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ABSTRACT

An elaboration and a more complete analysis of Witmer's work on the asym-
metrical top treated as a perturbation of the symmetrical one show that one can
deduce the rigorous solution of the problem from those of the algebraic equations
of degree 2j+1 or less. Without actually solving such equations, we find the terms
divisible into even and odd groups just as in the case of the sigma-type doubling in
diatomic molecules treated by Kronig, Van Vleck and others. For the case where
the asymmetry is slight, an explicit expression for the separation of such similar
doublets is obtained. The selection rules, which are rigorous for any degree of asym-
metry, consist of the following: (a) Kronig's rule; (b) bj=0, + 1;bm =0, + 1;and (c)
rule for the quantum number sigma, do- =even for electric moment in s direction and
Ao- =odd for moment in x —y plane. The eB'ect of the electronic motions on the rota-
tion of a polyatomic molecule as a whole is also briefly discussed.

'HE problem of the asymmetrical top has been treated in the old quan-
tum theory by many authors' and in the new quantum theory by Witmer'

and very recently also by Kr'amers and Ittmann. 4 Witmer regarded the pro-
blem as a perturbation of that of the symmetrical top, the solution of which
is well known. ' He thus obtained the energy values as power series in what
we may call the parameter of dissymmetry. In the present paper, using
a method which is an elaboration of Witmer's, we shall show that the exact
solution of this problem is reducible to the solving of an infinite set of
algebraic equations of finite degree and the characteristic functions are thus
expressible as linear combinations of a finite number of those for the sym-
metrical top.

Before the work presented below was undertaken, Professor Kramers
suggested' to the author the possibility of attacking the problem by a method
of separation of variables analogous to that used by Reiche~ in the old
quantum theory. In a short note' presented to the American Physical Society,

* National Research Fellow.
' A preliminary report of this paper was presented to the New York Meeting of the

American Physical Society, Dec. 31, 1928; see Phys. Rev. 33, 289 (1929).
' Epstein, Phys. Zeits. 20, -289 (1919); Verh. d. D. Phys, Ges. 17, 398 (1916); Reiche,

Phys. Zeits. 19, 394 (1918); Kramers, Zeits; f. Physik 13, 343 (1923); Witmer, Proc. Nat.
Acad. 12, 602 (1926); Luetgemeier, Zeits. f. Physik 38, 251 (1926).

' Witmer, Proc. Nat. Acad. 13, 60 (1927).
4 Kramers and Ittmann, Zeits. f. Physik 53, 553 (1929).

Reiche and Rademacher, Zeits. f. Physik 39, 444 (1926);41,453 (1927);Kronig and Rabi,
Phys. Rev. 29, 262 (1927);also Dennison, Phys. Rev. 28, 318 (1926). '

6 I take this opportunity to thank Prof. Kramers for this kindness.
' Wang, Phys. Rev. 33, 123 (1929). Unfortunately the writer made an algebraic mistake

in the abstract as printed in the Bulletin of the American Phys. Soc., Vol. 3, No. 5. This was
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the present author reported that the Schroedinger's equation for the asym-
metrical top is separable in the same set of el liptical coordinates and under
under the same conditions as Reiche' found in the old quantum theory.
The resulting differential equations are exactly of the form of

Lame�

' s equa-
tion . Due to an oversight in interpreting the boundary conditions, the w riter
did not pursue further the solution of the problem by integrating Lame's
equation.

Instead of using Lame ' s equation, we sha 11 use an elaboration of Witmer's
method' which is more closely akin to the standard perturbation technique.
At erst thought, it might be presumed that the use of the ordinary differ-
ential equation might be preferable to a perturbation theory. But, on closer
examination, it can be seen that the solution of Lame's equation involves
the use of identical ly the same algebraic equations met here. Perhaps, the
use here of the term perturbation theory is somewhat misleading. One
might construe this as some approximate method of obtaining numerical
results. Actual ly our method is an accurate one; a11 we mean is the use of
an orthogonal transformation whereby the matrix representation of the
H amiltonian, generally non-diagonal, in one scheme is transformed into a
diagonal one in some other scheme.

The erst part of our work consists largely of transferring Witmer's
work into orthodox matrix symbolism and removing his restriction m =j.
Witmer ' s results on the energy values are correct in the main except for
neglecting the sigma-doubling. ' We now proceed to obtain the matrix
elements of the Hamiltonian of the asymmetrical top, referred to the scheme
of the set of characteristic functions for the symmetrical top.

The Matrix hami ltortiart for the asymmetrical top By apply. ing Shroe-
dinger s rule to the classical Hamiltonian of a free asymmetrical top, we
readily obtain, using the notation of Witmer, the following wave equation:18843—bcos2$8'4 8 '24
HC = —(A + b cos—24))——sin f)——— ———2 cos f)—

sin 0 8 0 80 sin' 0

41 8' 4 2b sin 2P d' 4 Q2 41

+——(1+b cos 2p) coo 0
/f2 sin 0 808$ 80(3$

corrected w hen the abstract was reprinted in the Phys. Rev. , except for a purely typographical
error (the correct equation is of the exact Lame form and should be f(X)u'd/dX [f(X)u'd U/dl, ]
+ (a +bX) U =0). Kramers and Ittmann saw only the abstract in its first form when they wrote
their paper.

VA'tmer's formulas (16) and (17) are valid for o-)4 (Witmer calls them n) . For o.(4,
the corrected formulas, inclusive of the terms of the order b', are as follows:

0- =0) W —Wp ———F(2)b';
a=1)W—Wp= +F(1)b+8F(3)b /F(i)+F(3)b3;
a =2) W —Ws= [Fs(1)+3F(1)—9 +6F(2) ]br/6;
s =3) W —Ws= Fs(1)+SF(1)—54 ]bs/16 + F(3)br;
o =4) W —Wo = [F-'(1)+13F(l) —180 ]b'/30.

where Wp is the energy for the symmetrical top and F(k) is abbreviation for (j+k) .'/2 (j—k) f.
The plus and minus signs correspond to the sigma doublets. For o. =4, the formula is, W —Wp

'+sbb [X4 + 16 F(4)/9 ], where X, and X4 are those quantities given by Witmer.
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84 84 BC
+2b cos 2d' cot 8——b sin 2P(1+2 cot'8)—+2b sin 2P cot 8 csc 8

80 l9$ Bf
87r~=——E4
h'c

where 8, $, $ are the Eulerian angles of the system of principal axes of the
top, It is the energy and A „A„, A, are the three principal moments of in-
ertia. Also we have used the following abbreviations:

(2)

We also assume that A„ lies between the other two in magnitude so that
—i &6&0.

The characteristic functions for the symmetrical top have been obtained
by several authors already mentioned. We shall adopt here the following
expression given by Reiche and Rademacher' (multiplied by a proper nor-
malization factor):

u -(8,4,4) —= u".(t,4A)

(d+s+ p)!(1+d+s+p+ p)! (d+p)!t"(1—t)'
d!' p!(s+p)! 4"

F( —p;1+d+s+p;1+d;t) &e+&

where t, =-,'(1 —cos 8), s = ~m+o ~, d = m —o ~, j=P+-,'(d+s) and we have,
following the nomenclature of Van Vleck, ' used the quantum numbers 0 and
m in place of the v and v' used by Reiche. For the sake of convenience, we
also introduce a function defined by the equation:

2~u ~(st, Q, P) = Ue»(t)e"&+'

As usual, we now apply the operator H, as given by Eq. (1), to the function
u;, ." After some simplification, particularly by using the fact that
U;. (cos8) satisfies the differential equation

d'U/d8'+cos 8dU/d8 —[((m —o cos 8)csc 8)' —j(j +1) +o']U=o,

we get

Hu, . = [Aj (j+1)+o']u,. be*'*&[-', [+&r(—1+a) j(j+1)]u:,. —

+ csc8(™-(1+a)cos8) [(du;, /d8)+csc8(+m+o. cos8)u;, ]} (5)

The matrix elements H(j', o', m';j, &r, m) are then just the coefficients in the
expansion of the right hand member of (5) in the form

Tr/ / /rztg, o, m;g, a., m) u, .
' Van Vleck, Phys. Rev. 33, 467 (1929)."From the definitions of d, s, and p given in Eqs. (4), corresponding to any given set of

values for j, 0., m, there is one and only one set of d, s, p although the converse is not unique.
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The first term of (5) is already in the form of constant&(u. We shall next
consider the second term with the upper sign. It now becomes necessary
to distinguish between the four separate cases governed by the following
explicit relations between o, m, and d, s: (a) o —nt =d, o+nt = s; (b) o nz =—d,
o+nz= —s; (c) o —nt = —d, o+nt =s; (d) o —nt = —d, o+m = —s. For
all the four cases, this second term of (5) is of the form g(t)dU/dt+h(t) U
and we find that the following recursion formulas reduce that expression to
a single term for the respective cases:"

1 s
( d+1—+(s+d+2)t) +————— —p(p+ d+ s+1) Us„

dt 2 1 —t

= [P(P 1)(P+d—+s+ 1)(P+d+s+2) ]"'Us+~. +2,n

1 s
( —d —1+(d —s+ 2)t)—+—— —— (P+s)—(P+d+1) Us»

dt 2 1 —t

= [(p+s)(p+s —1)(p+d+1)(p+d+2)]'"Us+2, a—2, y j

(d)

d 1 d
(d —1+(s—d+2)t) —+——+ —(P+d)(P+s+1) Us, „

dt 2 t

= [(P+d)(p+d 1)(p+s+—1)(p+s+2)]'"Ud 2.+R. , ,

(6)

(d —1+( s d+ 2) t)—+— ———— (P+ 1)(P+s—+d)
dh 2 t 1 —t

= [(p+d+s)(p+d+s 1)(p+1)—(p+2)]"'Us a,. ~,„+2.

It must be mentioned, however, that there are, in addition, five exceptional
cases for which special recursion formulas different from those above must
be used; these five cases are: (i) case (b) when s = 1, (ii) case (d) when s = 1,
(iii) case (c) when d = 1, (iv) case (d) when d = 1, and (v) when d = 1, s = 1,
We shall not reproduce the formulas here, which are quite similar to those
in (6). But, collecting the results, we find that the second term of (5) with
the upper sign reduces in all cases to the following single term:

—s2b[(j —o.—1)(j—o)(j+o+1)(j+o+2)]'"u;„+2

except that the sign should be plus instead of minus whenever nz —0 =1.
This irregularity of sign is removed if we redefine the characteristic functions
u' as done by Van Vleck;" namely, by putting u'= ( —1)'u for nt~o and
u' = ( —1)"u for o.~ nz, where u is defined as in (3).

The second term of (5) with the lower sign can be reduced to theone
with the uPPer sign by the substitution 0 = —o., m= —m, and evaluated
accordingly. But since the latter contributes exclusively to matrix elements

To derive these recursion formulas, we find it most convenient to make use of the re-
lations between contiguous hypergeometric functions given explicitly by Gauss (Ges. Werke,
III, 123 ff. , 207 ff.).

'2 Van Vleck, reference 9, especially footnote 25.
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of the type II(j', o+2, I'j, o, nz) while the former to those of the type
H(j', o —2, m',j, o, ni), we see that we can readily deduce the one from the
other by using the Hermitian property of the II-matrix.

As a result, the entire expression (5) simplifies to

Hu;, = [Aj(j+I)+ o']u;, +If(j,o+1)N;„+&, +bf(j, o 1)n—;„&,(8)

where

f(j o) = —
2 —[(j—o)(j—o+1)(j+o)U+o+I) ]""

Eq. (8) shows that the II-matrix is diagonal both inj and in m; it is in fact
independent of rn. The diagonality with respect to j could have been sus-
spected from the constancy of the square of the angular momentum vector
of a free body while the complete independence of (8) ofthe magnetic quantum
number I is, of course, due to the arbitrariness of orientation in space.

The infinite secular determinant constructed in accordance with (8)
consequently factors into finite determinants, each having the two fixed in-
dices j and m and the running index sigma. Since sigma extends from +j to
—j, these factored determinants have the order 2j+1 in every case. Ex-
plicitly the corresponding secular equations are of the form:

j'—W

(o+1)'—W

bf(j, o)

bf(i, o+ 1)

0

&f(j, o —1)

&fU o)

0

(o —1)'—W

(9)

j2—8
where we have included' the constant term —Aj(j+I) in the quantity W,
which is the energy measured in units of Ii'c/Sir';i' the actual energy R
would be

Z = (I2o/8~') [~j(j+1)+W]

It is at once evident that the determinant in (9) can be at least factored
into two, one connected with the even sigmas a,nd the other the odd ones.
In addition, the determinant is symmetrical not only about its main dia-
gonal (Hermitian) but also about the other diagonal owing to the fact
f(j, o.) =f(j, —o); this enables one to factor the determinant once more and
this is closely connected with the possibility of dividing the terms according
to the type of Kronig symmetry first pointed out by him in two papers. "
We shall discuss this division of terms a little more in detail in a later section.

"The constant c,'not to be confused with the velocity of light, has been defined in Eq. (2)." Kronig, Zeits. f. Physik 46, 814; 50, 347 (1928), See also Wigner and Witmer, Zeits. f.
Physik 51, 859 (1928).
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Because of the above simplification, Eq. (9) reduces, for the cases j= 1,2,3.
to quadratic equations at most; the resulting energy values we thus obtained
agree with those given in the paper of Kramers and Ittmann and will not
be repeated here. In this connection, it may be mentioned, however, that
in their work using elliptical coordinates and obtaining Lame's equation,
these four factored algebraic equations are those belonging to four separate
types of Lame's functions; but here we find that these separate equations,
when combined, could be embodied in the single symmetrical form (9).

We may also point out the relation between the characteristic functions
given in the two papers. Our result in Eq. (9) shows that in general the
characteristic function for the asymmetrical top can be written:

C,.„=e' &Z. S. U;. „(cos9)e'"~

where the S.. 's are the orthogonal sets of solutions of the system of homo-
geneous equations whose eleminant is (9). Kramers and Ittmann treat the
case I= 0 and obtain as characteristic functions the products of Lame's
functions of the two elliptical coordinates; these products can be also ex-
pressed, as they have pointed out, as linear combinations of ordinary tes-
seral harmonics (in which 8 and @ are regarded, however, as two of the Euler-
ian angles used here). Now Eq. (11) reduces just to this latter form when
we put ns =0 because the U's reduce to the associated Legendre functions
when I=O. From the arbitrariness of the spatial orientation, one can get
all the energy values by considering some special cases, like m = 0 (Kramers
and Ittmann) or m= j (Witmer). Also the intensities could be obtained
because of the resulting independence of the coelficients S.,' in (11) of m.
It seems, however, to be a satisfying check to have shown explicitly this
independence of m.

Signora-type doNMing phenomena. In the problem of the symmetrical top
there is the degeneracy with respect to m and also with respect to the pairs
of states (j,+a), (j, —0). In the case of an asymmetrical top this latter de-
generacy is removed i.e., for given j and m there are 2j+1 distinct states.
For cases where the departure from the symmetrical case is small, the terms
will appear as doublets (except the term sigma=0, which always remains
single), each grouped around the +o term of the symmetrical top. Borrow-
ing the terminology of Mulliken" for a similar splitting up of sigma terms
in diatomic molecules, we shall call this the sigma-type doubling in the asym-
metrical top.

We shall now seek an explicit formula for this doublet separation on the
assumption that the dissymmetry factor fi ~&&1. Perhaps the most straight-
forward way of calculating this is to follow the procedure of Van Vleck' in
an analogous calculation for the sigma doublet in diatomic molecules. In
that paper, he extended Born, Heisenberg and Jordan's perturbation tech-
nique to systems where the degeneracy is removed only after one reaches a

Mulliken, Phys. Rev. 28, 1202 (1926). The theory of sigma-type doubling in diatomic
molecules has been worked out by Kronig, '" Hill and Van Vleck, Phys. Rev. 32, 250 (1928)
and Van Vleck. '
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higher order of approximation than the first. Using Van Vleck's formula (41),
we find the doublet separation in our case is

hkv=b~[h c(j +a)!]/[2 ~rr (j—o) ~(o —1)! ] (12),

which appears first in the sigma-th order of approximation. Since the quan-
tity b measures the departure from the case of the symmetrical top, the exper-
imental detection of this separation would furnish a useful method of
estimating the magnitude of molecular dissymmetry. We note here that the
separation should be large for low sigmas and should disappear as sigma
increases.

From the secular Eq. (39) in Van Vleck's paper, we also find that the
proper linear combination of the functions u;... and u;, „ to be used as
the zero order characteristic functions for the asymmetrical case are:"

and

vi. (j,o. , m) =(u, . +u; . )t'2ri'

v (j,o, m) =(u, , —u;. .. )(2'r'

(13)

(14)

From here on we shall call states of the type (13) the plus sigma states and
(14) the minus sigma states. We then find that the 2j+1 states of same

j and rn, arranged in the order of increasing or decreasing energy (according
as A, (A, , or vice versa), run as follows: o. =0+, 1 —,1+, 2 —,2+, and
so on.

Rutes of combination. Theoretically, once the Eq. (9) is solved, the mat-
rix elements S„canbe computed and the characteristic functions are given by
(11).The intensity for any transition (j', a', m'; j' o, m) can then be calculated
from the already known results for the symmetrical top and the total in-
tensity for the actual transition (j', o'; j, o) can be calculated by summing
over all possible Zeeman components. We shall not attempt to make any
calculation in this direction. Instead, we shall draw from Eq. (9) some con-
clusions about the selection rules that are quite general in nature and do not
depend on any particular solution of (9).

In the series of papers on band spectra in diatomic molecules, Kronig'4
pointed out that since the wave equation is invariant to a reflection of all
particles about the x-s plane, which he represents by his transformation (15)
in his second paper, the characteristic functions should also be transformed
into their own multiples by such a reflection; or, if all functions are nor-
malized, they should merely be multiplied by +1 or —1. Kronig calls such
functions "even" or "odd" respectively. In the present case of an asymmetrical
top, we have the same invariance of the wave equation, hence we expect
each of the states is also either even or odd in the Kronig sense. To verify
this, we first note that all the v+(o)'s for given j and m have the same Kronig
symmetry and also the v (o)'s." If now we use in our representation of the
Hamiltonian as a matrix these v functions as our fundamental set instead

The state a =0 is an exception; it will have v+(0) = u, o and there will be no states v (0)."Functions having the same sigma (with regard to sign also) but difTerent j's have the
same or opposite Kronig symmetry according as the difference in j is even or odd. See Fig. 1.
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of the u's we find that the secular equation corresponding to (9) factors in-
to two, with the one factor involving only the positive sigmas (includ-
ing zero) and the other the negative ones. This means that the new
characteristic functions will be linear combinations of the v's having the same
Kronig symmetry and hence will themselves also have the property of being
either even or odd in the Kronig sense.

Since the electric moment operator is odd with respect to Kronig trans-
formation, the Kronig rule of combination holds in our case; namely, trans-
ition can occur only between states of different Kronig symmetry.

In the case of symmetrical top we have the additional selection rules
Qj=0, +1; Am=0, +1; 20. =0, +1. Clearly the first rwo rules remain

o+

2

Fig. 1. Kronig rule: O states combine only with + states. Rule for j: Only states in

same column or adjacent columns combine. Rule for 0". Corresponding to a,. 'z component of

the electric moment, the only transitions are those with an Dd'~ number of jumps in the rows

('.= aT).

unchanged in passing to the present problem. As for the last one, from the
fact mentioned before that the determinant (9) factors into two, separa, ting
the even and the odd sigmas, '8 we readily find the following rule concerning
the sigmas:

(a) Corresponding to an electric moment in the s direction in the top,
transition can occur only between states both with even sigmas or both
with odd ones, and

(b) Corresponding to an electric moment in the x-y plane, transition can
occur only from a state with even sigma to one with an odd sigma or vice
versa.

The accompanying diagram gives a summary of all the essentials about
the rules discussed above.

"These are even and odd in the ordinary sense of the v ords and are not to be confused
with the "even" and "odd" in the Kronig sense.
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I'olyatomic molecules. In an important paper on moleculer spectra,
Born and Oppenheimer" showed that in the wave equation of a polyatomic
molecule, the predominant rotational term is the operator for an asymmet-
rical top. In addition, due to the coupling of the electronic and the nuclear
vibrational motions to the rotation of the molecule, correction terms enter
which are in general complicated if explicit expressions are desired (except
in the case of diatomec molecules, for which see the papers of Konig" and
Van Vleck'). However, if we consider the ideal case where the nuclear
vibrational eA'ects are vanishingly small ("frozen nuclei" ), a calculation
similar to that of the last two authors can be made for the general polyatomic
molecule. It is found that the following elements should then be added to
the H-matrix given in (9)"

I HEI' M' M' os, (e'; n)
FIi(e', j, o, m;ri, j,o, rri) =— + + (n';n) (h/—2s.) ——(15)

2 A, A„A, A,

H, (e', j, a+1, m;I, j,a, m) =(h/4ir)(M'„+i', )(e';ii) I(j+o)(/+a+1)]' ' (16)

where M„3II„etc.are the ordinary angular momentum matrices or their
squares for the stationary molecule and where n or n' designates the totality
of the electronic quantum numbers.

The most important parts of (15) and (16) are obtained, however,
by taking an average over the electronic frequencies i.e. taking n'=n. Then
the first term of (15) merely shifts the energy scale by a constant amount
and it corresponds to the results obtained by Kramers and Pauli" in the
old quantum theory. The second term" of (15) will change the spacing of
the different sigma terms belonging to the same j. As for the elements (16),
they will vanish when the molecule has a regularity around an axis of sym-
metry (symmetrical top). That this is so can be seen as follows: These
matrix elements are I=JV*„(3II„+r',lV, ) V„dv, where V„ is the character-
istic function of the stationary molecule. The operators (M„+r',M, ), when
transformed in terms of those in cylindrical coordinates about the axis of
symmetry, will involve the angle P only through the factors e+'4'; and, if
the nuclear distribution in the molecule has a periodicity in Q of modulus
ni= 2s/k (k an integer), the product V"~V„" will be simply periodic in p
with period m. Now since we can evaluate the integral I equally well after
making the tranformation in Q given by P =/+a, we shall evaluate it k

times with a =re, 2m, 3m km, and add them up. We get

"Born and Oppenheimer, Ann. d. Physik 84, 457 (1927).
"We must mention that the H's in (15) and (16) are measured in absolute units, while

in (9) it is in units of h'c/8x'
"Kramers and Pauli, Zeits. f. Physik 13, 351 (1923).
"The average of M, will vanish if the characteristic function is invariant v ith respect

to a reflection about some plane passing through the axis of symmetry.
"Although the product U„,*V„is invariant after the rotation, the separate functions V

and V,„.~ lnay be multiplied by some kth root of unity after such a rotation,
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To take all the averaged terms in (15) and (16) into account in the
more general case of polyatomic molecules, one can proceed in two ways;
if the new perturbation elements are small compared to those in (9), one can
first solve the asymmetrical top problem and consider (15) and (16) as per-
turbations of the latter; on the other hand, if both are of the same order
of magnitude, one has to solve the combined problem obtained by adding
the H and H~ matrices. In the latter case, the presence of the elements of
the type (16) in particular will invalidate most of our previous statements
concerning the division of the secular determinant according to even and odd
sigmas and the selection rule for sigma.

I am deeply indebted to Professor J. H. Van Vleck for much encourage-
ment and very helpful suggestions and criticisms throughout the courseof
the work.


