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ABSTRACT

A theoretical investigation is given of the Zeeman effect for doublet bands of
diatomic molecules which are included in the type forms of Hund's cases (a) and (b).
With case (b) as a starting point, using the perturbation theory of the new quantum
mechanics, the magnetic terms are first treated as a small correction to the coupling
energy between the electron spin and orbital magnetic moments.

In the next approximation the terms which lead to a Paschen-Back effect are in-
cluded. The physical interpretation according to which the term system degenerates
into that due to a free spin electron plus that due to a symmetrical top, is discussed
briefly in its relation to the experimentally observable patterns. The formal mathe-
matical solution is then given and briefly discussed.

INTRODUCTION

"N VIEW of some experimental work which has been carried out in this
- - laboratory' on the Zeeman effect in the 5211A band of MgH, it has become
of interest to extend previous theoretical work on the effect of a magnetic
field on the spectra of diatomic molecules. We shall consider only Inolecules
which can be included in the type form of Hund's case (a) or (b), or which are
intermediate between these limiting cases. Hund has considered the general
arrangement of the magnetic terms for the limiting cases. ' Van Vleck has also
considered the question' from a qualitative point of view, and on the basis of
Hund's analysis and an assumed behavior for the spin electron in strong mag-
netic fields, has proposed a scheme which might be expected to account for
some abnormally large Zeeman patterns which had previously been observed
experimentally. The basic idea of the theory is that of a gradual uncoupling
(Paschen-Back) effect of the electron spin from the rest of the molecule by the
magnetic field, and a consequent degeneration of the term system into that
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due to a free spin on which is superposed the pattern due to a symmetrical top.
At that time the theory was mainly suggestive, although its general correct-
ness was undoubted, but it is the purpose of the present paper to put it on a
more definite footing by applying to it the methods of the new quantum
mechanics. We are thus enabled to follow quantitatively the progression from
zero to strong fields. The reader is referred to the following paper in this issue
for a discussion of the relation of the theoretical predictions to the experi-
mental data in the above-mentioned band of MgH.

Ãotction. At present the symbolic designations for the various quantum
numbers in diatomic molecules are by no means standard. In this paper we
shall conform to some suggestions for a standard notation which have been
recently communicated to us by Professor R. S. Mulliken. For the conven-
ience of the reader a conversion table from the symbols used in reference 4 to
those used in the present paper isappended. The reader is referred to reference
4 for a complete discussion of the meanings of these symbols.
Reference4. k, s, o&, 0„0,j&, j, m, m&, m„S, I', D,
Present I, S, A. , X, 0, X, J, M, MI„M„Z, II, 6,

HAMILTONIAN FUNCTION

Let (xys) be a fixed set of Cartesian axes in space such that the external
magnetic field is symmetrical about the s-axis, the field strength being H
(gauss). We shall start with Hund's case (b) as an appropriate unperturbed
system. Equivalent results could undoubtedly be obtained by starting at
case (a), and have been partially so obtained by the author (through stage I)
but the complete analysis involving the Paschen-Back eRect of the spin is
analytically more complicated by such a procedure.

The perturbative terms in which we are interested are of two types; 1)
the coupling energy, Hi, between S and L, and 2) the added terms due to the
presence of the magnetic field, with the Hamiltonian H2. As usual we shall
assume that the energy differences associated with different values of A. are
large compared to the energy diRerences of adjacent rotational states, so that
we may average H& over the precession of I.about the nuclear axis. Assuming
the applicability of the "cosine" law of interaction between S and l. we get'

H =A(A S) =A(i1,S,+A„S„+A,S,),
where A is a constant.

In H2 we retain only terms linear in H, and neglect the small magnetic
moment due to the nuclear rotation, so that'

H2 (He/4irmc') (A,+2S,) .——

4 Cf. E.L. Hill and J.H. Van Vleck, Phys. Rev. 32, 250 (1928) for a calculation very similar
to that of the present paper.

' All energies are expressed in cm '.
In this paper we shall neglect the small "rho-type" doubling which is present in 'Z

states. On this account we cannot get complete agreement between theory and experiment for
high rotational levels as the formula will not predict the proper doublet separations even in

the absence of a field for transitions beginning or ending on a 'Z level.
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The matrix elements of H& have already been derived (reference 4, Eqs.
(16) and (17)). To find the matrix elements of A, we have only to use the
unnumbered equation in the middle of p. 258 of reference 4 in conjunction
with the case (b) amplitude matrices (reference 4, Eq. (9)).' To derive the
matrix elements of S.we use an argument based on the discussion of the case
(b), amplitude elements given on p. 254 of reference 4. We first note that as
S is involved only in the precessions about J and about the axis of the exter-
nal field, S, will be diagonal in all quantum numbers except J. Furthermore,
as the vectors S and X play quite analogous roles in the precession about J,
we need only take those amplitude elements from Eq. (9) which are diagonal
in X, inter-change the quantum numbers X and S in them, and then normal-

ize the 8-factors so that g I' M' (S~'+S„'+Sf) (J, III; J', 3I') =S(S+1).
Lastly we must multiply each of the elements of S, S„,and S, for which
J'= J+ 1 by a factor ( —1) in order to take account of the fact that Sand K
are coupled vectorially, and so have slightly different phases.

As the final result of this analysis we find for the elements of the complete
perturbing function H„=&~+&2.'

Q(E+1.A)E(J+1;E;S)E(J+2;E) S)Q(J+1 M)

4U(E+.1)U(J+1)(~ 1I)I E~~ s J~1) ~~~(~~~ ~
~~ 7

~

t

~
7

(Av„)M Q(E+1;A)E(J+1; IC; S)F(J—1;E'; S)
II„(E,J; E+1,J)=~ A+J{J+1) 4U(E+1)

Q(E+1;A)F(J—1; E; S)F(J—2; E,S)Q(J; 3II)
EI„(E,J;E+1,J—1)= —Z(Z~„)—

4U(E+1)V(J)

-Q(J+1;u) - »2
II,(K,I; Ic,I+1)=(a~) [E(I+1;S; K)P(I; S; K)]»&

U(J+1)

[B(I+1;K; S)Ii(I K S)]»'
2E(E+1)

(~..)m
Hp(IC J& E'~ J)= G(Ji SiE)+ G(Ji E;S) — ——G(E; S; J),

J(J+1) ' ' 2E(E+1) ' ' 2E(E+1)

where

E(a; b; c) =(a+b)(a+b+1) c(c+1);—F(a; b; c)=c(c+1) (a b)(a b—+1)—;—
(4)

G(a; b; c) = a(a+1)+b(b+1) —c(c+1);Q(a; b) = a,' —b'i

U(a) =u'(2a —1)(2a+1)
Av„= FIe/4~wc'.

The remaining elements can be obtained by using the Hermitian characte r
of H~; i.e. , as all elements of H„are real, H„(K, J;X', 7') =H~ (Z', J'; X, J).
A11 elements are, of course, diagonal in A and M.

7 The following corrections are to be made in Eq. (9) of reference 4. In line 2 put U(j+1)
instead of D'(j); in lines 7 and 8 put F(j,j &) instead of F(j +1,j z).
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The energy function of the unperturbed system can be written as the sum
of two parts; i.e. , 8'0+H„, where W'0 does not involve the quantum numbers
X, J, M, while H„ is the diagonal matrix whose elements are

where

H„(A, K,J,M; A, K,J,M) =BCK(K+1)—A']

8=h/8w'cI

(6)

As TVO does not contain any of the quantum numbers in which H„has
off-diagonal elements, it does not enter into any of the calculations, and will
not be mentioned specifically again.

Interaction milk A-tyPe dogblirtg. In the perturbing Hamiltonian as given above we have
listed only terms within a given electronic multiplet (n, v, A), and have thus tacitly left out of
account the terms which are chiefly responsible for the phenomenon of A.-type doubling,
From the theoretical work of Kronig, ' signer and Kitmer, "and of Van Vleck, "on the sym-
metry properties of the wave equation, even inclusive of spins, it follows that the approxi-
mate wavefunctionsassociated with the two'. -levels(ieveiswitha given ~A~) arerespectively
even and odd with respect to a "reflection in the origin. " As our perturbing function, inclu-
sive of magnetic terms, is even with respect to this transformation, it contains no terms con-
necting these so-called + and —levels, which may thus still be treated separately. These
we treat in the usual manner, assuming that the electronic states are really widely separated
as compared to adjacent rotational levels, and so consider first the perturbations of the terms
within each electronic state separately. Inclusion of the terms non-diagonal in A would give
the A-doubling corrections.

CALCULATION OF TERM VALUES

Because of the fact that our perturbing function H~ has elements off-
diagonal in two quantum numbers, X and J, the term values can be found
only by approximation methods. As a preliminary step let us separate H„
into two parts which we shall call H„' and H„"respectively. H„' shall consist
of all elements of H„which are diagonal in J, thus having elements which are
off-diagonal as well as diagonal in E. H„"shall consist of all remaining ele-
ments of H„, and thus in particular has no elements diagonal in J. This divi-
sion of the calculation into two parts simplifies the analysis, as H„ includes
all of the terms of H„which are responsible for rotational distortion in addi-
tion to some of the small magnetic terms, and represents the Hamiltonian to
be associated with a molecule in a state intermediate between (b) and (a) in
which the magnetic Beld produces only a small perturbation, while H„"con-
tains the terms which lead to the Paschen-Back effect. In stage I of the cal-
culation we use H„' alone, neglecting H„", while stage II contains the con-
siderations relative to H„".

Stage I. The elements of the matrix H„' associated with a given state
(A, J', 3II) are found from (3) tobe, on substituting S=q, K=7+ s,

Ke neglect explicitly the dependence of the vibrational energy on the quantum numbers
I:,S, J', as well as the variation of 8 with the rotational state.

9 R. de L. Kronig, Zeits. f. Physik 46, 814 (1928); 50, 347 (1928).
"E.signer and E. Witmer, Zeits, f. Physik 51, 859 (1928).
» J. H. Van Vleck, Phys. Rev. 33, 467 (1929).
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where

H„'(Jg, Jg) =8 {—PJ [1—A'/(J+-,')]—)A'/(2J+1) }
II„'(J, ; J,) =H„'(J,'; J,) =8{(X+P)A/(2J+1)}{(J+-',)'—A'}"' (8)

H„'(J2 i Jg) =8{t'(I+1) [1+A'/(J+-,') ]+'AA'/(2J+ 1) },

P =(»./')(~/J(J+1))
&=A/B.

The unperturbed energy has the elements

H.(Ji; Ji) =& [(I+2)(J+l)—A']

H„(Jg, J2) =8 [(J'——,') —A'].

The notation J~ refers to the spin component for which E =J+-,', and
similarly J2 refers to the component for which E =J——,'. The energies can
now be found by solving the usual determinantal equation:

0= (II,+H„')(Jg, Jg) —W H„'(J&, Jg)

H"'(J2) Ji) (K+H"')(J»J2) —W

the roots of which are readily found to be

W(A, K,J,M) =8 {(J+—,')' —A'+p(A'+2)

+-:[(2J+1)&(1 P)2"A2(y+P)(y —4+5P)]~~2} (12)

where the upper sign is to be associated with the J~ state; i.e. with E =J+-, .
It may be remarked that if we set P=O; i.e., H=O, (12) reduces to the
rotational distortion formula (reference 4, Eq. (27)).

If one is interested only in the dependence of (12) on the magnetic field, it is probably a
sufficiently accurate procedure to expand as a power series in (P) and retain terms of first
order only, thus

W(A K J M)=8{(J+-')'—A'+-'y+p(A'+-', )+(p/27)[ —(2J+1)'+A'(3X—2)j}, (12')

where

7=((2J+1)'+&P —4)A'j"'

The next term of second degree in the small quantity (dI„/B) with a coefficient of the order
of (1/J), is ordinarily quite negligible. The dependence of (12 ) on P could also have been de-
termined directly from the perturbation theory for non-degenerate systems by employing the
case (b) transformation function S (reference 4, Eq. (33)) and the formula

AW(K, J,M) = Q S(K,J;K', J)P (K', J,M; K",J,M)S(K, J,M; K",J,M).

This procedure would amount to first removing the degeneracy associated with II1 by means
of the transformation S, and then considering H2 as a small- correction term.

Stage II. The perturbative Hamiltonian II„"which we have so far neg-
lected, contains interaction terms between levels with values of J diR'ering by
one unit and values of E which may or may not differ. Up to the present we
have assumed that such terms do not lie close enough together to influence one
another appreciably. This, however, is by no means a suf6cient approximation,
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for if we consider the arrangement of terms as a function of the parameter
X in the absence of an external field (P =0), we find that for X = 0 and X = 4,
levels differing by an unit in J, but having the same value of X lie very close
together. The same is true for high rotational states even in molecules
where X differs appreciably from these critical values (e.g. , in the upper
level for the 5211A band of MgH where X 6). This behavior of the
terms is predicted by (12) and is also found experimentally. " We must
accordingly make a second transformation in order to eliminate these terms
from II„".That it is not a valid procedure to use the perturbation theory
of non-degenerate systems follows from the fact that such a calculation would
be made by a series expansion in terms of the parameter (Av„/v(X, J; K, J'))
where hv (E, J, M; X', J', M) = W(K, J, M) —W(E, J', M). We have just
seen that this quantity may become very large.

b &

( 2h~r

Fig. 1.

The physical interpretation of this phenomenon has already been dis-
cussed by Van Vleck, ' but we shall repeat and amplify the argument here in
order to elucidate the mathematical formalism. Levels of the type just men-
tioned, having the same value of E but di8erent values of J, compose the so-
called "spin-doublets" (8=-', ), and their separations are measured by the
magnitude of the coupling between S and A. If the separations of these levels
are small, so that the effective forces between S and the rest of the molecule
are weak, the magnetic field may be strong enough to over-power these forces
and to partially or wholly uncouple S from the rest of the molecule. In the
limit in which the Zeeman separations are great compared to the spin doublet
separations, S becomes completely free from the rest of the molecule, and is

"Cf, especially R. S. Mulli ken, Phys. Rev. 32, 388 (1928}.
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quantized parallel or anti-parallel to the axis of the external field. In this
limit the term system should consist of the terms due to a symmetrical top
superposed on the two states for the free spin in the magnetic field. In a 'Z
state, neglecting the presence of the small "rho-type" doubling, the part due
to the top should be absent, so that each rotational level splits into a doublet
with separation (2hi „) in the field. The more general condition as existing in
'II, '5, states is roughly as shown in Fig. 1. From the Zeeman formulae
for the symmetrical top, "it can be seen that "a," which is approximately the
pattern width due to a symmetrical top, vanishes 1/X, the number of
levels in the group increasing as E, and the separations between the individual
components decreasing as 1/K(%+1). The deviation of "b" from (2hi „) is a
rough measure of the interaction energy between S and A. .

In the limit of a field sufficiently strong to practically break down the
coupling between S and A, one can introduce the value of the component of
S along the axis of the external field as a quantum number; i.e., 3I.= +-,'.
The transitions which give rise to the spectral lines can be divided into four
types: 1) M, ' = 2i-+M, "= -', ; 2) 3II, ' = —is ~M,"= ——', ; 3) M, ' = ,' +M, "=--——,';
4) 3II,'= ,' &M, "—=—-2—. Transitions of types 1) and 2) give rise to two
superposed (unresolved) patterns clustering about the average position of the
no-field doublets on the photographic plate. Transitions of types 3) and 4)
give rise to two "wings" spaced approximately symmetrically with respect to
the central pattern, and with a separation that approaches (4hv„) as the mag-
netic field is increased, or as one proceeds out in the band to successively
higher rotational states. It may be remarked that the decrease in intensity of
the outer "wings" with increasing magnetic field (or molecular rotation) is
directly attributable to the selection rule AM, =0 which may be expected to
obtain accurately in the limit. The reader is referred to the following paper in
this issue for a discussion of these relations in the band MgH ) 5211.

In putting these considerations into mathematical dress, we must first
find the transformation function T appropriate to the determinantal Eq. (11).
According to standard perturbation theory we have only to solve the set of
linear equations obtained from the single matrix equation

T(H„+H„')= WT,

the elements of T to be normalized to satisfy the condition

TT '=1.

(13)

(14)

The following solution may readily be shown to satisfy (13) and (14)

T(Ji, M; Ji, M) = T(A, M; J2, M) = j [r(J, M)+~0(J, M)]/2r(J, M) }'"
(15)

T(Ji, M; J2, M)= —T(Jg, M i Ji, M) = j [r(J, M) cv(J, M)—]/2r(J , M)}"', '

where
'r(J, M) = {(2J+1)'(1 P)'+A'(X+P)—(X 4+5P) }'i'—
~(J,M) = j (2J+1)(1—P) —i1'(&+P)/(J+k) } .

13 Cf. e. g, , D. M. Dennison, . Phys. Rev. 28, 318 {1926);E. U. Condon, Phys. Rev. 30,
78i (1927).
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The perturbing function in the new system of quantization is given by the
matrix

TII„"T ' (17)

for which the element (E, J, M; E', J', M) is given by

QT(K,J,M; E",J,M)H~"(E", J,M;K'",J', M)T(K', J', M; K'", J', M) (18)
If tl Q/It

I

T '(K"' J' M K' J' M) =T(E' J' M K"' J' M)

In the application of (18) it is sufficient to neglect the dependence of the ele-
ments of T on the magnetic quantum number M to the same degree of accura-
cy that one has in using (12') in preference to (12). With this simplification
T becomes identical with the transformation function 5 derived in the rota-
tional distortion problem (reference 4, Eq. (33)).

An examination of (18) shows that the new perturbing function contains
only terms connecting states for which J'= J+ 1, as H~" has no terms diag-
onal in J, by definition. The elements connecting states for which X &E we
discard as such levels do not ordinarily lie close to each other. The remaining
elements, connecting states for which J=E+—'„are readily found from (18)
using the matrix elements of H~" from (3), the result being

»/2= (»-)
(K+5)'

r(K+4)+~(K+2) '" ~(K k)+~(K —2)—
X

2r(K+5) 2~(K ——',) 2K(E+1)

2v (K+ i2) 2r(K —-,') 4E'

()(+l)— ()(pl) "' ()(—l) y ()(—l) 't' I( )(+()'—g'lg'] 'r'

2r(K+-', ) 2r(K ——',) 4(K+1)'

(19)

The energies of the two states in question before the introduction of the
perturbation (19) are found from (12) to be:

where

W(Ki, M; Ki, M) =f(K+ ,', M) ——',r(-K+-', , M) = Bei

W(K~, M; Ka)M) =f(K ', , M)+-', r(K —', &—M)=Be2—— (20)

f(K 'M) =J3[E' —~'-y(~. /Jl) [M(~'+-')/(K' ——;)]], (21)

and where EI and K2 refer to the components for which J=X+—,
' respectively.

If ~M
~

~E i~the energy values ca—n be found from a second determinantal
equation of exactly the same form as (11) using (19) and (20) instead of (8)
and (10), the roots being

(8/2) [(gl+g2) + j (61 e2)2+(12] ii2] (22)
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The allocation of the two roots (22) to the two levels concerned is at first sight
ambiguous, inasmuch as the first term in the square root can also be written as
(p, —si)'. This means that it is not sufficient to establish the correlation in the
usual manner by the asymptotic relation of (22) with (20) when 8 is formally
set equal to zero. As a second condition we shall use a rule derived from per-
turbation theory'4 which states roughly that the first effect of a perturbation
between two energy levels is to push them apart A.pplying this to (22) we
conclude that if si) sp the upper sign is to be assigned to the state (Ei,M)
and the lower sign to the state (Ep, 3E); while if s,)si the reverse correlation
should be used, To make the equation formally correct in the latter case for
the asymptotic point 8=0, one should write (sp —si)' instead of (si —sp)'.
This consideration is, in a sense, equivalent to determining the energy and its
derivative (with respect to 8) for each of the two states.

Formula (22) can be thrown into a form resembling the more usual ex-
pression used in atomic spectra" if we use (12') instead of (12) to determine
si and sp, and collect powers of (Av„); i.e.,

pl+p2 )+K(kv~) 8 =q(i1v„)

where 23vp is the (algebraic) frequency separation" of the no-field doublet
levels in cm ' while $, s, and pl, are complicated functions of the quantum
numbers, which can be determined from (12'), (19), (20), and (21). Substi-
tuting these values in (22) we get

(8/2) [(+ii(Av )+ IvpP+2vpn(hv„)+(n'+v')(dv„)'I'i'] (22')

SPECIAL ( ASES

There are some particular cases included under the general formula (22)
to which it seems well to give special consideration, partly because of their
simplicity, and partly also because of certain ambiguities which might be
encountered in the preceding formal treatment.

States (A=O). From (12) we readily find that

pi E(E+1)+(Av„/——8)(3E/E+ ', ); pp =E(E+-1) —(Av„/J3) (M/E+ ,');-
while

(23)

as from (16), r(J, M) =&p(J, M). With these values of its arguments (22)
reduces to the very simple form

BE(E+1)+hv„

' F. Hund, Zeits. f. Physik 40, 742 (1927); also for example the last section of E. C
Kemble and C. Zener, Phys. Rev. 33, 512 (1929).

'~ E. g. , 9/, Heisenberg and P. Jordan, Zeits. f. Physik 37' 263 (1926)."See the preceding paragraph for consideration of the difBculties connected with the sign
of vo.
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quite in agreement with our previous conclusion that if we neglect rho-type
doubling, a magnetic field of any strength should be large enough to uncouple
completely the spin from the rest of the molecule and quantize it with respect
to the external field. The two signs in (23) are of course to be associated with
M, = + -,'respectively.

E=A. , J=A ——,'. This is the lowest level in 'm. , '5, -, electronic states,
and is of considerable interest as it presents an anomalous behaviour in the
correlation of levels between (a) and (b)' ". Here the off-diagonal elements,
(as well as the term in the lower right-hand corner) of (11)vanish, leaving as
the only solution

To this degree of approximation, this level for a 'II state (A. = 1) is magnetically
dead as the term in (4v„) vanishes. In carrying through the analysis of the
perturbations between the levels K =4, 1=h. —-'„~M

~

&A —-'„and the levels
K =A, J=A+-', , ~3II

~

&h.+-', , everything goes through just as before except
that now e~ is given by (24), and 8 may be simplified by using the condition
r(A ——', , M) =co(A ——', , M). (22) now predicts a small magnetic effect for the
level K = 1, J= -'„ in a 'll electronic state, but it is of practical importance only
in case the separation of the doublet levels in the absence of a magnetic field is
very small even at the origin.

Levels for which M = + (K+-', ). These two levels (for a given value of K)
exist only in the magnetic components associated with the E& state. As by
(19) the perturbing terms vanish, a situation exactly similar to that discussed
in the preceding "special case" obtains, the energy being given directly by
(20); i.e. ,

W(Kg, M) =f(K+ ', , M) 2r(K+-—', ,-M)-
M = + (K+-',).

The writer is very much indebted to Professor J. H. Van Vleck for 'his

initial suggestion of this problem and for his criticisms of the first draft of this
paper; he is also indebted to Mr. G. M. Almy for many discussions of the ex-
perimental data.


