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ABSTRACT

The quantum mechanics conception of a spinning electron in an s state makes it
probable that its interaction energy with a nuclear moment i is simply proportional
totheaverageofiscos(is). Expressions for this average cosine have been obtained
and applied to different examples. In more complicated cases it can only be said
that the interaction energy is proportional to ij cos (ij ), which makes the interval
rule hold for hyperfine structure.

'HE existence of hyperhne structure has been accounted for by the intro-
duction of a new quantum number' i, together with the quantum num-

bers s, l, and j associated with resultant spin moment, resultant orbital
moment, and total moment respectively. The new quantum number is asso-
ciated with the nucleus intrinsically in the same way that s is associated with
the electron, and because of its similar properties might be interpreted as a
nuclear spin moment. The ~ causes a single state of the multiplet to be split
up into several states (2i+1 or 2j+1 depending on which is smaller) each of
which is denoted by a particular value of the new total quantum number f.
In the hyperfine structure those transitions occur for which f changes by
+ 1 or 0, except that the transition 0—+0 is forbidden, similar to the selection
rules for j. The separations in hyperfine structure are then due to the inter-
action energy between the nuclearmomentand the total extranuclear moment.
Similar to ordinary multiplets, the hyperfine structure separations usually
follow the interval rule, i. e. the separation of two adjacent states is pro-
portional to the largest j of the two states. A discussion of hyperfine
structureseparations involves knowing whether the coupling which exists
between the extranuclear moments is the Russell-Saunders type which
gives rise to multiplets, or whether it is the (j, j) coupling which is found
most frequently in the heavy elements. '

E. Back and S. Goudsmit, Zeits. f. Physik 43, 321 (1927); 47, 174 (1928).
~ For a discussion of ordinary multiplet separations and the different vector couplings

see S. Goudsmit, Phys. Rev. 31, 946 (1928)", S. Goudsmit and C. J. Humphreys, Phys. Rev.
31, 960 (1928).
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The interaction energy between the nuclear magnetic moment and the
extranuclear electrons has not yet been treated in a satisfactory way. A
treatment based on the classical vector model has been given by Pauling an d
Goudsmit. ' Hargreaves' gave a quantum mechanical treatment in which
however he neglected the interaction between the nucleus and the electron
spin, which for small l is of the same order as the interaction with the orbital
moment. Finally the calculations of Casimir, which take into account both
interactions, can be applied only in the simple case of a single outer electron.
The common result of all the calculations is that the interaction energy will
be of the form

Aij cos (ji)

which might be stated as the interval rule. Using the quantum mechanics
expressions for the cosines (1) becomes

.. f(f+1) i(i+1) —j(j +1)—
Aij

2ij

The separation between states f+1 and f is therefore

(f+1)(f+2) —f(f+1)
A —— ——=A(f+1) .

2

The separation is proportional to the largest f of the two states. As an ex-
ample, let us consider the unassigned bismuth term 49461 with j=1~,i =4-,'
and f consequently 6, 5, 4, 3, with separations respectively 0.563, 0.473,
0.379 cm '. That these separations are proportional to the larger f may be
seen by dividing respectively by it to obtain the interval unit A = 0.094, 0.095,
0.095. As another example consider the bismuth term 6P' 'P&~2 with j = 1/2,
and i=4' giving two states with f=5, 4. The measured separation is
1.875 cm ' giving an interval unit of 0.375 cm ~.

As the results of Casimir show, the interaction energy between the elec-
tron spin and the nucleus for the case of an electron in an s state, where l is 0,
is proportional to the cosine between' and s, i.e.

ais cos (is) .

This expression does not hold for other states. In quantum mechanics an s
state differs considerably from the orbital picture of the atom. One must
consider for an s state that the charge distribution representing the electron,
surrounds the nucleus completely whereas in the classical picture the nucleus
and the electron are separated. This explains the fact that for an s state, the
results obtained by Casimir on the basis of the quantum mechanics show that
the most stable state for the nucleus is with its magnetic moment in the same

3 L. Pauling and S. Goudsmit, "The Structure of Line Spectra, " McGraw-Hill, now being
published.

4 J.Hargreaves, Proc. Roy. Soc. A124, 568 (1929).
Ke are greatly indebted to H. B.G. Casimir in Leiden for the use of his unpublished work

on the study of the nuclear spin problem.
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direction as the magnetic moment of the electron, meaning that if i = &, of
the two states f=0 and 1, the former will be the lower, which is the opposite
to what is expected on the classical theory. This result means that the con-
stant a is positive.

This factor a comes out to be proportional to the ratio of the magnetic and
mechanical moment of the nucleus and to Zz/nz for the state under con-
sideration. For deeply penetrating orbits

zz Z;sZ/zzZ, ss

where Z; is the nuclear charge effective for the inner part of the orbit, s is the
effective nuclear charge outside the electron core, and n, y~ is the Rydberg
denominator. The actual numerical factor occurring in a is however not
known with certainty.

The interaction energy between i and ap, d or f electron is of a more com-
plicated nature as it involves an interaction with both the orbit and the spin.
It is very probable that in this case the correct quantum mechanics treatment
will differ considerably from the treatment with the help of the classical
atomic model. It is therefore possible to consider here the hyperfine structure
separations of only those configurations which involve a deeply penetrating
s electron* which is supposed to contribute the main part of the hyperfine
structure and we shall therefore be interested in the evaluation of cos (is).

For two s electrons, the interaction energy may be calculated completely
in terms of each of the electrons. If the subscripts denote the two electrons,
the interaction energy is given by

GZZSZCOS (ZSZ) + OZZSZ COS (ZSZ)

remembering that s& and s2 form the resultant moment j the average cosines
can be worked out and one obtains

&I.$Z 82$2
zJ cos (zJ) cos (szj) + cos (sZj)j

The expression between the brackets is thus the constant of expression (1).
Substituting the quantum mechanics expressions for the cosines one obtains

j (j +1)+s,(s,+1)—s,(s,+1) j j(+1)+sz(sz+1)—sz(sz+ I)
A =ay +&2 (6)

2j(j+1) 2j(j+1)
In the case of two s electrons this reduces to

A =-,aI+-, a2.1 1

It is quite probable that this expression (6) can be applied tomorecomplicated
cases where an s electron is added to a general multiplet 5-state of the
preceding ion.

* ADDED To Paooz: In a recent letter to the Editor in Phys. Rev. H. E. White also con-
siders the hyperfine structure in the case of a deeply penetrating s electron arriving at qualita-

-tively the same results as obtained in this paper.



1504 S. GOUDS3EIT AND R. F. BACIIER

In the case of an s electron and an arbitrary other electron the evaluation
of o is cos (is) depends upon the type of coupling of the quantum vectors of
the extranuclear electrons. For Russell-Saunders coupling

Gyisl cos (i$1) = Ggisy cos (iJ) cos (js) cos (ssl) .

It must be remembered that in this expression the interaction with the s
electron alone is taken into account and the interaction with the other
electrons is regarded as negligible.

SI
a,is, cos (is&) =ij cos (ij) a&—cos (s&s) cos (sj) (~)

The expression in brackets is again the constant 2 of (1). Substituting the
quantum mechanics cosines we get

s(s+ 1)+s&(s&+ 1) —s&(s2+ 1) j(j+1)+s(s+ 1)—4(4+ 1)3 =ag . (10)
2s(s+ 1) 2j U+1)

In case of two electrons where si ——s2 =
&

j(j+1)+s(s+ 1) —4(12+ I)
A =ai

4jU+1)

Equation (10) will also be applicable in the case where one.has the s electron
added to a more general con6guration than a single electron, meaning that s
can have values other than &.

In (j,j) coupling a similar treatment gives

syisy cos (iSy) = Qyi$1 cos (ij) cos (jsl)

GISI
=ij cos (ij) cos(js|)

—j
j(j+I)+s&(sr+1) —j2(jr+1)

2j U+1)
(12)

There exist relations between the values of A in the case of Russell-
Saunders coupling and in the case of the (j, j) coupling which are similar to
the well-known sum rule of the Lande g values. For instance, if for a given
configuration a certain j value occurs for only one level the value of A for this
level will be the same for all couplings. Expression (11) can easily be con-
nected with the Lande g value. Comparison with the well-known g formula
gives at once

3 =-,'ai(g —1). (13)
A similar but more complicated expression can be found in the case of the

(j, j) coupling.
APPLICATIONS

Cadmium I. Table I gives the Ss ns and 5s SP configurations of Cd I' for

~ H. ShQler and H. Briick, Zeits. f. Physik 56, 291 (1929). S. Goudsmit, Naturwiss. 17,
805 (1929).
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which the Russell-Saunders coupling holds and for which (7) or (11) can be
applied.

TABLE I. Cadmium I. Hyperffne structure.

Configuration

Ss6s 'S1
Ss7s 351
Ss8s 'S1

Limit
SsSp 3P3

3P

0.396 cm '
0.369
0.354
0.35
0.28
0.21

Form. (1')

3A/2
3A/2
3A/2
3A/2
SA/2
3A/2

a1/2+ ay/2
a1/2+ a2'/2
ai/2+a2 "/2
a1/2
a1/4
a1/4

0.47 cm '
0.44
0.55

The nuclear moment of cadmium is & giving rise in every case to a doublet
fine structure. In the tables the first column gives the configuration and
term, the second column the separation, the third the separation from (1')
or the interval rule, the fourth gives A in terms of the constant a~ of the s
electron, and the fifth gives the value of aI determined from the separation.
As the constants c contain the factor (I/e, ~) they will decrease rapidly with
increasing quantum number n. This means that a& is expected to be much
larger than a2 and that furthermore a2 will decrease going from 6s to Ss.
The values of a~ obtained from the separations agree suSciently well since
the expressions are only approximate. This a& on the average is about
0.47 cm ' and this value leads to the prediction of the magnitude of the fine
structure of the Ss 'S~ of Cd II. This term will be split up into two levels,

f= 1 and f= 0 with separation aq or 0.47 cm '.
Thallium I.' In this case the expressions can be applied to only the low

state 7s 'S..
TABLE II. Thallium I. IIyperffne structure.

Configuration

6s'7s 2SIf7 0,40 cm '

Form. (1') ai

0.40 cm '

Thallium II. For the 6s 7s 'S& we can use (II). From thallium I the a for
the 7s electron was found to be 0.40 cm '; according to (3) the a for the same
electron in thallium II will be about 4 times as large, or 1.60 cm . T»s v»«
has been used for the calculation of uI for the 6s electron in Table III.

TABLE I I I. Thallium II. Hyperfine structure.

Configuration

6s7s 3SI
6s6p 3P3

'P1
6s7p 3P2

3P1
['PI1

6s6d 'D2
Di

'D2
6s7d 'D3

'D2
3D
1D2

5.1 cm '
3.5
0
3.4
3.9—0.6
1.6—2.0
2.4
3.6
0.6—2.3
0.3

Form. (1')

3A/2
SA/2
3A/2
SA/2
3A/2
3A/2
SA/2
3A/2
5A/2
7A/2
SA/2
3A/2
5A /2

A

a1/2+ a2/2
a1/4
0
a1/4
a1/2—a1/4
a1/12
ai/4
0
ai/6
ai/12—a1/4
0

5.2 cm "

5.6

5.2

7.7
5.3

6.2
2.9
6.1

E. Back, Ann. d. Physik 70, 333 (1923). H. Schiiler and H. Briick, reference 6.
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The 6s 7P configuration of thallium II is certainly much nearer to the (j, j)
coupling than to Russell-Saunders coupling as can be seen from an examina-
tion of the position of the singlet and triplet terms and in this case we must use
(12). The 6s 6d follows the Russell-Saunders coupling again. The values of
a given in the last column agree satisfactori1y particularly for those terms
for which the separations are known with some certainty. The values of
Av given in Table III have been recalculated with the use of proper intensity
relations from the observed lines of McLennan, McLay and Crawford' and
according to them have an error of about 0.5 cm '. For 6s 7p 'I'I a separation
of —3.4 would be expected but of the two possibilities for that term both show
a separation of about 0.5. The 6s 6d'D2separation observed is much too large.
Especially interesting is the inversion of the 'D& terms.

The values of a are somewhat'irregular to show with certainty the effect of
different screening with different outer electrons. The value of c for the 6s
electron in case the second electron is removed completely will probably be
about 7 or 8 cm —'. This will be the doublet separation of the hyperfine
structure of the 6s '5» state of thallium III.

Lanthanum I and II. In lanthanum only a preliminary paper by Meggers
and Burns' has been published, the few results which are certain, are in agree-
ment with the theory developed here. The fine structure seems to occur only
in those terms involving a single 6s electron. Table IV gives the results of the
Sd 6s configuration of lanthanum II which is an interesting intermediate case
between Russell-Saunders and (j,j) coupling, and the equations derived here
are valid only for the 'D& and 'D3 state for which all couplings give the same.
The hyperfine structure of 'D3 makes it probable that i =2, however the
splitting up of the Sd 6s 'D2 does not agree with expectations. The agreement
of the u& of La I with the a& of La II seems to be entirely accidental.

TABLE IV. Lantkangm. Hyperfine Structure.

La II Configuration

Sd6s 'D3
'D1

La I Configuration
5d'6s 4FI)

4 p9g
4p y

2
4 p4x

67 (total)

0.71 cm '
—0.375

hv—0.46
[+0.04]*
[+0.38]*
[+0.67]*

Form. (1)

14A
5A

Form (1)
SA/2

12A
16A
20A

a1/6—aI/O
A—aI/5

a1/105
5a1/63
a1/9

0.30 crn '
0.30

0.30

* Predicted values.

J C. McLennan, A. B. McLay, and M. F. Crawford, Proc. Roy. Soc, A125, 570 (1929).
9 W. F; Meggers and K. Burns, J.O.S.A. 14, 449 (1927). The uncertainty in i has little

effect on the results derived here.


