

and similarly for the other arguments. Thus we obtain for our entire sum:

(abcDa)' 1+ +-
abc+ h' ~ab&ac&aD &bc&bD&ba &cD&ca&cb

Isp pDa * bpDpb ' cDppc+~ A ++
+ayD bing) b cyg) c

EVe see now how the first part of it can be transformed with our relation (27) into a sum of
terms with only high frequencies, which one might recognize in the expression for P0 in (26).
For the transformation of the second part we need to combine it with other terms of IV &4'.

Even the terms with IV ' —C as a factor can be treated in some analogous way. A typical
relation we need then is

b'ao Vbp brcp—+- +—
&ab&ac&aD &ba&bc&bg) b'ca&cb&cj9 & aD2

when v, /~II' is neglected in comparison to 1, Then we wrote only mathematically without
thinking of a real absorption or emission frequency W,'& —C=hv, . The above relations and
transformations are, we hope, enough to give an idea of the proof.

' The new symbol is related to the old one of (23a) in the following way

I acyba} = (aPy6a)*/b'v cv rv, 6
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Let us now return to our formula (26) for Pp Pp. In our g-formula
(23) we need only these quantities divided by N„ i.e. we need there several
quantum mechanical average values and we showed in ) 2 how to transform
these into classical ones. Still there is a diA'erence on account of the presence
of high energy levels. The summation over the low intermediate levels will
lead to a function of the molecular moments in the unexcited states, that
over the high ones will remains in our answer as a sum. For the details we
refer to the appendix; only some important points will be given below.

The x'y's' axes are fixed in the molecule and their positions with respect
to the xys axes (fixed in space) are indicated by the Eulerian angles 8yib.
Since we have for the classical moments:

3f'= —3l '
sin 8 cos /+M ~' sin 0 sin f+3f" cos 0,

and since we have to consider for the q-formula only matrix-products of
four factors M', it will be clear that the application of our rule for the cal-
culation needs the classical averages:

sin48 cos4 P=sin4 8 sin4 P=cos~ 8=1/5
sin' 8 cos' P sin' P = sin' 8 cos' 8 cos' P = sin' 8 cos' 8 isn'f = 1 /15 (31)

while many other averages vanish. The first three values will be connected
with the terms containing four elements of the matrix 3II" or four of M&'

or of 3f" and the last three with each of the terms of the right side of

(aPyba)
' =M,pMp~M, )Mp, +M,pMp~M, )M),+M,pMp~M, )Mp, (32)

This new symbol will be useful further on. Here and throughout the whole
paper we suppose arrays i'&i and both can denote x'y'or s'. Since the other
average values besides those in (31) vanish, the matrices M' and M" are
always represented by an even number of elements in the remaining terms.

These classical averages replace only quantum mechanical averages over
the axial quantum number (ra) so that our rule gives e.g.

15 P(abcda)*: X = 3P g (a'b'c'd'a')'+ P g (a'b'c'd'a')'"
abed i a' b'c' d' ii' a' b'c'd'

where the dash on a, b, indicates that the summation is to extend over
all quantum numbers originally involved in a, b, except over the axial
quantum numbers. Consequently we had in the right hand side to divide
by N ' instead of X,. If at the beginning we had described the state of a
molecule by means of its x'y's' system, we should have had no axial quantum
number entering into our formulas and so in some respects the indices
a'b'c' . may be related to the states described in the x'y's' system.

Now if we neglect the deformation of a molecule by rotation, the sum

i 2c'M', b M'brc =@pe'
bl

(33)
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must be a diagonal matrix, which we may suppose in accordance with our
assumption as constant, i.e. the same for each of the K, ' states u'. Since
i can denote x', y' or s', terms such as (33) correspond classically to the
squares of the electric moinents of the molecule along the principal axes,
when x'y's' are properly chosen in the molecule, e.g. symmetrically in a
diatomic one. So we have:

g(abcdc)'X = gp 4+ gp'lr"=p4.
a bcfj

To obtain the last term in the second expression, we used the fact that 3EIi and
3EI" commute with one another:

(M'M'M"M") +(M'M"M'M") +(M'M"M"M') ~ =3(M'M'M"M")

This was permitted for electric moments, since they are proportional to co-
ordinates and all coordinates commute; but for magnetic moments this
would not have been allowed.

More complicated is the calculation of:

(ab.Dg) 1 (a'b'c'D'a')' 1 ( a'b'c'D'a')' "
abcD h V aD a'b'c'D' 5 i h V a'D' ~~ i,i' h V a'D'

There the first sum in the right side is transformed as follows:

(34)

(a'b'c'D'a')' M,'D MD',
l

MI„o"&l '
i icy a'=Pi =pi +.2 +

a'b'c'D' h VVa'D' a'D' h V~a'D' n' +VV(npn')

where we assumed in accordance with the sum rule (cf. Van Vleck for p =1) that the fraction
in the middle part of the above equation when summed over D ' is independent of the choice of
a' from the low states. This fraction depends therefore only on the indices n. Further, we used
the fact that M 0„ i and 3E„„piare complex conjugate so that their product is the square of
their absolute value, indicated by

f f. For the other term in the right side of Eq. (34) we have
the result

/

(a'b'c'D's')'"
f MI„o„&f', f

M,O, M,
f

~ Ãa' =p' ~ +2PiPi
a'b'c'D' h na'D n' h V (npn ) n' h"V"np"

as follows from the definition of the symbol ( )"' in (32) and also from the further relation:

c
MarbrMbrc~ =pauli

bl

Thus the whole right side of (34) has now been found. The result is

(gbcD g)' :iy. = ——2 I~;(3a "+u "')+2&;w's '*'
}

abcD h vaD 30 i i'

if we introduce the abbreviations:

f
M.',.

f

n' h V"npn'

fM, M ~,
f—2~Z

h V npnr

—g iif —g ifi
u V

Still another kind of transformation is necessary for:

(aCbDa&

abCD h VaCVaD 5 i n'n"

i i i
Mn pn'Mn'n p ~n pn "Mn "np

ri VnpnrVnpn"h'
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i i i' tl i' i il i I jl
Mnpn'Mn'npmnpn"Mn"np+Mnpn'Mn'npM npn"Mn"np+Mnpn'Mn'np~npn "Mn"np

n'n" Ebri VnpnlVnpn"

1 1 .. . 1
P(g 'i)p+ Q(g ii.g i&il)+ (g pi&)p

20 t 60 tlt. l 30

The first two terms in the last member will be found immediately from the definition of a&"
where one also may use n" instead of n '. The last term results from the fact that

1 ~ ~ MpppMppp

ii' n' hVnpn'

i i' i' i
Mnpn'Mn'np+ Mnpn'~n'np

n' hVnpn'

30

i il i' i
Mn pn'Mn'n'0+ Mnpn'Mn'n 0 (fI(ii~) 2

n' kVnpn 30

Where the second expression follows from the preceding one by dividing this by 2 and counting
the indices i andi ' in the first factor twice, combining a terms, i' with a termi ', 2' for which the
second factor is the same. Dividing the following sum into two others which can be treated in a
similar way to the preceding one, we find

(O,CbDa)* v~g+v, ~ 1,. .. 1,. . . 1
Q(gpii. gpii) + Q(gpiigpi'i')+ Qadi'gpii'

~&AD A vga vga) 10 i 30 ilil 15

In order to throw the other averages in our g-formula into a compact form, we introduce a new

symbol for the sum of two others already defined in (23a) and (32):
(. . . )3i+i,il —3(. . . )i+(. . . )i,il

and find then after a classical averaging:

(aBCDa) '
pBCD b vaBvpCvaD

(gbCDg)'

pPCD k vpCvpD

(aCDba)* v,c+v,D
aPCD k vaC vpD

1

15

(I n'n "n"'n )"+i"
0 0 =I

n'n"n"' h Vnpn'Vnpn"Vnpn"'

(n,npn'n "np) "+i"
n'n" h Vnpn'Vnpn"

&3i+i,il(npnpn n np, vpp '+ i ' =III
n'n" h' Vnpn' Vnpnll

All quantum mechanical averages in our q-formula (23) have now been
calculated. Using these and the value (25) of p, which can be written in the
form:

p
p y Paip

3kT 3

we And at last:
4

re, = po+ F+ go+ +——— F

with

3PO= al"

15iIa= +La "(3a "+a "rv)+2p'(3a "+a "")]
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45q1 (al a1 ) + (a1 a1 ) + (al al )

+ g [6pP(3ag'*+a2"")+12',p,'a2'"]+180II

(45/ 2)q, = (p I„'—)( a,
*'*' a, —' ')+ (II,„' a, ,—')( a,

' ' a,*—'*')

+(I *
'—

I .') (aI*'*'—ai"")+3Za'u' ai'"

The terms with p„q„q~ and q& would vanish for rigid molecules, since then
the high frequency elements involved in a~", a„"' would not exist.

In the special case considered by Debye in which the deformation can be
described by means of harmonically bound particles, our formulae for 8'
would not have contained third and higher powers of the field strength,
i.e. all quantities whose first power possesses two or more frequencies in
the denominator would not have appeared. So we would have to omit in

our general answer the quantities I, II, III, a2", a2"", a2"', a3", a3"", a3"'.
Further we have a&', "——0 if the x'y's' system is so chosen in the molecule

that corresponds with the axes of the deformation ellipsoid in the classical
theory.

Thus go and the second line of q&, q& would vanish and the result would
have been exactly the formula of Debye in which his coeKcients c]$ 929 633

have to be replaced by oul cy
' ', cy~ 1 ', Qy . the latter being therefore the

quantum mechanical interpretation of the classical binding coefficients.

MAGNETIC SATURATION IN QUANTUM MECHANICS

The calculation of the magnetic saturation differs from the electric in
two respects: (a) in the non-commutativeness of the magnetic moment
or angular momentum matrices, and (b) the presence of a term in the
Hamiltonian function E which is quadratic in the magnetic field H. It is
well known that the commutation rules for the components of the angular
orbital momentum are:

L„La Lz L„L*'ih/2s. (35)

and those obtained by a cyclic interchanging of the indices.
According to Van Vleck and others the Hamiltonian' function in the

presence of a magnetic field II is:

with
E=E'+HE&')+H'E(')

Z'" = (e/2mc) Q (peg + 2py;) E"'= (e'/8mc') PR

Here p&,. and p~,. are the components of orbital and spin angular momentum
of the ith electron in the direction of the applied magnetic field, which we
assume lies along the s axis. The factor 2 multiplying p~ is of course due to
the anomaly in the spin magnetic moment. The generalized momenta p&

' Debye, Handbuch der Radiologic, Vol. VI, p. 779.
' We indicate the Hamiltonian here with E to avoid confusion with the magnetic field

strength II.
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and p~ are conjugate to azimuth angles p and P specifying the motion'
of the electron and its spin axis respectively around the s axis. This specifi-
cation of the spin axis by means of Eulerian angles would, of course, pre-
sumably imply some kind of mechanical model for the electron spin, but
fortunately the results are the same if we use Dirac's recent relativistic
theory which frees us from using a model. The differences (a) and (b) tend to
make the calculation more difficult than in the electric case, but these diffi-
culties are usually oBset by the fact that in paramagnetic terms the effect of
the high frequency elements in the magnetic moments is negligible. The
term proportional to II is that responsible for diamagnetism and is negli-
gible in comparison with the paramagnetic terms in paramagnetic atoms or
molecules. Consequently we shall disregard this term in the balance of this
section. We may mention, however, that a long calculation shows that if
we neglect the spin, the inHuence of the diamagnetic term E' on the magnetic
moment is, to terms in II':

where $, it, f are the time averages of P,x, Py, P;s,' respectively, the
primed axes being fixed in the molecule, e.g. coinciding with its principal
axes of inertia. Also p~, p2, p3 have been used to denote the components of
magnetic moments along these three principal axes."

Paramagnetic atones without spin Here pp ——. 0 and Pp& is a diagonal matrix
whose elements are mk/2m. where m is the usual magnetic quantum number.
If we neglect the diamagnetic effect, the energy is given rigorously to all
powers of H by:

w ~o+mPII

where P = he/4~me denotes the Bohr magneton.
Brillouin" has shown that then the magnetic moment is

le'PKi"r+(1+1)e &'+1)PKlk

m. =P
elPH/kT ~

—(l+i)PH/kT

1

~PH/kT
=B(i,P, H, T) (36)

as he shows this is the same as

m=+7

P g mpmPKlkr. g pmPKikT (37)
'trt= —7 m=—7

The right hand side of (36) we shall call a "Brillouin function" and denote
it by B(l, t3, H, T)." As the square of the magnetic moment is l(l+1)/3'
one might at first thought expect B(l, P, II, T) to be the same as I ((12+i) /3,

~ R; is the radius vector from the ith electron to the nucleus."Bold face letters denote always magnetic moments."Brillouin, J. de Physique 8, 74 (1927)."The introduction of the constant P parameter in this formula might appear superHuous
here but will be very useful afterwards.



H, T) where L(fJ„H, T) is the Langevin function defined in Eq. (9) now with
H instead of Ii. Actually this is not the case, as one easily verifies that

If(l, P, H, T) =L((l+5)P, H, T) L(—2P H T) . (38)

The difference is due to the non-commutativeness of the various components
of the angular momentum matrices. This can be seen as follows. If one fol-
lows a method analogous to that used in the electric case, rather than Bril-
louin's simple method, one finds that to terms in'II':

(39)
where

(40)

Here%denotes the magnetic moment matrix. If one could perform the spacia1
averaging in the same way as in the electric case, Eq. (39) would become:

%,= Hy'/3kT —8'p'/45k. 'T'

the first terms of a Langevin function, whereas actually it will be shown to
give:

rN, =H p'/3 k T H' fI@4+ ,'—p'P']/45 k.'—T' (41)

being the first terms of B(l, p, H, T) if we set ti'=l(i+1)f3'. The term with

P in (41) is due to the non-commutativeness of angular moment matrices,
as will now be shown. Neglecting the spin, we have

K*= eL'/2rric—

where the matrix I. corresponds to the total orbital impulse moment of the
electrons and I: to its component g;p&. along the s-axis. Using again an
x'y's' system fixed in the molecule we find by averaging over the Eulerian
angles and following the same procedure as in the appendix:

15 g(L*L'L*L') S = g(LLLL)"+"" (43)

wherei and i'/i again denote x'y'z' and the symbol in the right hand side
is defined in (34a). Here we reach the point from which calculations of
the electric and magnetic polarization no longer parallel each other. For
the I.' and L," the commutation rules (35) are valid. By applying these and
using (32) one finds

- (LLLL)*;;"=(L*'L*'L"'L"')„+(L*'L"'L"L"')„+(L 'Lii'L"'L*')„
= 3(L*'L 'L"'L"')„(2L*'L"L"'+L"L—"'L*') i,h/2~.

According to the commutation rules we may interchange x' and y' if we re-
verse at the same time the sign of ih/2ir Adding t. he resulting (LLLL)&' '

to (I.I.LL)*'"' and replacing the indices x'y' in this sum in a cyclic way
we find by summing
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g(BALLL)i, i' —3 g(Li jiLPI 2) [Lz'(Lz' J g' Ly'Lz')+Ly'(Lx' I z' rz'Lz')
t2'

+I."(I,'I." I"I—")l..ik/2x

= 3 g (L'L'L "L") —(k'/4n') QL'L'.

Adding 3P (L'L'L'L'), we obtain

Q(LLLL), "+' "= (3I.4 (k'/4—x')I.')
z2'

Furthermore we have still in Q:

Q (LL)„:S,= gL'L': 3 = (L')„:3 .

(44)

(45)

Using (40), (42), (43), (44), (45) and setting (L')„(e/2mc)'=ti' one obtains
at last Eq. (4) so that the ground for the difference between I. and 8 is
explained. It will be noted that the complication in the space averaging from
the non-commutativeness arises only when the terms in the moment of order
B' and higher are included. It did not appear in Van Uleck's work, as he
considered only the part of the moment which is linear in II and here we have
only to find the average Q where no "mixed" terms (I,'I."'),. appear after
the classical averaging (cf. 45).

From the above it follows that as soon as we deal in the following with
non-commutative or commutative matrices, we expect in the answer for
the polarization always respectively a Brillouin or Langevin function as their
contributions.

Still in another respect is the relation (38) instructive. It gives the answer
to an objection of Debye" against the Langevin function for the magnetic
polarization. Debye finds for the entropy S per cc of a gas in a magnetic
6.eld:

5=(5)ii 0
—)f x(do/dx)dx

where x =II/T and 0 is the polarization per cc. Taking tr = JijL, (p, II, T) where
Jj is the number of molecules per cc he finds (written in our notation)

5= (5)ii=0—1Vk [log (2tiix/k) —1+(1+2@x/k)c 'I*i "+ ]

making S=~ for T =0 contrary to the theorem of Nernst requiring a hnite
entropy for T=0. Using for o not one Langevin function, but the differ-
ence of two of them (according to 38) one finds instead of the fatal log
(2@x/k) now log [(2l+1)Px/k] —log (Px/k) which remains finite for T=0
and g =co.'4

"P. Debye Ann. der Phys. 81, 1154 (1926).
'4 At first thought it would appear as though the validity of the Langevin formula in the

electric case would lead us into Debye's difficulty of infinite entropy at T=0, when an electric
field is applied. However in our analysis of the electric case, we supposed the intervals in the



Atones with spin. We must now seek to incorporate the spin, which was
not included by Brillouin. First of all, we consider a gas of atoms with spin.
Here we must deal with two limiting cases, viz. multiplet structures narrow
and wide compared to k'1. The intermediate case is too intractable to be
readily treated and will not be considered here. Let us first consider:

Narrow multiplets. From the quantum mechanical theorem of spectros-
copic stability, we know that by an increase of field strength the magnetic
polarization only increases on account of the increase of II, not on account of
a change in the structure of the formula. In other words, a Paschen-Back
effect may change the type of quantization or the formula for anindividuat
Zeeman component but not the expression for the susceptibility. The reason
that this is possible is that the susceptibility is always a statistical thing,
involving a summation over all possible states rather than the properties
of one particular state. To find the polarization formula, we can therefore
choose the field strength so that the calculations become as simple as possible,
i.e. in the case of a field so strong that it overpowers the coupling between
I.and S (the spin moment) and gives separate spacial quantization of I.and S.
The components gp& and gp& of orbital and spin moments parallel to
the axis of figure are then diagonal matrices of elements m~k/2vr and m, h/2vr.
In the several states the quantum numbers mI, and ns, range from —/ to +I
respectively from —s to +s, where I.=lb/2s. and S =sk/2'. We have now
rigorously to all powers of II:

Since

(rs +2~ ) s(m +2m )PH/kT

m, =P—
e(m)+2m ) PH/kT

~ e(m +2m )PH /kT ~ em PH/kT

mi ms mi

em PH/kT
8

ms

and analogous formulae hold for the other double sums we always can cancel
one sum in the denominator against one in the numerator and find using
the expression (37) for the Brillouin function:

m, =8(f, )3, H, 2') +8 (s, 2P, H, 2') .

Here the use of P as parameter, (see footnote 12) will become clear since the
last term could not be written as B(2s,P, II, T) this corresponding to a sum
over 4s+ 1 terms instead of 2s+ 1.

8'ide multiplet structure. If on the other hand, the multiplet structure is
wide compared to kT, i.e. , tv))kT the interaction between L and S is
very strong and these cannot be quantized separately. L and S form always
the same resultant J around which they rotate very rapidly. J itself rotates

rotational fine structure small compared to k T, a condition not fulfilled in the vicinity of T=0.
Instead, special formulae for the susceptibility are required at low temperature. These have
been given by Mensing and Pauli, VanVleck, and Kronig in the special case of rigid non-
gyroscopic diatomic molecules. Such formulae make the entropy finite at T=0 as will indeed
any quantum formula involving a discrete succession of energy states rather than a continuous
classical distribution.
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slowly around II and gives us therefore low frequency matrix elements. Now
the low frequency matrix elements play the most important role in our answer
as in the magnetic case the effect of the high frequency elements is usually
negligible. Neglecting therefore the matrix elements corresponding with ro-
tations around J, we cari treat J as we should have treated I.in an atom with-
out spin. There is still a difference, jk/2ir being the value of the mechanical
impulse moment J the corresponding magnetic moment is not jp but gjp on
account of the anomaly of the spin, which contributes also to J. Therefore is
the answer here:

rN, =B(j,gp, H, T).

Diatomic rnoLecnLes. Ke consider first those with narrow multiplet struc-
ture (b'av((kT). Since the multiplet structure is due to the different possible
orientations of the spin, we know that in this case 5"',S&' and S"are all of low
frequency and since they do not commute, the spin will give the contribution
B(s,2p, k, T) to the final result. To find that of t. we can confine ourselves to
its low frequency elements, namely the components I." of L parallel to the
axis of symmetry of the diatomic molecule. The components I-*' and I-&'

perpendicular to this axis consist entirely of matrix elements of the unim-
portant high frequency type. The reason for this is that a change of the
quantum number o.i in I =o&h/2ir gives always a large difference in energy
as appears from the spectroscopic data. This is equivalent to the statement
that the vector l. precesses rapidly about the axis of figure. So we have only
to deal with I."and this commuting with itself, will give a Langevin function,
so that the polarization for molecules with narrow multiplets will be:

rri, =L(o&P, H, T)+8(s, 2P, H, T) .

In the remaining case, that of wide multiplet structure, also S ' and 5&' con-
sist exclusively of high frequency elements, while those of S" are only of
low frequency and are to be added to the elements of L" in order to give the
total eAective moment. Since all components along one axis commute,
we have here

APPENDIX

EQUIVALENCE OP QUANTUM MECHANICAL AND CLASSICAL

SPAcIAL AvERAGEs

In the derivation of the Langevin formula for the electric polarization of a gas
of rigid molecules in ( 2 we needed the theorem (8).

On account of the assumed rigidness we had to deal only with low levels,
so that we could throughout take n =n, in the "intermediate"' levels which
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appear in writing out the element of a matrix product when p &1. Still we
prefer to give a more general theorem holding also for elastic molecules,
where nano is possible in the intermediate levels. This will include the
first theorem as a special case. The statement of this generalization can
better be given when we have found the analytical expression for it. We
make use of this extension in ( 3 for the derivation of Debye's correction
terms.

Our theorem now is based upon considerations analogous to those of
Van Vleck' on the principle of spectroscopic stability, where he considered
the second power of the moment. As already mentioned the x, y, s and
the x', y', s' systems of axes are fixed respectively in space and in the mole-
cule, the relative position being determined by means of the well known
Eulerian angles 9, P, P. The wave function U„; (xi . xr, yi yf, si sr)
for a molecule with f different particles (electrons and protons) can be written
very approximately (i.e. neglecting rotational distortion of electronic mo-
tions) in the form:

U=P»~(xi' sf', 8, 4,$) =z z( x,

'
y,

' ,s' xr'yf'sz')f»~(8, 4, $) (46)

where u„ is independent of j on account of the assumed rigidness of the mole-
cule with respect to the centrifugal force. The matrix elements in the xyz
system are de6ned by.

(num, n'j'm') Pnjm~ Pn'j'm'd&l ' ' ' d~f (47)

M'= Qieisi=X, ,M*'+X„,M"+h, ,M".

In this equation M ' etc. are not matrices but the classical moments Qi„.eixi'
etc. k ranging from I to f and X, „X„,)... denote the ordinary direction
cosines connecting the s axis with the x'y's' axes and are functions of

dxl dsy =d Vdcv

where d V and des denote the phase elements for the coordinates occurring
respectively in zz„, f„; We wiH us.e g, g', g" to denote arbitrarily and
independently from each other the axes x',y', s'. (The indices z and z' did
not fit, since we assumed always z'Wz). We find then by substituting

= Zf .M' .dr f f ;s f ;1 .QM. ,'.„.x,.(.;=,.; )(49)

Using this substitution for each of the factors in, for example

Z I(M') '] (-.;-,-.;-)

m n' j'm', n''j''m''

z 8 z

~~(norm, n' j'm') ~(n' j'm', n'' j''m'') ~(n'' j''m'', n07rm)
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we obtain.

Z [(~')'h-. -,-. -)
m q q'

~qq'q" ~~non'~n'n"~n"no ~qq'q"
qq'q"

where the coefficients a«q ~ are numerical values and further

Sqq q g g QXqz(Njqjg), jg'j'j)g')Xq, (N'j'j)g', jg"j "jN") Aq z( jg"j "jjg",jg(j}jN)
m j'm' j"m"

To evaluate S we need the rules of multiplication for the X-elements. These,
defined in (49) by an integral can be regarded as defined equally well by
the expansion

&qzfn' j m 'g')Zqz(n jm, , n, ' j'm')fn jm
2m

where it is to be particularly noted that unlike the usual definition of ma-
trix elements the index n, which is not here an index of summation, has
different values n, n' on the right and the left hand side, i.e. the f on the left
li~nd side belongs to a different set of orthogonal functions than that on
fbi right.

To derive first the multiplication rules for two )-elements we take

&qz&q'zfn"j "m" = g()Zqz&q z) (n jm, n'zz j"m")fnjm (5&)

Ke develop the left hand side again, but now in two steps, in each of which
we use a different constant value of n', n" of the index n

)Zq ()Zq'zf zj"m"n) =&gzg &q'z(n' j'nz', nzzj "m")fn'j'm'
J'm'

. )(q'z(n'j' 'jzn''mn" zz})(qz,(njnz, n' j'zn')fnjzn ~r

j'm' j"m"

Comparing this answer with (51) we find the multiplication rule

2'm'

from which we see easily the extension to the case of a product of more than
two X's. We have therefore

Now pmtf„zj t
is independent of the choice of the system gq'y's', i. e. in-

dependent of j), @, p according to the spectroscopic stability principle pre-
viously mentioned, so that it can be replaced by a constant C „giving

)-j q q' q" Cn 0j P qz~ q'z~ q"zd~ ~ (52)



Substituting (52) in (50) the left hand side of (50) will contain C„„,. To get
rid of this constant we divide (50) by the statistical weight p;. Now we have,
using the normalization of the f's

so that the above mentioned division leads to

qq/ qr I

8q q
r

q «X qs )I.q r zX q «ale
q

Q M,„M„„3II„„,. (53)
n'n"

This analytical statement of the theorem for the special case of a third
order expression in (llI')" can immediately be extended to any other power.
In words, the general theorem reads as follows: Tke average of the diagonal
elements of (M*)" to, ken over tke axial quantum numbers m vvitk a given value

ofj and n can be calculated by resolving the matrices in a geometrical way along
the principal axes of tke molecule and averaging tke resulting terms classically
over all orientations of the molecule If th.ere are no excited states possible,
the sum inside the square brackets in (53) becomes simply u'u"u"' and the
whole right side of (53) is then classically built. If we can reckon with these
u', u&', u" classically, i.e. if the M's commute in multiplications (as they do
in the electric case) the right side of (53) is then of course equivalent to the
classical average p,'cos'0' and we obtain for an arbitrary power our relation
(8). In the magnetic case u' and u" would not commute for g'Ng so that
our relation (8) does not hold for Magnetic Moments (cf. the example in 42,
43, 44) whereas (53) is still valid as it did not require the different components
of the 3f's to commute.
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