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ABSTRACT

In an ordinary chemical reaction three processes occur: activation, reaction of
the activated product, and deactivation. These processes can be described quantum
mechanically and they must all be taken into account. As an example the case of pre-
dissociation of diatomic molecules is considered, Here activation is by light, and after
a lapse of time the molecule decomposes. It is shown that, under some circumstances
which are discussed in detail, the wave function immediately after the excitation by
light may be completely and correctly described as the wave function of a discrete
state, which interacts with a continuum. Here the calculation of the rate of dissocia-
tion previously made by Ãentzel applies, with some limitations which are discussed.
Not all the simplifications which make the case of predissociation easy hold for de-

compositions of complicated molecules, but something is to be learned by comparing
the two cases. The perturbations which give rise to the decompositions are of the
same nature as those which occur in the case of predissociation, but they cannot be
put into the same equation to give the rate of reaction. The reason for this is dis-

cussed, as are some of the questions involved in activation by collision.

INTRQDUcTIQN
' 'N GENERAL the course of a unimolecular reaction seems to be as follows.

A molecule is first excited, either by collision with other molecules as
indicated by the best evidence in the case of thermal reactions, ' or by radia-
tion in the case of photochemical reactions. The excited or activated mole-
cule may afterwards either break up, as in the case of a decomposition, or
undergo a rearrangement or racemization. It is of course to be noted that
the excited molecule may, on the contrary, be deactivated without reaction
by subsequent collisions. The above description is typical of unimolecular
reactions, and defines the class of reactions we shall consider. Note that a
unimolecular reaction need not always be first order, as exemplified by numer-
ous gaseous decompositions. '

Let us now attempt to describe the above in quantum mechanical terms.
The first step, the activation, consists clearly in a quantum transition to a
state of higher energy. The second step has been described as a quantum
transition from one state to another state of the same energy. ' Strictly,

' National Research Fellow.
2 For general discussion and references see Rice, Comptes rendus Reunion International

de Chimie Physique (Paris, Oct. , 1928), p. 298.
' Langer, Phys. Rev. 34, 92 (1929). See also Oppenheimer, Phys. Rev. 31, 81 (1928);

Rice, Proc. Nat. Acad. Sci. 15, 459 (1929).
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however, this description is not entirely accurate. The process of activation
is truly a quantum transition, induced by external influences or perturbations.
What happens after activation is in any event a very different sort of transi-
tion, but it may be treated as though it were quite similar under certain con-
ditions, which we will investigate.

In a chemical reaction we are usually unable to isolate the activated
molecule at all. We say that a reaction has occurred if we are able to distin-
guish the deactivated reaction products from the substances originally
present; this will generally be the case if the reaction products cannot be
brought into statistical equilibrium with the original system without going
through the activated state in the reverse way. Thus we are interested in
those cases in which the molecule in its activated state takes up configura-
tions from which on subsequent deactivation it goes into a new product.
Our actual process of calculation may be somewhat as follows. We subject
the molecule to a perturbation starting at a definite time and acting for a
certain length of time' (the activating perturbation) and at a later time we
again subject the molecule to a perturbation of finite endurance (the de-
activating perturbation). We investigate the resulting wave function,
expanding it in terms of the stationary eigenfunctions, and from thecoefficient
of the expansion may be derived the final distribution among the various
stationary states in the known manner. We do not need to interpret the
wave function for the intermediate activated state, but in practice it is
necessary to follow its changes. Now we can follow its changes by means
of the wave equation, theoretically, at any rate, and some consideration
has been given this problem; but it must not be forgotten that the whole

problem includes the finding of the initial condition, i.e. , the state immediately
following the activation; it also includes a consideration of the deactivation,
but this will not be so important in the cases we shall consider.

Recently I have pointed out the similarity between the phenomenon
of predissociation on the one hand, and that of unimolecular decomposition
on the other. .' It will be interesting, therefore, to apply our process in some
detail to the case of predissociation, though it will be found that the conditions
which make the calculation for predissociation easy are not fulfilled for uni-
molecular reactions, and it will therefore be harder to carry over the results
than I had at one time hoped; these results, however, will be a valuable aid
in formulating the problem for the more difficult cases.

PREDIssocIATIoN

Predissociation can occur when a molecule can be excited by absorption
of radiation of a given frequency in two different ways, i.e. , by two different

4 In photochemical reactions the time of illumination generally coincides with the time of
reaction, and we can at any time measure the amount of reaction that has taken place, usually
by means of a pressure measurement. We shall, however, in the following have occasion to
consider the case, which may be rather artificial from the experimental point of view, in which
the illumination is for a very short length of time, and the amount of reaction is determined
if deactivation occurs at any subsequent time. This is similar to the case of activation by
collision. The problem would probably take a somewhat diferent form if we considered col-
'.isions of molecules and light quanta.
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electronic jumps, accompanied by the corresponding changes in vibrational
and rotational quantum numbers. ' As in general one of the electron states
will have a lower dissociation limit than the other, the continuum corre-
sponding to the former will overlap discrete vibration-rotation levels of the
other. Thus a molecule in one of these discrete states (a predissociated mole-
cule) may be able to go by a radiationless transition to the overlapping
continuum and dissociate. In this case activation is of course by radiation
and we shall treat the case where the probability of transition directly from
the inital state to the continuum is zero; i.e., the discrete state is a necessary
intermediate. It is obvious that once the molecule is dissociated subsequent
deactivation will in general leave it dissociated. We wish therefore to And

the initial state after the absorption of light and then to follow the transition
to the continuum.

In the above paragraph we have slipped into the old language in which we
speak of transitions from one state to another of the same energy; it may
then be questioned why we do not simply use the calculation already made
by 'Wentzel and it will be found that Wentzel s calculation is indeed ap-
plicable, at least under certain conditions, but the matter is not so simple
as appears on the surface, and as far as I am aware has never been handled
in a completely satisfactory manner. The reason for this will be apparent
on going through the whole calculation.

In order to present this calculation we will need to proceed to a more
definite formulation of our problem. We do this in the same manner as in
previous work on predissociation. ~ It mill have been recognized by the
reader that, if we speak of continuous and discrete eigenfunctions, these
eigenfunctions will belong to an approximate wave equation which we
write in the form

where H is the usual Harniltonian operator and E is the operator (—h/2~i)
8/Bt This equa. tion is built up in such a way that it has certain eigenfunctions
Pq (not including the exponential time factor), with corresponding eigen-
values Zq, which correspond to discrete states, and others P„with eigen-
values E„which correspond to continuous states. ' Now let the exact equa-
tion be of the form

(P 8+V)$=0—

There may be other cases in which predissociation can occur (see, e.g. , Henri and Wolff,
J. Physique Radium (6) 10, 89 (1929)) but the one considered is typical.

Wentzel, Phys. Zeits. 29, 333 (1928). Wentzel's calculation was made for the Auger
effect, but can be applied unchanged to the case of predissociation. (See Kronig, Zeits. f.
Physik So, 360 (1928).) Wentzel, Zeits. f. Physik 43, 524 (1927) and Fues, Zeits. f. Physik 43,
726 (1927) had previously made this calculation in another manner; but the meaning of this
earlier work is harder to interpret and we will not consider it here.

~ Rice, Phys. Rev. 33, 748 (1929).
8 We assume (see Ref. 7, pp. 749, 754) that the system is in a box, so that the continuous

eigenvalues actually form a very close spaced discrete set.
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where V is a perturbation function or operator. This equation will have
eigenfunctions lt„' which have some of the properties of discrete states and
some of the properties of continuous states; in other words, this equation
takes into account the interaction of the discrete and continuous states. The
eigenvalues E„' are spaced like a continous set, in a manner we have previ-
ously discussed. ~ We express the perturbed eigenfunctions as linear functions
of the unperturbed. If &he discrete states are far enough apart' we need
consider only one of ther at a time and can write

=~dn4d+ gs~sAs

Instead of a sharp line absorption when we shine light into the system
there will be absorption over a finite width of energies, i.e. , the line whose
final state would have had the energy E& will be broadened and the center
will be at that energy E„' for which Sd„has a maximum. We have assumed
that the absorption is due to the discrete state, i.e. , that fpdPppdrWO,
where lt p refers to the initial unexcited stateand P is the electrical polarization,
but that fP,PPpdr=0. The intensity of absorption for a given perturbed
state is proportional to (fp„'Pppdr)' and hence is proportional to Sd„',
(dr is the volume element in configuration space and the integrals are taken
over all allowable values of the coordinates. )

We are now ready to study the state of the system immediately following
the absorption of light. Now we can control the nature of the light we shine
in. Thus we might inquire what would happen if we were to shine in mono-
chromatic light of just the right frequency, say, to excite a definite state

But if the light is to be strictly monochromatic we have to shine it in
for an infinitely long time. So in this case there would be no sense in making
any calculation regarding processes which would occur after activation,
for activation will go on for an infinite length of time, after which the state
of the excited molecule will be given by the stationary eigenfunction f„.

On the other hand, if we shine in light for an infinitely short time, then
we may have any state excited. A case of particular interest arises if we shine
in the light for so short a time that any energy over a considerable range
in the neighborhood of one of the unperturbed discrete states pd may be
excited and that no appreciable decomposition takes place in that time, but
for so long a time that only one pd will be excited; we assume that this can
be done. We shall see that it is a case to which the previously cited cal-
culation of Wentzel's applies.

Let us suppose, then, that we have the molecule initially in the unex-
cited state pp, and shine in light of frequency equal to (or nearly equal to)
(Ep Ep)/tt for some convenient length of time t. Let us follow the changes in
the wave function describing the system. We expand it in the form"

P=apfp exp (—2prtEpt/h)+ P„u„P„'exp (—2priE„'t/tt). (4)

' Ref. 7, pp. 751—2. Whenever we say that discrete states must be far apart, we mean
that stafes mhich interact mith each other must be far apart.
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As we start with all atoms in the initial state, at t =0 all the a's except ao
are equal to zero, and ao may be taken as i. Then after time t we have a„
(if its absolute value does not increase too much in time t) given by"

p t

a„= (2prP„,/ich) I k (t) exp [2pri(E ' Ep—)t/h]dt
0

where c is the velocity of light, P„p = 2priP„!E ' —Ep)/h where P„p
=fP„'Pfpdr, and k(t) is the magnitude of the veL br potential of the light.
k(t) may be written as k sin [2pl (Ep —Ep)t/h], whe:.-e k is a constant. Now
we can put this in the integrand and integrate. If we do this it is easy to
see that, if t is small compared to a period of the function exp [2pri(E„'

Ep)t/—h] for all energies E„' that are appreciably excited, the a„of these
states will be approximately in phase with each other, and proportional to
P„o.

It will be seen that the narrower the absorption line the easier it will be
for the duration of illumination to be short enough so that all states which
contribute appreciably to the absorption will be included without appreciable
difference of phase, and long enough so that only states in the neighbor-
hood of the one discrete state will be included. "

Ke thus see that the initial state for the decomposition, which takes
place after the absorption, is described by a wave function,

P = g,a„P„'= const X Q„P„pg„'. (6)

The exponential time factor, which, as we have seen is the same for all the
terms at the beginning of the decomposition, is included in the constant.
But we have previously seen that P„o is proportional to 5&„, hence

P=constX Q„Sp„ik„' (7)

Now if we expand Pp in terms of the P.', which of course also form a
complete orthogonal set, we get just the above expression (7), except for
a constant factor. For the coefficient of any P„' in the expression for fp is
equal to fPpP„'dr, which is also equal to the coefficient Sp„of fp when f„' is
expanded in terms of the unperturbed eigenfunctions.

Thus the initial condition for the decomposition is just that used by
Wentzel, and hence his calculation is justified in the special case considered,

"Dirac, Proc. Roy. Soc. 112A, 673—5 (1926)," If, however, the time of illumination is so short that other discrete states are excited the
resulting situation may be reduced to the foregoing one by treating each discrete state sepa-
rately. In the subsequent working out of the problem, however, one difference will result, as
the coef6cient a, of a given continuous eigenfunction p, will contain contributions from more
than one discrete state. This will affect Eq. (12) below, as the square of a, is not equal to the
sum of the squares of the parts of which it is composed. However, for times t which are large
enough so that the sum -in Eq. (12) converges rapidly we may neglect the contribution to any
given a, from all the discrete states except one. Under these conditions, which are practically
the conditions under which (12) is valid anyhow, we may treat each discrete state as if the
decomposition from it were independent of all the others.



though with some further restrictions which we now discuss. We also justify
certain assumptions not considered in detail by Wentzel.

Wentzel uses the method of Dirac." We set

lj/ zzstis exp ( —2zriEizt/h)+ ga, iiz, exp (—2zriE, t/h)

where the a's are functions of t. As we have just seen, at t= 0 (beginning
of the decomposition from the predissociated state) we may put try=1
and all u, =0, which furnishes the initial condition. Then

—(h/2zri) da, /dt = zzs V,s+ Q a;V„
i=all cont.

ttnper. states

where the matrix component

where
V„„=s„„exp [{2zri(E„E„)t/h]—

V p= P t/"Ppdv.

If m and p represent two continuous states this may be considered negligible, "
and consequently we write

—(h/2zri) da, /dt = ad V, s

To find the number of molecules in the state s at time t we integrate and eval-
uate ~ix, ~.

' The total number of molecules in continuous states at time t

" In my previous article (Ref. 7, Appendix I) I have shown that v„,„(where m and P repre-
sent two different continuous states) will, at least under certain not unusual conditions, be
very small compared to e, the energy between two adjacent continuous states, provided the
width of the line is small enough (see correction, end of this paper). If this is so the sum on the
right (9) is negligible. For the value of a; as found by "A entzel and used in obtaining (12) is

O:i =&Aid
exp [2zri(E; E,z)t/lz] —t—

Ed —8;

and we can use this as a first approximation in the sum, getting

exp [2zrz(E, — E)td/] t—zexp [2zrz(E, L;)t/iz]—
&i&i t/, i = +d&sd&st &'

Ed E

We have taken v;d outside as v,d (see below and Ref. 13). The quantity under the summation
sign has a maximum in absolute value when Zd —E; is equal to zero; it is then equal to 2~it/k.
The quantity in the numerator is a periodic function; it has gone through a period when the
energy 2; has passed through a range equal to k/t. The number of terms in this range is h/et.
Consequently the sum will be of the order of magnitude of (222-it/h) &&(It/et) =22i.i/~ and
2;a; V„22f iud, d(v, %) and is consequently negligible.

If v „ is not zero when m=p Eq. (9) becomes —(h/22ti)da, /dt=a&V, &+a,v„. This is a
case which very likely occurs, but it will be readily seen that d~ a, ] /dt is not altered at all, so
that our subsequent calculations are unchanged.
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is approximately (the approximation consisting in setting ad constant in
the integration)

exp [2iri(E, —Ed)t/h] —1

Ed —E
(12)

If a change of phase of a„occurs during I Eq. (12) is changed only by having
Ed, —E. everywhere replaced by B~—E,+const. , which does not change the
value of the sum if it can be replaced by an integral, as it usually can (see
below): hence (12) is valid if ~a~ ~' does not change appreciably in time i.
On account of the smallness of the matrix components of the perturbation
for two continuous states, this will continue to give the increase in Z, ~a,

~

for any small interval of time, provided the new value of ~aq ~' is inserted,
until ~aq ~' becomes so small that the last term in (9) is no longer negligible.
The increase in Z, ~a, ~' is equal to the decrease in ~ad ~', and this may be
demonstrated directly by putting the expression for a, found from integrating
(11) into the proper expression for da~/dt, integrating, and making the nec-
essary calculation (using footnote 19, below).

The quantity under the summation sign in (12) has a maximum when

Z, —Zd 0. This maximum is sharp if 5 is not too small, and since the quantity
v, & is a slowly varying function" of B, we may under these conditions take
it outside the summation sign. If t is sufficiently small or the box in which
the system is enclosed is su%.ciently large so that the quantity under the
summation sign varies in an approximately continuous manner, we may
replace this sum by an integral, finding for the fractional decrease per unit
time, or the specific rate of dissociation, the expression (which it is to be
noted does not involve the time, and hence gives rise to an exponential dec-
rement)

y =4ir's, g'/he

e being the energy difference between two adjacent continuous states. '
By a different normalization of the continuous states we can get rid of the
e, making the expression coincide with Wentzel's. From the expression
previously derived for the width of the line, '4 m, we see that

uiT = h/2x (14)

where T = I/y is the average life of a molecule in a discrete state.
The assumptions which we have made are not entirely independent of

each other, and it will be well to find the minimum conditions under. which

(13) can be taken as giving the proper value of the rate of dissociation.
We note that the condition that (12) converges rapidly means that the func-
tion exp[27'(E, Eq)t/k] should g—o through many periods as E, Eq varies—
from zero to a value equal to the energy difference between the state d
and the next discrete state. But this is just the length of time that light must

"Ref. 7, p. 753.
'4 Ref. 7, Eq. (34).
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be shone in in order that only one discrete state should be excited. But the
light must be shone in for such a short time that exp[2m(E„' Eq)—t/fl] will

go through only a small fraction of a period, provided the state of energy
E„ is appreciably excited. This means that, if Dt is this time,

Hence

why «h/2s.

~t&&T.

(15)

(16)

It seems that it should be safe to use (13) as an approximation, unless some-
thing very unusual occurs, even for t (At. So we see that very little decom-
position will take place in the time of illumination, and also, therefore, in
the time before the sum in (12) converges rapidly. We can formulate the
important independent conditions necessary to make (13) valid (for practi-
cally the whole of the decomposition) as follows:

I. The time of illumination must be short compared to the life period
of the molecule in its discrete state, and long enough so that only one dis-
crete state is excited (though in view of reference 11 the latter is not so import-
ant).

II. The absorption must be small enough so that (5) holds.
III. The perturbation function v, ~ must be so small that the broadened

discrete states are still very narrow compared to the distance between
the discrete states, and it may be readily verified that this is roughly equiv-
alent to saying that the time of dissociation is large compared to the time
of vibration of the atoms in the discrete states; also it is tacitly assumed that
there is no interaction with other electronic states (and this is in general
possible because of the wide spacing of electronic states, which is in turn
connected with the extremely rapid motion of the electrons about the nuclei);"
in fact, there should be no other discrete state near. '

IV. The summation on the right hand side of Eq. (9) is negligible.
V. Absorption of light does not take place directly to the continuum.
VI. v, d is a slowly varying function of B,.

COMPARISON OF PREDISSOCIATION AND UNIMOLECULAR DECOMPOSITIONS

First, let us compare the perturbations responsible for predissociation and
unimolecular decompositions. Formally they can both be treated in the same
manner. The method is the one usually used in the treatment of molecules, "
and the perturbations which arise have been discussed by Slater. " Take
first the case of predissociation of a diatomic molecule. " We consider first
the distance r between the nuclei as fixed, and work out the wave equation

'5 Born, "Vorlesungen uber Atommechanik" (Springer, 1925), p. 114.
"See, e.g. , Condon, Proc. Nat. Acad. Sci. 13, 462 (1927).
"Slater, Proc. Nat. Acad. Sci. 13, 423 (1927)."This has been discussed by Kronig, Ref. 6. Our formulation differs only slightly from

his, but ours enables us to include all perturbations which may arise as examples of one general
type.
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for the rotation of the molecule and the motions of the electrons. This
wave equation has certain eigenfunctions and eigenvalues, O~ and E say,
which depend on r as a parameter. We now set up the wave equation in
r (i.e. , in which r is the independent variable) inserting for the potential
energy one of the eigenvalues B, which as previously noted are functions
of r. We thus get an equation in r for every quantum state found with r fixed.
Each of these equations has a set of eigenfunctions R & which depend on
the electronic and rotational quantum numbers denoted by m as well as
on the vibrational quantum number k. We now try the productO„R & in the
compLete wave equation. We will in general find that this is not a solution of
the complete wave equation but satisfies some other equation, and the differ-
ence between them may be used as a perturbation to get the solutions for
the former from those of the latter, as the 0 R„A, form a complete orthogonal
set." Now we assume that the eigenvalues E which we get by holding r
fixed form a discrete set, or, rather, we assume any continuum is so far
out of the energy range we are interested in that we may neglect it. Then
R ~ will correspond to either a discrete state or a continuum according to
the relation of the total energy of the system to the curve Z (r). It will be
generally conceded that the above unperturbed eigenvalues and eigenfunc-
tions will give in a fairly correct manner the energy levels and dissociation
limits of a diatomic molecule, and hence the corresponding perturbations
will give correctly such things as the rate at which a molecule goes from a
discrete state to a continuum. "

In like manner, in the case of a complicated molecule, if we know the pro-
ducts immediately after decomposition, we may take as one coordinate the
distance, r, between the two groups which separate. Holding this r first
as a fixed parameter we calculate all electronic, rotational, and vibrational
states, and if there is only one way in which the molecule can dissociate this
will give discrete sets of eigenvalues. We can proceed in the same manner
as before, finally getting perturbations of the type found by Slater. If,
however, the eigenvalues which we use in the second step of the above proc-
ess are a complicated function of r which has a maximum, as in the curves
considered in the theory of radioactivity, "a special complication arises, as
the matrix components may change very rapidly with the energy. If this
happened in the case of predissociation n, & would not be a slowly changing
function of E, and we could not take it outside of the summation sign in
evaiuating (12).

This property is of course assumed throughout our development' The perturbed eigen-
functions must also form a complete orthogonal set. From these two facts we can conclude
quite generally that the perturbation matrix is Hermitian (or, if we leave out the complex
factor, as in the second part of (10), symmetrical). I am indebted to Dr. Morris Muskat for a
proof of this fact. It renders certain details of my former paper unnecessary."Dr. Langer, in discussing this matter with me, has pointed out that such a conclusion
always involves the assumption that convergence difficulties will not arise in calculating the
perturbed eigenfunction. In this connection see foot note 16 of Ref. 7.

2' Gamow, Zeits. f. Physik 51, 204 (1928); Gurney and Condon, Phys. Rev. 33, 127 (1929).
See also Langer, Ref. 3.



Let us consider the case of azomethane, where the first step in the de-
composition is likely CH3NNCH3 —&CH3NN+CH3. Then we take for r
the distance between the centers of gravity of the two groups on the right
hand side of the equation. In so doing we neglect the resonance or inter-
change phenomenon as far as it concerns the nuclei in the two groups, which
is probably justified. There s another difficulty. It is seen that it makes no
difference which CH3 group breaks off. There are thus effectively two ways
in which the molecule can break up, and hence we may expect the appearance
of a continuum even when r is held fixed, contrary to our assumptions. But
a continuum occurs only when there is a rather large energy in the bond
which breaks. Thus it is not often that we have to consider two continua
at the same time, so it seems probable that toa first approximation our method
is correct. Or, if we perferred, we could consider the tao distances fixed at
first, and our calculations would not be greatly altered. " It thus seems that
we have a fairly clear schematic picture of how the perturbations could be
calculated theoretically; but it must not be supposed that even if these
perturbations could actually be found that we could blindly put them into
Eq. (13) aud proceed to use it without further thought.

The difficulty lies chiefly in the failure of assumption III on p. 1458.
In the case of a large molecule there is a complex series of changes in which

energy passes from one place in the molecule to another. There is no reason
to believe that there is not a large chance for decomposition to take place
before such a cycle of changes is completed, or before the molecule comes back
even approximately to its initial state. Although this interchange of energy
involves vibrational motions probably entirely, the situation is somewhat
similar to that which would occur in the case of predissociation if the elect-
tronic motions were slow. In that case assumption III would not be expected
to hold, and we could not use deductions based on it.

It is of interest to note that assumption I is fulfilled, inasmuch as the time
of activation, which extends through the duration of a collision, is in general
short compared to the time for reaction to occur after a collision. It seems
safe, therefore, at least in may cases" to conclude that at the collision the
broadened discrete state is excited as a whole as if it were not broadened,
just as in the case of predissociation the total absorption over the width of
the line is equal to the total absorption which would occur if there were no
interaction with a continuum. We can therefore caclulate the rate of activa-
tion just as if no subsequent decomposition were going to take place. Gen-

'~ This would be safe to do in case two CH3 broke off simultaneously. See Ramsperger,
J. Am. Chem. Soc. 51, 2141 (1929).

"In the case of the decomposition of azomethane, which has been extensively studied
(see, e,g. , Rice and Ramsperger, J. Am. Chem. Soc. 50, 617 (1928)) the conclusion seems quite
safe, as the rate of reaction has only decreased by about 20% at a pressure of 1/10 atmosphere
where the mean free path will be of the order of 10 5 cm. If a collision takes place in a distance
of less than 10 ' cm, as we suppose to be the case, the time between collisions should be over
100 times the time of a collision, and since most of the molecules have not reacted in the time
between collisions, it seems very probable that our conclusion will be valid.
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erally this calculation is made by means of the principle of entire equilibrium
or microscopic reversibility, in that we take the rate of activation to to be
equal to what the deactivation would be if the reaction did not occur. '4

This requires the calculation of the equilibrium number of activated mole-
cules, which it is now seen must be made as though the discrete states were
not broadened. It must be noted, however, that the conclusion that the broad-
ened discrete state is excited as a whole is only certainly true if all the other
assumptions are fulfilled as well as assumption I, for it depends upon the
truth of (14). It also depends on a relation connecting the range of internal
energies, hE, excited in a collision (which corresponds to the range of energies
excited by light in the case of predissociation) and the time At of a collision:

AEdd& h/2x.

If both (14) and (17) hold then Dt((T requires AZ'))w. A consideration of
the collision problem for two complex molecules, taking into account both the
translational and internal energies, indicates that (17) holds. But (14) does
not hold in the present case as assumption II Idoes not hold. So our conclusion
that AE»w, is not certainly true, but it is probably true. Now to further
draw the conclusion that the broadened discrete state is excited as a whole
we need to prove a formula equivalent to Eq. (7). This rests on Eq. (5) or
assumption II. This assumption, which amounts to saying that the activating
perturbation is small, does not hold in the collision case. Indeed, a collision
is an exceedingly violent affair, and two molecules can interchange energy in
various ways. The problem is thus complicated, and we have the difhculty
that there will be many intermediate states before the final state of the rnol-
ecule is reached after the collision. But we make the assumption that a
continuous state in the molecule can never be excited directly from any dis-
crete state by collision with another molecule, i.e., decomposition occurs
after the collision. Then the chance that a molecule will at any time get
into a certain excited perturbed state lt„whose energy lies in the range AIR

will depend upon the coefficient Sd„ in the same way as in the case of pre-
dissociation. " The phase considerations become more complicated, but not
very different in character from those we considered in the case of predis-
sociation, and so no phase differences are to be expected. Thus, without
laying claim to any great rigor, we may state that it seems very probable
that the discrete state will be excited as a whole.

The equivalent of assumption V probably holds in the case of molecular
decompositions, but, as mentioned above, the equivalent of assumption VI
may not. It is hard to be sure about IV.

The above considerations make it appear unlikely that it will soon be
possible to replace the statistical treatment' of the problem previously given
by a strict theoretical treatment.

"Rice and Ramsperger, J. Am. Chem. Soc. 49, 1619 (1927)."Note that a relation similar to that described by Eq. (7) will still hold even if more than
one discrete state is involved due to the failure of assumption III.
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Correction to my paper: Perturbations in Molecules and the Theory of Pre
dissociation and Disuse SPectra, Phys. Rev 33,. 748 (19Z9).
There is an error in Appendix I, which invalidates the proof that

v„„/» 10 '. The distance of separation of two rotation states was written
ttP/4sr'Mro instead of h,'/47r'Mro2 and this was carried through. When the
correction is made v„„/» turns out to be of the order of 1, and hence would
appear not to be negligible. The Appendix still shows, however, that if
the line is narrow enough v„.,„,/» will be small, so our deductions hold for
this case. The width of the line considered in Appendix I was actually
rather large, and in many cases, at any rate, v„„/» may still be expected
to be small. This is seen as follows. From Eq. (34) and the relations de-
duced in Appendix I between v„d, and v„„we And v„„/»= (roW/27rr, »)U'

Now if we change rl we do not change the value of this expression. If rj
becomes of the order of ro then e will be of the order of the distance between
two vibration levels. Hence if Wis small compared to this distance v„„/»
may be expected to be small. (When we allow r, to become small, we must
do it in an idealize&d way, neglecting the effect of the actual potential energy
curve at small r, as only thus will the expression under the radical remain
unchanged. )


