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ABSTRACT

Gerlach investigated the rotatorial Brownian motion of a small mirror sus-
pended on a fine wire. It follows from the theorem of equipartition that the average
square deviation of the mirror will depend on the temperature alone of the surrounding
gas. Gerlach verified this for a large range of pressures (1 to 10 ' atm). The analogy
which we found that exists between this problem and the well-known treatment of the
shot effect by Schottky enables us to give a more detailed theory of this phenomenon.
If the displacement, registered during a time, long compared with the characteristic
period of the mirror, is developed into a Fourier series, we find the square of the ampli-
tude of each Fourier component to be a function of the pressure and molecular weight
of the surrounding gas as well as of its temperature, (formula 18). The sum of the
squares, however, is a function of the temperature alone (proved in section 4), This
explains why the curves registered by Gerlach at different pressures, though all
giving the same mean square deviation, are quite different in appearance. To get
the fluctuating torque on the mirror, the expression:
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2
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is obtained for the fluctuation in time of the pressure of a gas on the wall (section 5).
In this e represents the number of molecules per cc, c is the mean velocity and Ao is
the surface of the wall.

I .. INTRQDUcTIoN

""NTERESTING experiments on Brownian motion around a position of.. equilibrium have been performed by Zeeman and Houdyk' in Amsterdam
and by Gerlach' in Tiibingen. The former registered the motion of the loose
end of a suspended wire, the latter photographed by means of reHected light
the rotational Brownian movement of a little mirror Fixed on a very Fine

wire. The First experiment is theoretically more complicated, because one
has to consider the many natural frequencies of the observed body. In the
experiment of Gerlach on the other hand the observed system has only one
characteristic frequency. We will restrict ourselves therefore in the following
treatment to the latter case.

In both cases one can immediately predict by means of the equipartition
theorem what the average square of the deHection will be. This will depend
on the properties of the observed system and on the temperature only of the
surrounding gas, not for instance on its pressure or molecular weight. The
experiments however give more than merely the average square deviation;
the registered curves show to some extend at least the time-dependence of

' P. Zeeman and A. Houdyk, Proc. Acad. Amsterdam, 28, 52 (1925).
' W. Gerlach, Naturwiss. 15, 15 (1927),
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the irregular Brownian motion. As Professor Gerlach kindly communicated
to us, the general appearance of these curves is quite different at different
pressures of the surrounding gas, though the average square deviation re-
mains the same for any given temperature. The problem is therefore to
give a more detailed theory of these curves.

It has occurred to us that this problem may be treated in a manner quite
analogous to the method employed by Schottky, ' to describe the well-known
shot-effect. In the experiments of Hull and Williams, ' the fluctuating vol-
tage in the shot-circuit is coupled inductively with the amplification-circuit,
which possesses only one characteristic frequency. In the experiments of
Gerlach the fluctuating moment of momentum around the mirror-axis of
the gas-molecules, is coupled, by means of collisions, with the "amplifying"
mirror, which has also only one characteristic frequency.

The analogy is complete only when the surrounding gas is muck rarefied,
because only then are the moments of momentum given by the gas-mole-
cules to the mirror in successive time-elements independent of each other. '

By applying the method of Schottky, we will show in Sections II and III
that for this case the amplitudes of the Fourier components of the motion de-
pend on the pressure and the molecular weight of the surrounding gas. This
will explain the different forms of the observed curves under various cir-
cumstances.

II. THE FOURIER-ANALYSIS OF THE BROWNIAN MOTION

The equation of motion of the mirror is given by:

IP+fP+DP = Irf (t),
where: I is the moment of inertia around the mirror-axis; p is the angle
of detlection; f the friction-coefficient; D the directional force; and 3I(t) the
fluctuating torque, caused by the collisions of the gas molecules. When we
introduce the frequency in 2z sec:

cu = (D/I) '~'
and the angular acceleration:

and put:

Eq. (1) becomes:

T(t) = Id (t)/I

Q+rQ+&o P = T(t) .
For our further purposes it is essential to give now a more detailed discussion
of the meaning of IrI(t) or T(t).

W. Schottky, Ann. der Phys. 57, 541 (1918);68, 157 (1922). Comp. also: J. Tinbergen,
Physica, 5, 361 (1925).

A. W. Hull and N. H. Williams, Phys. Rev. 25, 147 (1925). Comp. also N. H. Williams
and H. B.Vincent, Phys. Rev. 28, 1250 (1926).

' For higher pressures, the problem becomes analogous to the problem of the shot ef'feet
for high current densities. Because of the space charge the numbers of electrons hitting the
anode in successive time elements are then not more independent of each other, and the
fluctuations decrease. Comp. N. H. Williams and H. B. Vincent, ref.' p. 1262 and N. H.
Williams and W. S. Huxford, Phys. Rev. 33, 773 (1929).
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The actual microscopic M*(t) consists of a large number of sharp peaks,
each corresponding to the impulse moment transferred to the mirror by
the collision of one (or a few) molecules. We introduce now a "physically
infinitely small" time-element At, ' very small compared with the character-
istic period 2Ir/c0 of the mirror but within which many collisions occur. "
Our function M(t) consists of the averages of all M'*(t) values included in
each time-element At. The actual value of M(t;) for the time-element ht; is
of course unknown a priori, but we can tell some of its properties:

(n) M(t;) will have equal chance of being positive or negative, so that
the average over all the time-elements is zero.

(fI) In our case, when the surrounding gas is rarefied, the M(t;) in the
time-element At; will be independent of the value M(t;) in the time-element
Dt;.

(c) In Section V we will show that the mean of M'(t;) over all the time-
elements is given by:

M'(t, ) = 4mcpI/ptyt (6)

where: m is the mass of the gas molecules; c their mean velocity; p the
pressure of the surrounding gas, and p the mass of the mirror per square cm.

Let v be the time of observation, which must be long compared with the
period of the mirror, so that:

At«2Ir/(o«r.

Develop T(t) within the interval (O,r) in a Fourier series:

where:

T(t) = p(Ay cos yIyt+By sin yIyt)
k=0

yIy = 21I'k/T

2
A y =— T(t) cos yIyt ' dt

0

2
By =— T(t) sin (Oyt dt

1 0

We can now replace these integrals by the following sums:

2
Ay= —QT(t;) cos»t; Wt;

2
By=—QT(t;) sin yIyt; tytf;

'T 1

where Dt; are the successive, equal time-elements, and T(t;), cos Idyt;,

sin co~t; are evaluated at a time t; included within the i'" element At;. Z

' Ke suppose them all equal.
7 The introduction of such an "physically infinitely small" time element is characteristic

in the kinetic theory of gases. Comp. e.g. , P. and T. Ehrenfest, Enc. der Math. Wiss. Vol. IV,
Art. 32, p. 39.
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is the total number of time-elements. The motion of the mirror is then ex-
pressed by:

1
y(t) = Qyj, (t) = Q — —— [IAp((us (vg'—) Bgr—cog} cos(ul, t

r a (~ &i)+r~a
(11)

+ IA&r~&+2I&(+ +& ) } sin +a&1

which is the solution of (5) under the conditions P=p=0 for (=0. These
conditions mean that we start our observations only when all external dis-
turbances have been damped out, and the remaining motion is due only to
collisions with the gas molecules, or in other words, we observe the Brownian
motion around the position of equilibrium and not around an already ex-
isting vibration.

From this, we And for the time-average of PA,".
~ ~'+&A."

2 2 2 2 22 (cu' (up') '+ r—'(og'
(12)

Iu tJze case of very /otv pressure it is now possible to predict from the three
properties (a), (b) and (c) of M(t) (or T(t)) the value of Aq' and Bq'. From
(10) we have

2 Z
Aq'= —g QT(t;) T(t;) cos coqt; cos caj,t; Dt,At;.

i= I 2'=1

h

(13)

Consider erst in this double sum the terms with i'. As a consequence of
property (b), in the case of low pressure T(t;) and T(t;) are completely in-

dependent; hence these terms will have equal chances of being .positive or
negative and for large Z their sum will vanish. Consider next the terms with
i=j, which are all positive. Due to our choice of At;, for all frequencies ~&

of the order of magnitude of co (and only those give according to (12) an ap-
preciable p~', ) 2s./a&z will be very large with respect to At, , so that cos 'cozen

changes very little over many time-elements ~t;. Ke may therefore replace
T'(t;i) by its average value and obtain:

4 z
A q' ———T'(/) g cos' ce qt, i(b t;i)'

27' i=1

Finally, replacing the sum once more by an integral, we have:

Ap'=2/r T'(t) Dt

(14)

(15)

Obviously the value of BI,' is the same.

III. DEscUssEoN oF TETE» FINAL FQRMULA

Formula (6), which will be developed in el5, together with equation (3) gives:

T'(t) = 4rvcp/I pat. (16)

In (6 we will prove, that for the case of low pressure, the friction-coefficient
is given by:

f= 2mcppI/OT. (17)
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Substituting (15), (16), (17) in (12), we get the final fornzida:

~"'iii'"(8&T)"'p
QA:

2=
pI r irkT(&o' ioi,—')'+32p'p'cu '

in which the well-known relation is used that:
c= (8kT/Trrn)'i'.

(18)

From the analysis in Section II it is clear that this formula may be interpreted
in the tao following ways:

1. If we resolve into Fourier series a great number of curves, each observed
over a relatively short time r (which however must still fulfill the fundamental
inequality (7)), the mean square of the amplitudes of the b'" components
will be given by (18).

2. If we analyse one curve, observed over a very long time ~, then the square
of the amplitudes of the k'" component will also be given by (18).

The formula (18) shows the noteworthy result, that p, ' depends not only
on the temperature, but also explicitly on the pressure and the molecuLar

zveight of the surrounding gas. As a test we must of course show, as we will
do in f4, that by summing over all values of b, we obtain for the mean potential
energy —,'D@' the equipartition value —,'kT which is independent of the pressure
and the molecular weight of the surrounding gas.

The dependence on the pressure is rather complicated. For frequencies
coI, very near to co, the @I,

' becomes inversely proportional to p, and for col,

very large compared with u, the pIP becomes almost directly proportional
to p. These latter terms of course contribute very little to the total motion,
the denominator being so large. When we plot therefore @&2 against k, the
resulting curve has a maximum in the neighborhood of co, which rapidly
becomes very sharp as the pressure decreases. The motion of the mirror than
becomes more and more "monochromatic. "

APPENDIX

IV. PRooF oF THE EQUIPARTITIQN THHoHEM.

The average potential energy of the vibrating mirror is equal to:

ID4 '= I& E4 i'

because the different Fourier components are independent of each other. Though we re-

stricted ourselves to values of ~7, small with respect to 27f/dt, it is permissible to extend the
summation to infinity, because the components with ~1, large compared to ~ contribute very
little to the sum.

Equation (15) shows, that AI,' and Bz' are independent of k; hence from (12) and (15):
2 —— 1e'= E~"=—T'(i) &i 2 (2O)

1=0 (~' —k') '+&'~a'

The last sum we now replace by an integral, substituting:

Xg,
= (Og/6i) = 27rk/7m

which gives:
1 7 ~ dx

(u —ceja )r + coy 27fco 0 (1—X ) +(r /cO )S
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with very good approximation. The value of the integral is m-co/2r, so that we obtain:

y&= T&(&) Zt/2~~r. (21)

Introducing the relations (16) and (17), and substituting from (2) and (4) the values of co2

and r, we obtain immediately:

-', Dy&=-', kT. (22)

V. PRooF oF THE FLUGTUATIQN FQRMULA (6) oR (16).
This relation follows from a consideration of tkeguctuutions in time of the pressure exerted

upon a wall by a rarefied gas, Using Maxwell's distribution law one easily derives an expression
for the probability that a molecule of a gas within a volume V at the temperature T gives to
a portion Ao of the wall a momentum normal to the wall lying between G and G+AG during the
time At. It is:9

1 kT
WhtdohG= — — —.Ge G'/'m" dthohG.

2 (2~mk T) '~' V
(23)

Let n;; be the number of molecules, which in the time-element At; give a momentum lying
between G; and G;+dG; to the portion Ao of the wall. Then the total momentum given to
b,o during b,t; becomes:

G(t,) = QG;ng;
j=o

Using the bar to denote the average over all time-elements, we find easily:

G'(t;) —G(t;) =(z,G;n;,)'—(Z;G;n;;)'=&7Gg (n j (n 7) ) (24)

because the cross-terms cancel, and the average over the time-elements b, t; extends only ove the
n;;. In general the fluctuation formula holds:

n;P —(n;;)'= n;;

and ng follows immediately from (23), after multiplying by the total number of molecules
N. Substituting then (25) in (24), and replacing the sum by an integral, we obtain:

for:

G'(t;) —G(t.) ' =—' ——Zoot G' exp [ G2/8mk&]dG = 2mcpgogt
2 (2m-mkT)'~~ 0

p =SAT/V.

(26)

' See W. Schottky, Ann. der Phys. 68, 157 (1922).
Integrating over G from 0 to ~, we get for the probability that a molecule hits in the

time ht the surface element Ao:

z AtAo =cAtb, o/4V

corresponding to the well-known result for the mean number n striking 1 cm' of the wall per
second:

n= gc/4V.

In the same way we find for the mean momentum given to the wall taken over all the mole-
cules striking it:

G=(2~mkT) &~2

and for the mean square:

G2=8mkT
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This, divided by At, expresses the fluctuation in time of the pressure on the portion Ao of the
wall." From this it follows obviously that for a disc of surface o inside the gas, the mean of
the square of the force X(t;) taken over all the time-elements At; is given by:

g~(t;) =4mcPo/At (27)

as for such a disc &(t;) =0, and the fluctuations on the right and left side are independent of
each other,

For a case like the experiment of Gerlach we must consider the moment of momentum
around the mirror axis instead of the momentum. The analogous formula for the torque is then:

4mcP 4mcpI
ss'(t ) = x do=

At pAt

where x denotes the distance from the axis. This is equation (6).

VI. PROOF OF FORMULA (17) FOR THE FRICTION COEFFiCIENT. u

Consider a portion Ao of the mirror, which moves, say to the right in the direction of the
x-axis with the velocity u. The number of molecules per second, which strike this from the
left, and which lie within a certain velocity-range dgdqdt is:

dS~= — —($—u)e ' ~~" Aod jdq@'
2xkT V

(28)

where we have used Maxwell's distribution law, because in our case of eery tow pressure, the
mean free path is large with respect to the dimensions of the mirror, so that the motion of the
mirror does not disturb tke velocity distribution of the molecules. If x is the distance from Ao

to the axis of the mirror, then the moment of momentum imparted per second by these mole-
cules is:

m»2 ZVm . (& u)2. x. e
—mc /RkTAod&dqd

27t-k T V
(29)

Neglecting the term with u' and integrating over g and |from —~ to + ~, and over $ from 0
to+ ~, we get:

Mg =PxAo —mc Aux Ao V '. (30)

In the same way, we find for the moment of momentum given to Ao per second by mole-
cules striking from the right:

M2 ———PxAo —mcNuxAoV '

so that the total moment of momentum given to Ao per second is:

M~+M2 = —2mcPuxAo/k T.
Now u=xp, so that we find for the friction coefficient:

(31)

(32)

which is formula (17).

2mcp 2mcpIf= x'do =—
kT pkT

~' This can be written in the form:

p' —(p)'
(P)' " ~ n cAtAo

when n is the number of molecules per cc. It has then the same form as the expression for the
fluctuation in pressure of a gas inside a volume element Av (see R. Furth, Die Schwankungser-
scheinungen in der Physik, Vieweg, Braunschweig, 1920, p. 58):

C&1 1

C„n
but it cannot be derived from it.

"Comp. H. A. Lorentz, Les theories statistiques en thermodynamique, Leipzig, 1916,
p. 53.


