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ABsTRAcT

Atomic multiplets are treated by wave mechanics, without using group theory.
In part 1 Hund's scheme for multiplet classification is derived directly from theory.
Part 2 is devoted to the computation of the energy distances between multiplets, and
comparison of these distances with experiment in some typical examples. There is no
treatment of the separations between the various terms of a multiplet, since that has
been done elsewhere, but only between one multiplet and another. It is found that
Hund's rule, that terms of large L and 8 values lie lowest, has no general significance;
the present theory leads to the same results as the rule when it is obeyed experi-
mentally, but many cases which were exceptions to that rule are in agreement with
the theory. The method of calculation of multiplet distances is described in sufficient
detail, with the necessary tables of coefficients, etc. , so that further checks with experi-
ment could easily be made.

'HE theory of complex spectra is treated in this paper by the method
of wave mechanics. The results of the calculation may be divided into

two parts: first, the classification of the terms into multiplets; second, the
energy values of these multiplets. - The first part contains no new results of
physical interest, for it leads precisely to Hund's scheme of classification,
and uses almost the identical steps that Hund uses. Its value lies in the fact
that this well-known scheme is shown in an elementary way to follow directly
from wave mechanics. The second part, however, is almost entirely new,
and it leads to definite formulas for the intervals between the different mul-
tiplets in spectra, intervals which could previously be considered only
very roughly from an empirical rule of Hund, which proves to have no gen-
eral significance. These calculations, of course, give the intervals in terms
of certain integrals, which we do not calculate, but merely estimate well
enough to permit some comparison with experiment. The agreement is in
general fairly good. A third part wouM be also included, dealing with the
intervals within the multiplets, produced by the magnetic interaction, were

' F. Hund, Linienspektren und periodisches System der Elemente, Sprir "" .
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it not that Goudsmit' has already answered the question by a method closely
analogous to that used here.

It will be noted that the objects of the present paper resemble closely
those aimed at by Heisenberg, Wigner, Hund, Heitler, Weyl, and others, '
who employ the methods of the group theory. That method is not used at
all in the present calculation, and, in contrast, no mathematics but the sim-
plest is required, until one actually comes to the computation of the integrals.
This, it is believed, is in itself sufhcient justification for paralleling to some
extent work already done. The simplification is achieved largely by intro-
ducing the spin at the very beginni'ng of the calculation, rather than later.
Thus we need only consider antisymmetric wave functions, which can be
treated very simply as determinants, and can avoid the other symmetry
characters, with which the other papers have been mostly concerned. The
process oF building up wave functions of the proper symmetry by using
determinants is not new; it is found in Dirac's earlier papers, and has been
used, for example, by Wailer and Hartree. ' The spin function. , however, is
introduced into the determinant in the present paper in a new and more
satisfactory way. The results which we obtain, concerning the di'agonal
term of the energy with respect to the antisymmetric wave functions, are of
the sort found by the group theory, and also by the recent method of Dirac, '
but it seems worth while to derive them in a simple fashion.

The essentially new results of the present paper, those relating to energy,
in the second part, come from the fact that we consider the whole degeneracy,
that coming from orbital as well as spin angular momentum, which most
of the other papers have failed to do. The present method is essentially
equivalent to the others in that it gives sums of energies, rather than in-
dividual energies. When it is applied to the case in which the degeneracy
with respect to orbital angular momentum is not considered, it leads, as do
the others, merely to the sum of all terms of a given multiplicity; the writer
is indebted to Dr. Bloch for pointing out that in that case all the results of
Heitler can be easily demonstrated by the present method. But we make
the observation that, byconsidering thewhole problemwith all its degeneracy,
the method of energy sums can be used much more effectively, so much so
that in most important cases we can get the actual energies of the individ-
ual terms. In connection with this, it should be noted that in several cases
the actual perturbation problems have been solved directly, rather than by
the method of energy sums, obtaining results' that hold even when the mag-
netic energy is appreciable.

' S. Goudsmit, Phys. Rev. 31, 946 (1928).
W. Heisenberg, Zeits. f. Physik 41, 239 (1927). E. Wigner, Zeits. f. Physik 40, 492, 883,

etc. (1927). F.Hund, Zeits. f. Physik 43, 788 (1927). W. Heitler, Zeits. f. Physik 46, 47 (1.928).
H. Weyl, Gruppentheorie und Qu@ntenmechanik, Hirzel, 1928.

' I. Wailer and D. R. Hartree, Proc. Roy. Soc. A124, 119 (1929). The writer is indebted
to Dr. Hartree for calling his attention to this paper.

5 P. A. M. Dirac, Proc. Roy, Soc. A123, 714 (1929).
' W. V. Houston, Phys. Rev. 33, 297 (1929). J. A. Gaunt, Trans. Camb. Phil. Soc. (1929).
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PART 1. THE CLASSIFICATION OF MULTIPLETS
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1. As a preface, we remind the reader of the theory of multiplets, as
developed before wave mechanics. This theory considered the interactions
of the various angular momenta of the parts of an atom, and treated the
various energy levels resulting from different relative orientations of these
parts. In a logical development of atomic structure it would follow directly
after Bohr's theory of electron orbits; for Bohr went as far as was possible
on the assumption that each electron moved in a field with spherical sym-
metry, so that its orientation with respect to the rest of the atom was a
matter of no concern. We start then, as Bohr finished, with an atom com-
posed of a number of electrons, each characterised by a total quantum num-
ber n, and an azimuthal quantum number /, the latter determining the angular
momentum, and being often regarded as a vector (normal to the plane of
the orbit, in Bohr's theory, but this is of no importance). The orientation
of this vector in space was arbitrary, on account of the spherical symmetry.
As an additional part of the formulation, we need to consider the electronic
spin of Goudsmit and Uhlenbeck:eachelectron has an angular momentum
(with consequent magnetic moment) entirely apart from the momentum /

which it acquires by its motion. This additional angular momentum, de-
noted by s, (which like /, is often regarded as a vector), can likewise be
oriented arbitrarily in space, without reference to the direction of l. Since
the values which n, l, and s can take on, and the notation, are rather signifi-
cant, we observe that l can equal 0, 1, 2, ; n can be any integer greater
than or equal to (l+1); and s is always equal to 1/2. - The values of rl, and f

are denoted by symbols, as 1s, 2s, ; 2p, 3p; 3d, 4d, ; 4f, Sf
referring respectively to the cases where n and l are 10, 20, .

; 21, 31,
32, 42, ; etc. Then the structure of an entire atom in a given state can
be given, as far as Bohr's theory is concerned, by giving the n and l of each
electron, denoted as in the example: (1s)' (2s)' (2p)' (3s)', meaning that
there are two (is) electrons, two (2s), six (2p), two (3s). Another state of
the same atom (in this case magnesium) would be (is)' (2s)' (2p)' (3s) (3p);
and so on. These two states would be often abbreviated 3s and 3p respec-
tively. The spin, having always the same value, need not be mentioned at
this stage.

Having described the atom to the degree of accuracy considered by Bohr,
we next must consider that the angular momentum vectors really are coupled
together; there are differences of energy depending on orientation, and a
consequent splitting up of each energy level into a number of different ones.
In the commonest case, which alone we shall consider, the coupling can be
considered in several stages. First, the l's of the various electrons group
themselves into a vector sum I., which takes on only integral values, 0,
1, 2, , as the separate l's do. Each such arrangement gives a different
energy, and a different term in the spectrum. The terms with I. equal
respectively to 0, 1, 2, 3, , are called S, P, D, I", terms. Second, the
spins of the electrons group themselves into a vector sum S, taking on the
integral or half integral values (for any case, the orientation where all s's are
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parallel is allowed; if it is integral, only integral S's are allowed, and if it
is half integral, only half integers are allowed for S). The different values of
5 lead to terms of different multiplicities, as we shall see in a moment, and
different energies; thus S=O gives singlets, S=1/2 doublets, S=2 triplets,
etc, Finally L and Sare coupled together, their sum being called J, and being
integral or half integral to correspond with S. Since I can vary from ~L+S j

to ~I.—S~, there are (if I-)S) 2S+1 different terms so obtained. These
terms are the various terms of a single multiplet, which is named singlet
(2S+1=1), doublet (2S+1=2), etc. , to agree with the number of terms.
The energies involved in going from one value of L to another, or of S to
another, are generally large; they are (as one sees from wave mechanics)
electrostatic energies. On the other hand, the energy of orientation of L
with respect to S is small, coming from magnetic interaction of the parts of
the atom, so that the different levels of a multiplet (same I and S, different I)
lie near enough together to be grouped together. If one neglects the magnetic
interaction as a erst approximation, the levels of a mu1tiplet all have just
the same energy. As to notation, we speak, for example, of 'P2, meaning a
triplet P term with J= 2. And if we wish to indicate the state of the electrons
which produce the multiplet terms, we write it as (1s)' (2s)' (2p)' (3s) (3p) 'P2,
which would often be abbreviated (3p) 'P, .

The process of coupling can also be described in the language of space
quantization. If one has an angular momentum vector, as I, acted on by no
torques, so that its direction is arbitrary, it is legitimate to choose any axis
in space, and consider hat the component of the vector along this direction
can take up any one of a set of values, integrally spaced between the parallel
and antiparallel orientations. Thus, if m~ is the component of I along this
axis, m~ can equal 1, / —1, 1—2, . —/. These (2l+1) values are considered
to denote (21+1) separate stationary states, all with the same energy. Now
we follow by this method the process of coupling, beginning with the un-
coupled vectors, and carrying it through to the case where the I's are coupled
to give L, and the s's to give S, but the magnetic interactions are not con-
sidered. In the uncoupled case, each electron has its own m~ and m, . As
the coupling forces are introduced, torques appear which make the com-
ponents of the individual I's and s's vary with time, so that the same space
quantization is no longer possible. But the torques are internal; they cannot
change the total angular momentum. The total sum of all theI's and the sum
of all the s's, and their components along the axes, remain constant, and
hence quantized: gm& and gm, are quantized even when the coupling has
taken its full value. On the other hand, when the electrons are coupled, the
atom consists of vectors L and S, each separately free, so that these can be
space quantized, giving components M~ and MB along the axis. We need
now only identify the 3II& and 3fs for the coupled system with the pm&
and gm, for the uncoupled one, to get the correspondence necessary to
show what multiplets appear from any combination of electrons. The exact
method is easily shown from an example.
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For illustration, we take the coupling of two p electrons. Each has
l= 1; the first has principal quantum number n, the second n'. For each,
we can have m~ ——1, 0, —1; m, = 1/2, —1/2; that is, 2(2l+1) =6 different
sets (rn &, m, ), each representing a stationary state. With the combined atom,
there are 36 combinations of one state of the first electron with one of the
second. These are partly given in Table I. Two different notations are

First notation

TABLE I. Two p electrons.

Second notation Zms Notes

{n 1 1 -;) (n 11 —;)

(n 1 0 —,') (n' 1 1 —',)
(n 1 -1-',) (n'11 -', )
(n 1 1 --;) (n 11 —',-)

(n 1 0 ——,) (n'11-,')
(n 1 -1 --,) (n» —,)
(n» —,') (n' 10-;)
{n10-;) (n 10,-*)

{n 1 —1 —,') (n' 1. 0-,')
etc.

I(n 1 1) (n 1 i)j ( j
I(n 1 0) (n' 1 1)j
I{n 1 —1) (n' 1 1)j
I(n'11)j I(n 1 1)j
I {n' ») j I (n 1 0) j
I{n'11)j I(n 1 -1)j
I(n 1 1) (n 1 0)j
((ni 0) (n'10)j I

I(n 1 —1) (n'10)j I

2

1

0
2

1

0
1

0
—1

Exc
A

A
Exc

used in this table for comparison. First we simply give the four quantum
numbers (n I m~ I,) for each of the electrons. For the other scheme of nota-
tion, which is often convenient in practice, we take advantage of the fact
that each I, is capable of only the two values 1/2, —1/2: we set up two
brackets, one containing the symbols (n I m&) of each electron with rrl,
= 1/2, the second containing the symbols for those with I,= —1/2. Such
a bracket symbol, in which the arrangement of terms within a bracket is
of no significance, is equivalent to a state of the first sort. After each symbol
is given the value of Pm, and of gm, for that state. Finally, after some of
the terms, are notes which will be explained later.

The values of pm& and gm, are conveniently plotted by giving gnz,
as abscissa, Pm~ as ordinate, and putting a dot for each state. Thus in

Fig. 1, a, we give a single p state; and in b, the points for the sum of the two
(the numbers indicate the number of states with the same gm„gm~).
But now in Fig. 1, b, each point should also represent the ML, , M8 of one
of the multiplets existing in the coupled atom. This can be brought about
in but one way: by assuming the multiplets 'S 'P 'D 'S 'P 'D, whose
separate representations are shown below (in Fig. 1, d—i), and whose
patterns, if superposed, would just give Fig. 2b. Thus it must be that two P
electrons produce these multiplets. But that is just what our other method
gives; for two I's, each equal to unity, can add to give L =0, 1, 2, (S, P, D
terms); while two s's, each 1/2, can give S=0, 1 (singlet, triplet). In
every case, the two methods lead to the same result, just as here.

The scheme as described above will result, in an atom with many electrons,
in an enormous variety of terms, comparatively few of which are realized
in actual atoms. The principle limiting the number is the exclusion prin-
ciple of Pauli. It cannot be stated in the language of vectors, but only in
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terms of the space quantization just described. It is: no two electrons can
have identical sets of numbers (n f m~ rn, ); further, two combinations of
electrons which differ only in the interchange of the quantum numbers of
two electrons are to be treated as identical. Stated in terms of the bracket
method of writing the electronic combinations, this means that no two sets
of quantum numbers (n l m~) within a bracket can be identical; and that
the order of arrangement within a bracket is immaterial. By these restric-
tions, the number of terms is often enormously decreased. Many points on
our diagrams are removed, and just the remaining ones must be fitted into
multiplets, resulting in a much smaller number. For example, in our Table
I, the two electrons have the same 1; hence, if they have also the same total
quantum number (that is, if n = n"), they cannot both have the same set
of m& and m, . Thus the two terms marked Zxc (and many other terms not

Fig. 1. (a) Single p electron; (b) Two p electrons; (c) Two equivalent

P electrons; (d) 'S (e) 'P; (f) 'D (g) 'S; (h) 'P; (i) 'D.

included in the table) must be excluded; and the two terms marked A (and
many more pairs) are to be considered identical. When the terms not allowed
are removed, the new pattern in place of Fig. 1b proves to be Fig. 1c; and
this is the superposition of 'P 'S 'D, which then are the multiplets allowed
with two equivalent p electrons (that is, two electrons, each with /=1, and
with the same n). As a general thing, the exclusion principle is active only
when there are equivalent electrons; its many properties, as in limiting the
number of electrons in a closed shell, are well known and need not be elabor-
ated.

' 2. In quantum mechanics, we meet the problem of complex spectra as
one step in the approximate solution of the wave equation for the atom.
There are two fundamental principles which govern the structure of matter:
quantum dynamics, and the principle of antisymmetry which shows itself
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in the exclusion principle and the Fermi-Dirac statistics. The first states
that only those energy levels are possible which are characteristic numbers
of Schrodinger's equation for the system; the second further restricts the
possible energies to those connected with characteristic functions antisymmet-
ric in the electrons. Our whole object is to find such characteristic functions
and numbers. And as before, the first step is to approximate by supposing
that the separate electrons move in fields of force with spherical symmetry,
so that there is no tendency for orientation of the various angular momenta.
There are various ways of doing this; one scheme which gives good results
is that of Hartree. ' For simplicity in description we shall imagine that scheme
rnodified slightly in one detail; according to it, each electron moves in a
field of force slightly different from the others. We shall neglect the differ-
ence, assuming that all the electrons move in precisely the same field. And
this field is to be so chosen as to give the best agreement with the correct
values even without further corrections.

An electron moving ina central

field

o force, according to wave mechanics,
is characterized by the same two quantum numbers n and l that we have
previously described. The arbitrary direction of the angular momentum is,
as before, most conveniently described by quantizing the component m&

in a fixed direction. Similarly the orientation of the spin is most conveniently
given by specifying its component m, in the same fixed direction. Thus
each electron in an atom, in the approximation in which we can neglect the
interactions of their rotations, is specified by the four quantum numbers
n l m~ m, , just as it was before. All relations of these numbers remain
unchanged. But now, each electron has a wave function —a function of
its coordinates (and, as we shall describe presently, of a coordinate representing
its spin) depending on the numbers n f m~ m„which is a solution of Schro-
dinger's equation for a particle in a central field. We can denote the function
for theith electron by u(m;/x;), where n; stands for the four numbers n; f; m&;

m„, and x; symbolizes thefour coordinates (three of position, one of spin) of
theithelectron. Nowitiswell known that the productof these functions, for
all the electrons (1 X) of the atom, gives a function which approximately
satisfies Schrodinger's equation. That is, u(n&/x&)u(n2/x&) u(m~/xz)is
an approximate solution. But it is not antisymmetric in the electrons, so
that it does not satisfy the exclusion principle. To build up an antisymmetric
solution, we first note that we still have an approximate solution, connected
with the same energy value, if we interchange any two x's, obtaining for
example u(n~/x, ) n(n, /x~) u(n~/x~). We still have an approximation
with the same energy if we make a linear combination of any such solutions.
Then we can make the one possible combination which is antisymmetric,
and it will both satisfy the exclusion principle, and will be an approximate
solution of Schrodinger's equation. This combination is conveniently written
as a determinant:

7 D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89 (1928). See also J. C. Slater, Phys. Rev.
32, 339 (1928) for discussion of Hartree's method and application of some of present results
to it.
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u(ng/xg) u(ng/x2) u(ng/xu)

u(nn/xg) u(nu/x, ) u(nu/xu)

It is obviously antisymmetric, for interchanging, say, x& and x2 interchanges
two columns of the determinant, which by a familiar property merely changes
the sign. It can be shown that it is the, only antisymmetric combination of
these functions. And it leads at once to the familiar interpretation of the
exclusion principle. For if two of the functions had the same quantum
numbers (say n& ——n2, symbolizing equality of four quantum numbers), then
the corresponding rows of the determinant would be identical (since they
contain the functions u(n~/x~) = u(n2/x&), u(n~/x, ) = u(n, /x2), etc.) and by
another familiar rule, the determinant will vanish. Thus there is no solution
corresponding to the case where two electrons have the same set of quantum
numbers. Further, the determinant treats all electrons alike; hence we cannot
count as separate two states which differ only by the interchange of the
quantum numbers of two electrons. Our exclusion principle then coincides
with the one previously described.

We now have, corresponding to each set of quantum numbers, or to
each independent bracket expression of quantum numbers (as given in Table
I), which is allowed by Pauli's principle, a single, antisymmetric function
of the electrons, which is an approximate solution of Schrodinger's equation.
Our next task is, beginning with this, to introduce the interaction between
the various angular momenta, and to try to improve the agreement with
Schrodinger's equation, without destroying the property of antisymmetry.
We use essentially the method of perturbations. The fundamental result
of this method is that, if we take the approximate but incorrect wave func-
tion, and compute the matrix of the real energy with respect to this, the diag-
onal terms of this matrix are good approximations to the actual energy
values of the problem. The errors remaining are of the order of the square
of the ratio of non-diagonal to diagonal terms. Since we can easily show
in our case that the non-diagonal terms here are really small, this method
will give a good approximation to the energy values. We are then to take
the real energy operator (involving the interactions between electrons,
rather than with fictitious central fields), find its matrix with respect to
the wave functions already determined and take these diagonal terms as
energy levels.

There is, however, one case in which our criterion for the accuracy of
this approximation is not valid. This is the case where a number of terms
lie close together. Then in the first place one can no longer say that the errors
are as small as we have assumed; in the second place, since we are generally
interested in the energy differences between the neighboring terms, we really
demand a much greater accuracy than usual, to give this difference correctly.
Thus this case—that of degeneracy —demands special treatment. We see
that, in our case, we actually meet this difficulty, for the various wave
functions with the same values of n's and l's, but different m~'s and m, 's,
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have very nearly the same energy, and yet the energy differences, giving
the separations between multiplet levels, are just what we wish to find.
Thus the problem of degeneracy is the essential part of the calculation for
complex spectra. We may describe the situation this way: the non-diag-
onal energy terms connected with transitions between states with different
n's and l's for the electrons are negligible; but those between states with
the same n's and l's but different m~'s although they may be no greater

FD-. 2 FrG. 3

FrG. 4 Fro. 5

Figs. 2—5. Figures 2, 3, 4 represent the energy matrix schematically, In Fig. 2, it is with
respect to the unperturbed wave functions. The terms in the double shaded squares represent
transitions between two states with the same electron quantum numbers, These terms are all
significant; those outside the squares are negligible. In Fig. 3 we have made the linear combi-
nations to the perturbed wave functions, reducing each square to a diagonal matrix. Fig. 4 is
with respect to unperturbed wave functions, as is Fig. 2; but we take account of the fact that
there are no components between states of different pm~, Pm, . In Fig. 4, energy levels are
arranged according to the values of Pm~, gm, . Fig. 3 (see Note 3) represents the matrix of
angular momentum, in the final perturbed wave functions. Each square represents a separate
multiplet. In Figs. 3 and 5 the terms are arranged according to multiplets.

numerically, are not negligible for our purpose. This situation can be de-
scribed graphically. Suppose we make a scheme for the energy matrix,
giving stationary states (the incorrect ones that we determine from the
central field, denoted by the numbers rsi m, rr) along the two sides of a
square array, and putting in the matrix components. Then if we arrange
together all terms with one set of e's and l's, then those with another set,
and so on, we see that the matrix components in the double shaded regions
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of Fig. 2 are all important (even the non-diagonal ones); but those in the
singly shaded regions are negligible. The method of treatment is now this:
we take a particular square of the matrix, as A, coming from transitions be-
tween different states with the same n's and l's. And, by linear combinations
of the wave functions connected with these states, we reduce the matrix
to a diagonal one. This can always be done for a finite matrix. Then we
do the same thing with each such double-shaded square. The result after
that is then a matrix of the form shown in Fig. 3 ~ Here the only important
non-diagonal terms have disappeared; so that we can take the diagonal terms
as the approximate energy values of the real problem, with assurance that
the errors are not large. We observe that, after this is done, there mill still
be just as many wave functions connected with each set of values of the n's
and l's as before.

In our problem of complex spectra, there is a feature which greatly
simplifies the calculation. For we shall prove' that the energy has no matrix.
components connected with transitions in which Pmi or Pm. change (if
we neglect the magnetic energy, as we are doing for the present). To show
the effect of this graphically, we can arrange the terms, first according to
the n's and l's, as we have done; but under each such classification, we can
arrange according to gns& and gm, . Then the original energy matrix really
has the simplified form shown in Fig. 4. And the process of removing the
important non-diagonal terms reduces to separate linear combinations be-
tween the functions of each set having a given set of n's, f's, gnat, and

gm, . Generally the number of functions actually present in one of these
groups is very small; thus the problem by this method becomes very simple,
and can be readily carried out. As a result of it, we see that the number
of states with a given set of n's and /'s, and a given gnz~ and gm„remains
unchanged as we apply the interaction between angular momenta. And this
is the essential point required in the classification of the terms.

3. The essential features of the perturbation theory as applied to com-
plex atoms have been described; and we can now make connections with
Hund's scheme for classifying the terms. Each unperturbed wave function
can be described by its set of (n f m~ m, )for each electron (Pauli's principle
being actually satisfied by our condition of antisymmetry). Then, just as
before, we can make a table of all the possible terms with any set of n's

and f's; we can find pm~ and gm, for each of the terms; and we can make a
diagram, as before, plotting pm~ against gm„obtaining just the sort of
point diagram that was shown in Fig. 1, b or c. The small square arrays of
matrix components, in Fig. 4, are just the components between different
terms represented by coincident points in Fig. 1, b and c. The components
between terms lying at different points on the Pm~—Pm, diagram are zero.
Now we have just proved that, even when the interactions are considered,
we still have the same diagram representing the number of states with each
set of Pm~ and gm, . To verify Hund's method completely, we need only
show that we can correctly break up this diagram into a number of separate

' See Note 1 for the proof.
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ones, as Fig. 1, d—i, each representing a separate multiplet. Obviously we
can separate the diagram into rectangular arrays of points (that is, sets of
wave functions with particular values of Prli and Pm, ), but there are other
conditions that must be satisfied to make these wave functions really repre-
sent a multiplet.

In looking for the conditions that a set of wave functions must satisfy to
represent a multiplet, we first observe that, so long as we neglect mag-
netic energies, they must all have the same energy value. Now after we
have made our linear combinations, we shall have perfectly definite wave
functions, each with a perfectly definite energy value (the diagonal terms in

Fig. 3). Without proof, it is not obvious that we can pick out sets of functions,
with different gmi and gm„but ail with the same energy. Even if we can
(and we shall prove that it is possible), 'the set of functions must satisfyfurther
conditions. Somehow we must work in the fact that they all represent the
same vector I., and the same S, but with different orientations in space.
Now the wave functions corresponding to an angular momentum vector
with different orientations have perfectly definite relations, which are ex-
pressed by computing the matrix components of the angular momentum. If,
then, our group of terms of the same energy really is to represent a multi-
plet, the matrix of angular momentum must also have the required form. But
we shall prove that this also is the case. ' Thus, with these proofs given, we
see that we have a perfect right to separate the wave functions into a group
of multiplets, as Hund does. Since the method of doing this is unique, the
result must give precisely the same classification of multiplets that Hund
finds. And since at present we wish only classification, we need not actually
make the linear combinations, and get the diagonal matrix of II, at all.

It remains to be proved that the terms, after making the proper linear
combinations, really can be divided up into groups of terms, having the
following properties: every wave function of the group has the same energy
value; and the angular momentum matrix has just the same values that it
would if the wave functions referred to the vectors L and Swith their various
orientations in space. The details of the proof are given in the notes; but we
can state the essential features. First we show, by fundamental methods,
that the total angular momentum matrix can have components only between
states of the same energy. Since we can show that the angular momentum
matrix is not diagonal, this proves that there must be at least several states
of each energy, in order that the angular momentum can have components
between them. This breaks up the terms associated with a given set of n's
and l's into sets each of the same energy. Next we show that each of these
sets is just the sort we need for a multiplet. We do this by detailed considera-
tion of the angular momentum matrix; the essential point being that the
entire matrix can be determined uniquely from certain commutation relations
between the x, y, s components of the angular momentum vector, and that
these relations are just the same for the whole atom as for a single angular
momentum vector, so that we must have just the same matrix. We then

' See Nott: 2.
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have the complete proof that the wave functions of the atom really break up
into sets each having all the properties of a multiplet; the ML,—M~ diagram
of such a multiplet is just as we assumed in the first section; and the result is
that the method of finding what multiplets arise from any configuration of
electrons, is precisely the method of Hund.

PART 2. DETERMINATION OF THE ENERGIES

1. To find the energy values of the multiplets, the natural procedure is

to solve the various problems of linear combination encountered above, find

the correct wave functions, and compute the diagonal terms of theenergy
with respect to them. But we can find a simpler way, a. way that even here
will allow us to omit the actual calculation of the wave functions altogether.
This is done by the use of the principle that the sum of a number of energy
values is in some cases not changed by applying a perturbation, even if the
individual values are. The principle is this: given a set of wave functions
I& n;; make a set of orthogonal linear combinations of them, N~'

n . Consider the diagonal terms of a matrix, as the energy matrix, referred
to the original wave functions: say E& E;. Consider also the diagonal
terms of the matrix of the same function, referred to the new wave functions,
as Ej' E . Then &i+ +E;=E&'+ . +E . In our case, we can use
this as follows. We consider a set of terms, all with the same n's, f's, Pm~,
Pm, (that is, the terms connected with a small square in Fig. 4, or with coin-
cident points in Fig. 2b and c). Before making our linear combinations, we
can easily calculate the diagonal terms of the energy. We can add these terms
for all the wave functions. Then the sum is equal to the sum of the corres-
ponding energy values after making the linear combinations; that is, it is
the sum of certain energy values that we wish to calculate. By proper use of
this method, we can generally get the energies of all the multiplets.

To make the process clear, we shall illustrate by the case of two equivalent

p electrons, shown in Fig. 2c. We compute the energy of the function
gm, = 0, pm& ——2; that is, the energy of the configuration I (n11) } I (n11) }.
But there is only one function connected with this point in the diagram.
Hence the sum degenerates to one term. The process of making linear com-
binations is not necessary here; the corresponding square matrix array in
Fig. 4 has but one row and column. Thus the energy we have found is also
the energy of the term after interaction is considered; and comparison with

(f) shows that it is the energy of the 'D multiplet. Similarly the point
Pm, =1, Pm&=1, gives the energy of 'P. Again, gm, =i, pm&=0 or
+'1, and gm, = —1 gm& = 1, 0; —1, should all give the energy of P; and in

consequence of certain identities between the energy matrix components,
these actually do give the same result as before. Also, the point Pm. =0,
Pm, = 1, has two wave functions, for the states I(n 1 0) } I(n1 1) } and
I(n1 1) } I(ni 0) }. We calculate the energies of these terms, and add.
And the result should, and does, come out to be the sum of the 'D and 'P
energies. Finally, the point gm, =0, gm, =0 has three wave functions.
We add their energies, and the result should be the sum of the energies of
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'D, 'I', and 'S. Since the first two of these energies are known, we need only
subtract them from the sum to get the energy of 'S. Thus the energies of
all the multiplets are computed, without finding anyperturbed wave functions
at all. It is readily seen that extension of the same scheme will give complete
information in all cases except where there is more than one multiplet of the
same kind; for example, if a given configuration of electrons contains two
'D multiplets, the method will give only the sum of the two terms. To get the
individual terms, we must carry through the more elaborate scheme of taking
linear combinations. But such cases are not found among the more impor-
tant terms, so that in practical use the limitation is not important.

For actual use, the essential step is to find the energy values referred to
the original wave functions; then it is simply a matter of adding and sub-
tracting to get the energies of the multiplets. This is merely a problem of
integration; for we know the original wave functions (they are the deter-
minants mentioned above), and we can easily And the matrix components
of energy with respect to them. The process is somewhat complicated,
however, in many cases, and a careful arrangement of the arithmetic simpli-
fies it greatly. To work out the actual method properly, we shall have to
go more into detail than we have about the whole problem. This calculation
will be made in sections 2 and 3; finally we give a number of examples of
calculation of energy in section 4.

2. Our problem in the present section is this: to compute the diagonal
term of the energy with respect to one of the approximate wave functions,
written as a determinant, which we discussed earlier. If H represents the
energy operator, and

M(e&/x&) ' 14(Ny/$~)

S(N~/Sy) S(S~/SN)

is the wave function, we then have as the desired diagonal term

N*IIudv

The functions I are determinants; that is, sums of the N~ terms formed
from the product n(N&/x&) . u{n~jx~) by carrying out all permutations of
the coordinates xi x~, even permutations having the coefficient +1, odd
ones the coefficient —1. The product zc*u is then a double sum, and each-
of the integrals would be likewise; except that, in consequence of orthogon
ality relations, they really reduce to single sums, of which all the terms are
identical.

We consider first the energy integral. The energy operator H consists,
as we shall see, of three parts: first, a constant, which we need consider
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no further; second, a sum of terms each depending on the coordinates of a
single electron, and all the same in form, which we can write II(x~)+
+II(x(r); third, a sum of terms (the Coulomb repulsions) each depending
on the coordinates of two electrons, which we can write explicitly as Z(all
pairs) e'/r, where r is the distance between the two. The whole integral then
consists of a constant, and two triple sums, two of the summations being over
the permutations found in u and u*, the third over the terms in the energy
operator. Consider a single term out of this triple sum, of the sort connected
with the coordinates of just one electron. Then, if the permutations involved
in n and u*are different, at least two x's must have different quantum numbers
in the product; for example, we may have

u*(n'/x/, )u*(n"/x() u(n"'/x)) u(n'"'/x(),

where n' is different from n"', and n" different from n"". When we multiply
this by a function of one electron, and integrate, there will always be at least
one product (as u*(n'/x/, )u(n"'/x/, )), which by orthogonality will integrate
to zero. Thus the only terms which are not zero are those where we have
the same permutation in u and in u*; the double sum over permutations
reduces to a single one. We are left, then, with

Z(permutations of x) xn) Jf u (n)/x() u (n/r/x/r)

(H(x&)+ . +H(x/r))u(n(/x() . . u(n///x/r )d x( d x)((.

A single integral from this sum, by normalization, immediately reduces to

If we let these terms be I(n)), I(n)r), we see that the whole is simply the
sum of the I' s, counted N. times; so that this part of the energy integral is
X!(I(n()+ +I(n)v)), where it will be observed that the sum of terms
H(x;), each depending on the coordinates of one electron, has been changed
into a sum of terms each depending on a single set of quantum numbers.

Next we take the terms e'/r/, ( in the energy. As before, we take a typical
term of the triple summation. If it happens that the same permutation occurs
both in n and u*, then the integral will reduce to

)t u*(n/x, )u*(n'/x, ).e'/r, (u(n/x/)u(n'/x()dx, dx„

which we will call J(n;n') Each permu. tation will yield, from terms of this
kind, the summation over all pairs xI,x~', this reduces to the summation of
J's over all pairs n n'; and the N! permutations finally give, from terms of
this sort, X.g(pairs of n's) I(n;n'). Next, it may be that the permutation
in u* differs from that in u by the interchange of two electron coordinates.
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If in addition the term e'/ri, i happens to refer to the particular coordinates
xf,xzwhich have been interchanged, we have an integral which reduces to

I gj~Ã~ I Q xp 8 fJc~Q 'fb xy I @ x~ dx~&dx~,

which we call It(n; n'). Such terms all occur with negative sign; for, since
the permutation in u* differs by one interchange from that in I, one of the
terms is always an even, the other an odd, permutation, resulting in a coef-
ficient —1 in the double sum. Then by a similar argument to that above,
these terms yield a contribution —il!'!g(pairs of n's) X (n; n') to the
energy integral. Finally, if the term of n* differs from that of u by more
than a single interchange, there will always be at least one coordinate whose
wave functions will integrate to zero on account of orthogonality, so that
no other terms exist.

Finally we need the normalization integral fu*u dv. Formally, we can
find this as we did the first part of the energy integral, replacing H(xi)+. . . +
H (x&) by unity. This results in replacing+I(n) by unity; so that the integral
is just N. . Thus division by the normalization factor simply removes the
factor NJ which occurs in each term of the energy integral. We have then,
for the diagonal term of the energy which we desire, constant++(n's)I(n)
+P(pairs of n's) J (n; n') —P(pairs of n's)X(n; n').

3. Now we must consider the exact form of the wave function, to compute
I,J and X. In connection with this, we must answer the question which no
doubt will be felt at this point, as to the part which the spin plays in the cal-
culations. We begin by considering the individual functions u(n, /x;).
Each such function is a solution of Schrodinger's equation for an electron
in a central field. Let the potential of such a field be U(xyz). Then Schrod-
inger s equation is

IIIN= - + + + U N=GQ.

Here n is a function of x, y, s, and certain coordinates representing the spin,
depending parametrically on n, l, m&, and m„~ is a function of the quantum
numbers alone. To describe the spin, we proceed as Pauli" does: we use as a
coordinate the component of the spin along our fixed axis, m, (which thus
appears both as quantum number and as coordi'nate). Thus we could write
our equation

Hiu(n I mi m /x y z m ) = e(n I mi m )u(n I mi m /x y z m ) .

Since Hi is independent of the spin coordinate m, , (neglecting magnetic
interactions), we can separate variables, writing u as a product of a function
of xys, and a function of m, :

u(n I mi m /x y z m, ) = u(n I mi/* y z) u(m /m ) .

%. Pauli Jr. , Zeits, f, Physik 43, 601 (1927).
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T'he function u(m, /m, ) is to be interpreted as follows: m, (the quantum
number) can have two possible values, +-,', and we have a different wave
function for each quantum number. For example, we may have u(zz/m, ).
But now assuming that the quantum number is —,', we know that the wave
function is di~fferent from zero only if the spin points along the positive axis,
so that m, (the coordinate) is —', ; for m, = ——,', there is no wave function.
Thus u (-,'/-,') =1, u(-,'/ —-', ) =0. We can then write u(zz/m, ) =0 (-,'/m, ).
Similarly u( ——,'/m, ) =0( ——,'/m, ); and we can write the whole symbolically
as u(m, /m, ) =0(m, /m, ). We now have

u(rz 1 m, m, /x y s m, ) = u(zz 1 m, /x y z) 0(m, /m, ) .

And for the first factor, the equation is

EI&u(zz 1 mr/x y s) = z(zz 1)zz(zz 1 m ~/x y s),

where, since the energy does not depend on m~ or rn„we have left out those
quantum numbers in describing e.

The solution of the central field problem is well known. Ke separate
variables in spherical coordinates r 0$. Then we have

u(zz 1 mi/x y s) =R(zz1/r)O(f m, /0) C(mt/0)

where

(21+1)(l—! m& i)! 'i'
0(l m~/0) = —— — I &~'"'~(cos g)

(1+
I

m~
I
)!

where

1 d'~"+'( —sin'0)'
R(l mt I (cps g) — sin I ml10

2'E! d(cos 0)' "+'

and

Thus we have

u(zz 1 m) m, /x y s m, ) =R(I 1/r) 0 (1 zzzt/0) 4 (m(/0) 0(m, /m, ) . ,

To proceed further, we must investigate the value of H operating on the
product of u's. By definition,

where V is the potential energy, given by

gfz2 K e2
fr= Z — + Z(z&i)—

i=-1 ri 1 rij

where ri is the distance of the ith electron from the nucleus, r;; the distance
between the ith and jth electrons. Thus we have
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kz 8'u(e(/x() 8'u(eg/xg)
Hu (ey/ xy) ' ' ' u (eN/ ÃJIT) +

8m'm 8X12

8'u(n(/x, )+ u(e2/xz) ' ' ' u(eN/x((() ' ' ' + i u(e(/xl) ' ' ' u('eÃ/xN) ~

BS1

But by our assumptions,

u(e(/xl) (l u(e(/xl) d u(e(/x()—+ + = (z(e,) —U(x,))u(e(/x(),
8X2m 8 X12 By1' BZ12

etc. Thus we are left with

N

Bu(e,/x, ) u(en/xn) = Q(z(e;) —V(x;)) y V u(e, /x, ) u(e„/xn)
t'=1

This is of the form used above: Constant+QH(x)+pe'/r, where constant
=g(e)z(e), and II(x) = —U'(x) Zez/r. —

We are now ready to compute the integrals I, J, and E. We must erst
note that by integrating over the coordinates of one electron, we really mean
integrating over the dx dy ds, and summing over the spins:

1/2

J
I' ~.= g ( .) f d*a,~. .

—1/2

Thus, for example, we have the normalization and orthogonality of the
individual wave functions:

QSSNtl g

1/2
—= Q(m, )B(m, '/m, )i((m, "/m, )

—1/2

u*(eTm&'/xyz) u(e"l"m("/xyz)dxdydz

=6(nz, '/m, ")8(e'l'm('/e "l"m(") .

This orthogonality is all that is needed in the proofs of the preceding para-
graphs.

For the integral I, we have

1/2

I(elm(m, ) = Q(m, )8(m, /m, )6(m, /m, )
-1/2

u*(elm&/xyz) H(xyz) u(elm(/xyz) d xdydz.

The summation over m, merely reduces to the factor unity, independent
of m, . When we insert the value of II(xyz), we note that the result is also
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independent of m&, for H is a function of r only, the functions of angles
integrate to unity, and we are left with

I(«m~m, ) =I(«) = —
Jl R'(«/r)(U(r)+Ze'/r)4rrr'dr

Next we are to find J and E. For J, we have

J(«m~m, ; e'l'm~'m, ')

1/2 1/2

= P(m)q g( m)q B(m/(m)~)h(m, '/(m)q)B(m/(m, )I)B(m, '/(m ,)t).
—1/2

Jt u*(«m&/x&yzsl)s~(e'l'm&'/x&yts&)e'/r&&u(«mt/xlyrs&)N(e'l'm&'/x&y&s&)

dx&dy/, dk&dx&dy &dk&, .

The summation again reduces to unity, independent of m, and m, '. Then
our quantity reduces to the integral, which we can write

J(«m~m„' n'l'm~'m, ') J(«=m~, e'l'mt') .

Similarly we have

K(«m tm„n'l'm )'m, ')
1/2 1/2

= P(m, )& P( m)~ b(m, /(m, )~)5(m, '/(m)q)b(m/(m)r)8(m, '/(m)&)

Jt N*(«mi/xiypr)&*(&'i'mi'/xay~sI)e'/r~i~(«ml/x. y.s~)~(~' '
l /xLypl)

dx&dy&dkI, dx&dy &Ck&,.

The summation reduces to h(m, /m, '); so that we are left with

K(«mtm, ; m'l'm~'m, ') =6(m, /m, ')K(«m~, 'e'l'mt'),

where the integral is symbolized by the last X. We thus observe that these
exchange integrals only exist for electrons with spins parallel to each other.

We are now to compute

and
J(«m&, I'l' m/)

K(llm~, e'l'm&')

We recall the expression for z~ previously given. Also we use the familiar
expansion

1 (b —
~

m )! r(a)"
Pl, '"'(cos 8)P&, '."'(cos 8') exp (im(P P'))—

(b+ ~m~)! r(b)"+'

where r(xx') is the distance between (xys) and (x'y's'), and where r(u) is
the smaller, r(b) the greater, of r and r' Forming the. expression for J,
we have integra!s of the form, 'e exp(imP)dP which vanish unless m=0.
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The double sum over k and m thus reduces to a single one over k, ns being
always zero. Then we easily have

J(nlm~, 'n'1'm~') = g(k)a"(lml, l'm'~')F"(nl; nV)

where

and

(2l+1)(l-
I

m~
I ) I (21'+1)(l'-

I
m~'I )i

a'(lmt, 1'mt, ') =——
(1+ Im

I ) (l'+ Im'I)'
sin 0r

[P~' "(cos g)] 'PI, '(cos g)—dg
0 2

j
sin 8'

[Pr ' "(cos g')]'Pq'(cos g')——dg'
0 2

f 00 00 r(a)"
F '(nl; n'l') = e'(47r) '

I R'(nl/r) R'(n'l'/r') r'r"drdr—'.
0 0 r(b) 0+1

One notes that the a's can be computed once for all, in terms of the spherical
harmonics; the special properties of the atom in question appear only in
the integrals F.

In a similar way we form X. Here the integrals over P are of the form

fll exp s(m~ — ~m'+ )mp d@, vanishing unless Im
I

= Im, —m~' I. Thus we
have

E(nlm(, 'nVm(') = Q(b)b~(lm(, 1'mE')G'"(nl; n'P),
where

(b
I

m~ m&'I ) —' (2l+1)(l— m&
I ) I (2l'+1)(l'—

b~(lm(, l'm(') =
(b+ ImI m~'I)-l (l+ Im~I) l (l'+ Im~'I) l

sin 0
P~l ~'l(cos g)P~' I ~' l(cos g)Pql ~' ~' l(cos g) dg—

0 2
and

00 00 r(a)"
G~(nl; n'l') = e'(4n) '

I R(nl/r) R(nV/r) R(nl/r') R(n'l'/r') — r'r"drdr'.
r(b) &+I

Using the values of the associated spherical harmonics one can compute
the various u's and b's; although the writer has not succeeded in setting up
closed formulas for them, since this would involve the integralsof products
of three spherical harmonics, an unfamiliar form. "We give a table, includ-
ing all the coefficients involved with s, P, d electrons (that is, l, l' 2).

We have now obtained the diagonal term of energy which wedesired:
in section 2 we have found it in terms of certain integrals I, J, X, and in
section3 we have evaluated those integrals. Before passing to the examples,
we should note one fact: that in ending the energy differences between
multiplets, one needs only the integrals J and E, which do not depend

» See, however, J. A. Gaunt, 1, c. %hether one has formulas or not, the table of values is
certainly most convenient for computation,
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TABLE QF Q~(lmg, l'mi').
(Note: in cases with two + signs, the two can be combined in any of the four possible ways).

Electrons

SS

SP

ml

+1
+1

0

0
0-
0

+1
+1
+1

0
0
0

+2
+2
+2
+1
+1

0

+1
0
0

+2
+1

0

+2
+1

0
+2
+1

0

+2
+1

0
+1

0
0

1/25—2/25
4/25

2/35—1/35—2/35—4/35
2/35
4/35

4/49—2/49—4/49
1/49
2/49
4/49

1/441—4/441
6/441

16/441—24/441
36/441

TABLE OF b ~(lm i, l 'mi ')
(Note: in cases where there are two + signs, the two upper, or the two lower, signs must be
taken together).

Electrons

ss

l

0

+1
+1
+1

0

ml

+1
0

+1
0

Ti
0

+2
+1

0

A=O 1

1 0

0 1/3
0 1/3

1 0
0 0
0 0
1 0

1/25
3/25
6/25
4/25

1/5
1/5
1/5

+1
+1
+1
+1
+1

0
0
0

+2
+ 2
+2
+2
+2'
+1
+1
+1

0

2
2
2
2
2

2
2

+2
+1

0
+. 1
+2
+2
+1

0

+2
+1

0
+1
+2
+1

0
yi

0

0
. 0
0
0
0
0
0
0

1
0
0

0
1
0
0
1

2/5 0
1/5 0
1/15 0
0 0
0 0
0 0
1/5 0
4/15 0

0 4/49
0 6/49
0 4/49
0 0
0 0
0 1/49
0 1/49
0 6/49
0 4/49

3/245
9/245

18/245
30/245

4;::8/245
15/245
24/245
27/245

1/441
5/441

15/441
35/441
70/441
16/441
30/441
40/441
36/441
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explicitly on the central field U at all. The integral I is needed only in finding
the center of gravity of a multiplet system. The reason is that Idepends
only on n and L, and so is the same for all the various degenerate states
with which we start our perturbation problem.

4 ExamPles. One electron outside cLosed shells. We need take but one
case: a 3p electron outside completed X and L, shells. Thus the scheme of
electrons is (1s)'(2s)'(2p)'3p. We must now consider the various antisym-
metric wave functions which are possible. By the method of symbolization
mentioned above, in which we group in separate brackets the quantum num-
bers of electrons with parallel and antiparallel spins, we see that there are
six wave functions, which we give below, together with the values of+ m~

and m, :

(100)(200) (211}{210){21—1)(311)I I {100}{200)(211)(210)(21—1)I
I (100){200)(211)(210)(21—1)(310) I (100)(200) (211)(210)(21—1)
f (100)(200)(211)(210)(21—1)(31—1)I I (100)(200) (211)(210)(21—1)I

I (100)(200){211)(210)(21—1) I (100)(200) (211)(210)(21—1}(311)
I (100)(200) (211)(210)(21—1) I (100)(200) (211)(210)(21—1)(310)
I (100)(200) (211)(210)(21—1)I I (100)(200) (211)(210)(21—1)(31—1)I

rnZI, res
1
0—1
1
0

2

We note that the arrangement of+ mg, P m„ is just that for a single multiplet
There are no cases in which more than one term has a given value of

gm&, gm, ; thus there is no need of applying the sum rule at all. The diagonal
terms of the energy, computed with respect to these six wave functions,
should give directly the energies of the six terms of the multiplet. But.now
we come back to our general principle; these six terms must have the same
energy. We must actually compute the energies by our rules, and see that
they are the same in each of the six functions. As has been mentioned be-
fore, we need only use the J and E terms. These terms, we recall, were
g(pairs) J—g(pairs with par. spins)E. Now in these sums, many terms are
the same for each of the six wave functions; all the terms, in fact, relating
to pairs of electrons both in the closed shells. These terms can exert no
inHuence on the multiplet separations, or anything of that sort. Thus we
can leave them out, for our present purpose, as we left out the terms depend-
ing on the integrals I. The only terms we need retain are those in which our
3P electron is a member of the pairs. Thus for the first wave function we must
compute the following:

2J(311;100)+2J(311;200)+2J(311;211)+2J(311;210)+2J(311;21 —1)
—E(311;100)—E(311;200) —E(311;211)—E(311;210) —E(311;21 —1)

For the second and third, we substitute respectively 310, 31-1 in place of 311;
the fourth, fifth, and sixth evidently give the same three results already
given. Let us now group these terms according to the shells that the 3P's
interact with:

1s.2J(311;100) —E'(311; 100)

2s: 2J(311;200) —E(311;200)

2P:2J(311;211)+2J(311'210)+2J(311;21 —1)—E(311;211)
—E(321; 210) —E(311;21—1) .
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For the interaction with 1s, we have

2J(311;100) = 2 Q(k) a "(11;00)F"(31;10) =2F'(31; 10)

—E(311;100) = —g(k) b "(11;00)G"(31;10) = —-,'G'(31; 10) .

Before going further, let us 6nd the corresponding terms in the interaction
of a 310 electron with the 1s shell:

2J(310; 100) = 2 Q(k) a~(10; 00)F'(31; 10) = 2F'(31; 10)
—E(310; 100) = —Q(k)b "(10;00)G "(31;10) = ——,G'(31; 10) .

That is, the interaction integrals of an outer p electron with an s shell are
the same whether the p electron has m~=1 or 0 (or —1, as one immediately
verifies) We. shall show the same result to hold for the interaction with
the 2p shell: for the (311)electron, the terms are

2J(311;211)+2J(311;210)+2J(311;21 —1) —'E(311;211)
—E(311;210) —E(311;21 —1)

= 2 Q(k)u~(11; 11)F~(31;21)+2 Q(k)a "(11;10)F"(31 21)

+2 Q(k)a"(11; 1—1)F"(31&21) —Q(k)b "(11;11)G"(31;21)
—Q(k)b "(11;10)G"(31;21)—Q(k)b "(11(1—1)G"(31;21)

=2 Q(k)(a"(11;11)+a"(11;10)+a"(11;1 —1)F"(31;21)
—Q(k)(b "(11;11)+b~(11;10)+b~(11;1—1))G"(31;21)

= 6F'(31;21) —G'(31; 21) —-'G'(31; 21) .

Similarly for the (310) electron interacting with the 2P shell, we have

2 Q(k)(s "(10;11)+a"(10;10)+a"(10;1—1)F"(31;21)
—Q(k) (b~(10; 11)+b~(10;10)+b'(10; 1 —1))G"(31;21)

= 6F'(31; 21) —G'(31; 21)—ssG'(31; 21) .

This agrees with the former value, showing that the interaction of either
a 311 or a 310 (or, by a simple extension, a 31—1) electron with a completed

p shell, give the same result, independent of mg. Putting all these results
together, all six levels of the 'I' multiplet give the same energy, by direct
computation. Of course, this is merely a check of our general theorem that
all the levels of any multiplet must have the same energy. The special
properties of the a's and b's which lead to this result could be proved by use
of that theorem.

Any coufiguratiou outside closed skel1s We have .just seen that the inter-
action energy of a single electron with a closed shell is independent of the
m& of the outer electron. We have proved this by direct computation for a
p electron interacting with s or P shells, but we could extend the result to
the general case, from our general theorem that all the terms of any multiplet
have the same energy. But this has an important bearing on our general
problem. For in any case an atom consists of a certain number of electrons
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outside closed shells, and the central closed shells. In the various unper-
turbed wave functions which we are to use, the outer electrons have different
m~'s. In the energies of the terms, we are to compute all J's and Z's con-
nected with pairs of electrons in the atom. We have already seen that all
pairs, both of which are in closed shells, will give identical contributions
to each of the unperturbed terms. But now we can go further: all sets of
pairs, in which one is an outer electron, the other one of the electrons of
a closed shell, will, when summed over the electrons of the closed shell,
give the same result for each unperturbed state. That is, as far as multiplet
separations are concerned, closed shells exert no influence at all; they affect
only the position of the whole set of multiplet terms. It is well known that
the classification of the terms is independent of the existence of closed shells;
this proves that the energy relations also depend only on the outer electrons. "
For the rest of our examples, then, we shall consider only those electrons
which are outside closed shells.

Troo electrons outside closed shells, oee ie s state (helium, alkaline earths).
Suppose we have the scheme (es), (n'p), for example. There are, in this
case, the unperturbed wave functions symbolized by

Zm) Zm,
I (n 00)(n'11)} I
I (n 0 0) (n' 1 0) } 0 1
I(n00)(n'1-1)} f } -1 1
I (n 0 0)} ~

(n' 1 1)} 1 0
(noo)} I(n'10)} 0 0
(n 0 0)} I(n 1 —1)} —1 0

f (n' 1 1)} I (n 0 0)} 1 0
I(n'10)} I (no 0)} 0 0
I(n' 1 —1)} I(n 00)I —1 0

} I (n 00)(n'1 1)}
} I (n 0 0) (n' 1 0) 0 —1
} I(n 00)(n' 1 —1)} —1 —1

By our general scheme of classification, we have a 'I' and 'P term. The
terms with greg, Pe4 equal respectively to (1 1), (0 1), ( —1 1), (1 —1),
(0 —1), ( —1 —1), belong to the 'P state. On the other hand, the remaining
terms, as (1 0), are each degenerate. The sum of the energies of two such
terms equals the sum of the 'I' and 'I' energy. Thus for example we have

'P: I (e 0 0)(e' 1 1) }
'P+ 'P: I (e 0 0) } I (e' 1 1) }+ I (e' 1 1) j ( (e 0 0) }= 2 I (e 0 0) }j (e' 1 1) j .

That is, for the energies, we have

'P:J(e 0 0; e' 1 1)—K(e 0 0; e'1 1)

'P+'P= 21(e 0 0i e' 1 1).

Therefore 'P =J(e 0 0; n' 1 1)+K(e 0 0; e' 1 1)
The singlet and triplet are thus given by a definite value +K(e 0 0;e' 1 1).
This checks with Heisenberg' s" calculation of this case; our integral X is
readily seen to be the same exchange integral which he computes.

"See W. Heitler, Zeits. f. Physik 46, 70 (1928).
» W. Heisenberg, Zeits. f. Physik 39, 499 (1926).
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Shell of equivalent P electrons (E. lements C, N, O, F, etc.) Pz. This is the
case shown in Fig. Ic. There are 15 wave functions, of which we give those
with pm& ~ O, gm, & 0; for simplicity we omit the total quantum number from
our descriptions, so that (1 0), for example, stands for (n 1 0). Then, cor-
relating the pm~, gm, with the multiplets represented (from the figure),
we have

M ultiplet

1/7 +3P

1D+3P+1g

3P

3P

0
0
0

%ave function

I (i 1)} I (1 i) }

I(i 0)} (1 1)}
t(i 1)} (10)}

I (1 i) I (1 —1)}
I(i 0) (i o)}
i(i —1)}I(i 1)}

I(i 1) (1 0)}

I(») (1 -1)}

Now we have for the energies
I'D' J(n 1 1;n 1 1) F'(n, 1; n 1)+ F'(n, 1;n—1)

25
2 3'P:J(n 1 1;n 1 0) —E(n 1 1;n 1 0) Fo(n 1;n 1) F'(n 1,:—n—1)——Go(n 1;n 1

25
'

25

We note that, for equivalent electrons, the F's and G's of the same indices
are equal. Hence

5
zP =Fo(n 1;n 1) ——F'(n 1;n 1) .

25

We can check the same value from the other 'P term (Zm& ——0, Zm, =1)
and from the two terms giving 'D+'P. Finally we have

'D+ 'P+ 'S:J(n 1 1;n 1 —1)+J(n 1 0; n 1 0)+J(n 1 —1;n 1 1)
6=3F'(n, 1;n 1)+—F'(n 1;n 1) .

25
j.o

Therefore 'S=F'(zz 1;n 1)+—F'(n 1;n 1).
25

We note that the term Fo(n 1; n 1) is common to all the levels; thus we
can leave it out, as we have a11 the terms which do not affect the separation.
We note from its definition that F'(n 1; n 1) is positive. Thus we see that
of the three multiplets, the 'P lies lowest, D next, 'S highest, in accordance
with Hund's rule that the terms of largest I. and S lie lowest. The separa-
tions are in a simple ratio: 'P —'D = 6/25 F'(n 1; n 1), and 'D —'S= 9/25
F'(n 1; n 1) so that the ratiois 2 to 3.

We should find an example in the lowest levels of C, (1s)' (2s)' (2p)',
these levels, however, have not been observed, as far as the writer knows.
For Si (1s)' (2s)' (2P)' (3s) (3P)', however, the term values are" oP = 65,615,

14 McLennan and Shaver, Roy. Soc. Canada 18, i, (1924). A. Fowler, Proc. Roy. Soc.
A123, 422 {1929).
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'D =59,466 'S=50,370, giving 'I' —'D =6149, 'D —'S=9096, the first giving
F'(3 1; 3 1) = 25,602, the second F'(3 1; 3 1) = 25,267, in good agreement.

p'. The method is so similar to that used for p' that the calculations need
not be given in detail. The multiplets are 4S 'D 'I', the 4S lying lowest and
'I' highest, again in agreement with Hund's rule. T'he separations are given
by 4S 'D=9/—25 F'(n 1; n 1) 'D 'P=—6/25 F'(n 1; n 1). An example is
found in the normal A'spectrum, (1s)' (2s)' (2P)', observed by Compton snd
Boyce. '~ They Find 5= 117'345' D 98y143y P 88' 537)giving S—'D
=19,200, 'D 'P= 9—,600. From the first, F'(2 1; 2 1) =53,400, and from
the second, it is 40,000; a somewhat poorer agreement than before, probably
on account of the tighter binding of the electrons.

p4. Here the relations prove to be as in p' as regards energy, as well as
in the arrangement of terms: 'P 'D=6/—25 F'(n 1; n 1) 'D —'S=9/25
F'(n 1; e 1). An example is norma10, (is)' (2s)~ (2p) . Here it is estimated"
that, counting terms up from 'I' as zero, 'D = 25,500, and 'S= 65,000, giving
'P 'D =25,500—'D —'S= 39,500. From the first, F'(2 1; 2 1) = 106,000, and
from the second 109,700, a very good agreement. It is interesting to note
the increase in the integral from N to 0 on account of the tighter binding.

P and P' yield each only one multiplet, so that they need not be con-
sidered.

She/l of equivalent d electrons (Iron group) d'. The multiplets are 'F
'I' 'G 'D 'S. When we work out the separations, however, it appears that
they are not arranged in this order; the singlet terms are anomalous, dis-
obeying Hund's rule, in that the 'D lies lower than 'G. Except for this,
however, the arrangement is as we should expect, 'F lying below 'I', and be-
ing the lowest term of the combination. The separations are given by

'F 'P = (135/4—41) F'(n 2 n 2) —(75/441) F4(n 2; n 2)
'F 'G =(108/4—41) F'( 2In 2)+(10/441) F4(n 2; n 2)
8F—» = (45/441) F'(ri 2; rt 2)+ (45/441) F4(n 2; n 2)
'F —'S= (198/441) F'(n 2 n 2)+(135/441) F'(ri 2; n 2)

The separations now depend on the two parameters F'(n 2; n 2) and
F'(n 2; n 2), which bear no fixed relation to each other. Nevertheless we

can estimate their relative magnitude. For by definition F~ is the integral
of a certain function of ri and r2, multiplied by r, ~/ri, ~+' where r& is the greater,
r the less, of ri and r2. Thus increasing k necessarily decreases the integrand,
and hence the function F: F4(n 2; n 2) (F'(n2; n 2). Rough calculation in-

dicates that the decrease is about to a half. If then we provisionally take I'
to be half of Ii', we have the separations in the ratio

'F —'E:135—37= 98 ~F—'D: 45+22= 67

'F —'G:108+ 5= 113 'Il —'5:198+67=265.

The order of terms is thus expected to be 'F 'D 'I' 'G 'S.
'6 K. T. Compton and J. C. Boyce, Phys. Rev. 33, 145 (1929)."McLennan, McLeod, and Ruedy, Phil. Mag. Sept. , 1928, p, 558. These values are esti-

mated from the energy level diagram in that paper.



1318 J. C. SLATHER

Experimentally we find an example in the normal spectrum of Ti,"
(Is)' (2s)' (2P)' (3s)' (3P)' (4s)' (3d)' Here the order of terms is in fact just
what our calculation predicts, the exception to Hund's rule being found
experimentally. The observed separations are approximately

'F —'I' = 8500 'F —'D = 7200

V —IG =12100 V —IS =15100.
If we assume that F' is really half of F', these give F'(n 2; n 2) equal res-
pectively to 38,000, 47,000, 41,000, 72,000, in fair agreement except for the
last one. This last results from the 'S, which is not nearly so far above the
rest of the terms as the theory would indicate —probably because the second
order corrections for this term would be large, and would have the eff'ect
of depressing it. The agreement with observations can be somewhat, but
not much, improved by taking a slightly different ratio of F4 to F'.

d'. .d'. We shall give only the lowest terms for the rest of the d shell.
The terms of highest multiplicity prove to lie in general lower than the others,
as the rule mould predict. Of these, we have for d'. 4F4P; d', ~D; d', 'S;
d', 'D; d', 'F4P; d', 3F P. Evidently the only cases where there are signifi-
cant separations in the multiplets of highest multiplicity are the d' d' d' d'
F—P separations. When one calculates, one discovers the fact that all these
are given by the same formula, (135/441) F'(n 2; n 2) —(75/441) F4(ri, 2; n 2).
This permits an interesting comparison with experiment: we can compare the
observed separations for Ti (d'), V(d'), Co(d') and Ni (d'). We should
expect these to increase regularly with the number of d electrons. Experi-
mentally this separation is about 8000 for Ti, 9500 for V, 14000 for Co,
15000 for Ni, indicating a fairly uniform increase of about 1000 to 1500 for
the addition of one d electron.

Ron-equivalent p's: Two p's: pp'. The multiplets are 'D 'P 'S 'D 'P 'S.
The triplets are particularly interesting, and we give their separations. If
the principal quantum numbers of the electrons are n and n', they are

'D 'P = —6/25F'(I 1;—e' 1)+2G'(e 1; n' 1) —4/25G'(e 1;n' 1)
'D 'S = 9/25F'(I 1;m' —1) —9/25G'(n 1;I' 1) .

The significant feature of these results is that they depend in such a com-
plicated way on several integrals. That is, in a case like this —and it is
the simplest set of multiplets that can be built up from non-equivalent elec-
trons —we must not look for simple numerical relations between the separa-
tions, or even for a definite, fixed order for the terms. We may rather expect
that, as we go from one element to another, the relative order of terms
can change.

We find an example in N+ (Is)' (2s)' 2p 3p."' Here the experimental
separations are approximately 'D —'P =4000 'D —'S = 2300, disobeying
Hund's rule, in that 'S lies below 'P. We can make from these figures a rough
estimate of the integrals F and G. We note that G differs from F in having

'7 H. N. Russell, Astroph. Jour. 65, 283 (1927).
"A. FowIer, Proc. Roy. Soc. A107, 31 (1925).



THEORY OF COMPL, EX SPECTRA 1319

the product R(n/xi) R(n'/xi) in its integrand instead of R'(n/x )iT.he first
is less than the second —very much less if the orbits n and n' are of decidedly
different size, for then either R(n/xi) or R(n'/xi) will be small through most
of the range of x~. Thus each G integral is small compared to the corres-
ponding I". It is reasonable to suppose that G' is of the same order of mag-
nitude as F'. Further, G' will be smaller than G', by analogy with what we
have already seen, and as a rough assumption we may take O'=-,'G'. Thus
we have the two equations

4000 = —(6/25)F'+ (48/25)G'

2300 = (9/25)F2 —(9/50)Go,

giving F (2 1;3 1) = 7900, G (2 1;3 1) =3070, G (2 1; 3 1) =1535.
These values are reasonable, but provide no definite check for the equations.

Five equivalent p's, one other p: p~p'. Again we have 'D'P 'S 'D
'P 'S, by combination of the p' with the 'P of p'. But now it proves that
the triplet separations are quite different, and have a much simpler formula.
We have

'D —'F = (6/25)F'(I 1;n' 1)

'D '5 = —(9—/25)F'(e 1; e' 1)

depending on only one parameter (the others all cancel out, seemingly, al-
though perhaps not really, by chance). Thus we can predict definitely the
order of terms: 'S lies lowest, then 'D, finally 'P, in direct contradiction to
Hund's rule. We find an example, however, in Ne (1s)' (2s)' (2P)' 3P,
Paschen's p terms, "and it definitely verifies the contradiction. Experiment-
ally, Paschen's 2p&0, which is the 'S, lies well below any others. On account
of the wide multiplet separations it is impossible to show any good check
of the ratio 2:3 for the 'D —'P and 'D —'S separations. If one takes centers
of gravity of Paschen's terms, one finds

'D —'P' = 570 'D —'S = —2023

the first giving F'(2 1; 3 1) =2370, the second 5620. The correct figure
is probably between these. It is interesting to note the agreement as to order
of magnitude of this with the same one, 7900, for N+.

NorEs

1. We wish to prove that the energy has no matrix components (taken
with reference to the incorrect, approximate wave functions) connected with
transitions in which Qadi or gm, changes. The essential part of the proof
is the demonstration that the energy operator IIcommutes with the operators
connected with

hami

orgm, . Forgm, the proof is obvious:Pm, is a quantity
depending only on the spins, II only on the coordinates, and operators de-
pending on entirely independent quantities always commute. For Pm i, the
essential point is that Qadi is the operator connected with an infinitesimal
rotation of space about the s axis, and on account of the fact that II is in-

&9 F. Paschen, Ann. d. Physik 60, 405 (1920).
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dependent of orientation, such a rotation does not affect it, and so commutes
with it. To be more specific, one can write the three components of angular
momentum of an electron in operator form, using the operators for linear
momentum. Put in spherical coordinates, the s component of angular momen-
tum is represented by the operator (h/2+i)B/Bp O. perating on a single elec-
tron wave function with the factor e' «, this operator reduces to the multi-
plication by m~h/2z, so that it has a diagonal matrix, and m~ measures the
s component of angular momentum, in units h/2s. Then the operator con-
nected with pm~ is f+—8/Bp, where the sum is over the p's of the various
electrons in the many-electron wave function; this operator is in the many
electron problem again a diagonal matrix. This holds, we note, even with
the incorrect, unperturbed wave functions. Except for the factor —i, this
operator simply represents the change in the function it operates on, if all
p's are increased by the same amount; that is, if the whole electronic system
is rotated rigidly. Then we have

But on account of its spherical symmetry, ZBII/O& =0. Hence

—z —HN= II —z —n, or

( Pnu)H H( Qm() = 0—,

showing that the operator pm~ commutes with H.
Knowing that both pm~ and+re, commute with H, and that both have

diagonal matrices, the rest of the proof is simple. We merely write down the
commutation laws in matrix form:

g(n") Pnz~(N'/zl, ")H(zl,"/e"') H(N'/rl, ") g—vs&(n"/e"') = 0, .

On account of the diagonal relation, this amounts to

( Qmi(e'/n') —gmi(N'"/e'"))H(n, '/e"') = 0.

This cannot be satisfied unless eithergm~(n'/n') =Pm~( I"' n/"') or unless
II(rl, '/n"') =0; t'hat is, II has matrix components different from zero only
if pm& has the same values in initial and final states. The same proof holds
for gm, .

2. Theorems regarding angular rnomen]Nm. It is assumed that we have
wave functions which, although not exact, are the good approximations
used in this paper; that is, linear combinations have been made so that the
energy matrix has components different from zero only between states of
decidedly different energy; it is diagonal as far as the states are concerned
which come from one set of electron quantum numbers. We wish to show
6rst that matrix components of angular momentum have non-negligible com-
ponents only between states of the same energy (or diagonal term of the
energy matrix). Suppose we let the operators connected with the three com-
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ponents of orbital angular momentum be 3III.', M~&, Ml. ', where 3fi.' is the
quantity usually denoted by Mz, and is equal to gmz. Similarly for spin
we have M~, M~&, MB'. Now we have seen that M~' and M8' commute
with II; and, since there is nothing peculiar about the s axis, we can equally
well show that Ml. , 3fl.fI, Mg, jff/I8& commute with H. Thus for example
Jft/Ig*II —II 3IIg'=0, or in matrix form

g(zz") 3fs*(zz'/zz") H(zz"/zz"') H(z—z'/zz") Ms (I"/zz'" ) =0.

We can write this, for non-diagonal terms,

M *( '/zz"') [H( "'/s"') —H( '/zz')]

= —Q(zz" N zz', zz"') [(Vs (zz'/zz") H(zz"/zz'") H(N'/I—")Ms*(zz"/zz'") ] .
The non-diagonal terms of the energy, H(zz"/n"'), etc. , are by hypothesis
different from zero only if n" and n"' refer to states with different
electron quantum numbers, and even so they are small of the first order.
Ef the right side were precisely zero, we should have obviously the result that
Ms~(n'/zz'") wasdifferent from zeroonly if H(zz"'/zz'") was equal to H(zz'/zz')
which is what we wished to show. As it is, this result is true only to the first
order of small quantities: Mz* can have other, small components, and

H( z'z"/n"') can differ from H(zz'/zz') by small quantities. Thus we should
expect that our approximate wave functions for a multiplet would give
only approximately equal energies. This is not true, however, when we actu-
ally calculate by our method; the energies are precisely equal. The reason
can be easily seen. Let the states n' and n"' be both connected with the
same electron quantum number. Then the matrix components on the left
side of the equation above are all found in terms of integrals over wave
functions of those particular electron quantum numbers. The matrices on
the right, however, involve other states, n", which must refer to different
electron quantum numbers, so that the right side would involve different,
independent integrals. The two sides could not be in general equal unless
each was zero. Hence the result is: if the approximate wave functions are
computed by our method, the angular momentum has components, be-
tween two states of the same electron quantum numbers, only if both states have
the same energy. Its components between states of different electron quantum
number are small of the first order. From now on, we can neglect the latter
terms, as we did with the energy. Thus the matrix of the angular momentum
is of the form shown in Fig. 5. This can be compared with Fig. 3, showing
the matrix of the energy in the final wave functions; but Fig. 3 should now
be numbered to show that the diagonal terms of energy within one of the
small squares of Fig. 5 (that is, in a multiplet) are all equal.

We have shown that the wave functions connected with a set of n's and
I's are divided into groups, each wave function of a group having the same
energy value, and the angular momentum having components only between
different wave functions of a group, not from one group to another. We
wish now to show that the matrix components of angular momentum within
such a group are really such as to indicate a vector of magnitude I., and
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another S. To do this, we first note that 3/II, *, 3III.&, 3/II.', 3/I~, 3/I8&, M8'
satisfy the commutation relations

h
MI."3II.' —3/II, 'MI, "= ———3/Il, *, etc. ,

27ri

h
3/Is "M8' —Ms'3IIs" = — .3/Is*, etc. ,

2' i
3/II. * 3/Ig* —3II8' 3/Il, *——0, etc.

We show these by proving them for the separate I&'s and m, 's of the separate
electrons, and then combining by the relations Mr, *=pm~*, etc. For the
separate electrons, the results for the m~'s are well k'nown; for the m, 's,
the results come directly from Pauli's theory of the electron spin. We also
note; that 3/II. ' and 3/I~' have diagonal matrices, with diagonal values 3llz,

and Ms (in units of h/2~). Now it can be proved" that if we have a set of
matrices related by the commutation rules 3II& "3/II,' —3/II.' 3II&&=—
(h/2m. i)Mr. *, etc. ; if these have components only between a limited set of
stateand if Mz, * forms a diagonal matrix; then the whole matrix is uniquely
determined, except for a phase constant; further, 3II.' must have integral,
or half integral, characteristic values 3III, , ranging from a value —L to L; the
states can be described by the values of3/IL„so that can be taken as a quantum
number. Then the matrix components prove to be given by

1 h 2

Mr~(Mr/(Mr j1))Mr,*((Mr+1)/Mr) =—— [L(L+1)—Mr(Mr+1)]
4 2'

Mr, '(Mr. /Mr, ) = Mr,
h

[(M ')r'+(M )r'+(M ')r'](M /Mr') r= —L(L+1)g(Mr/Mg').
2'

Such a set of matrix components is the unique description of a vector L,
in its (2L+1) possible orientations. Similar results apply to Ms.

In our case, these relations lead immediately to the following results.
In the first place, the 3III. 's depend only on orbital coordinates, the M8"s
only on spins. Thus the 3/IL, 's can have components only between two
wave functions in which the spin appears in the same way (and which thus
have the same Ms). Similarly Ms*'s can have components only between
states of the same Ml, . Therefore for each 3/Iq there are a number of states of
the multiplet, with different ML, 's and having matrix components of the
ML, 's between them as given above. These different sets of states, on the
other hand, can differ only in the spin function, so that the components of
3/Il. *'s are the same for each set with each 3I&. Similarly, for each 3/I&, there
are a number of states, with different spin functions but with the same orbital
functions, different 3llq's, and components of 3/Ig*'s just as above. The
result is an array of terms which can be plotted in precisely the rectangular
form used in the paper, and corresponding to the (2I.+1) orientations of
the vector L, combined with the (2S+1) orientations of S.

2~ Born, Heisenberg, and Jordan, Zeits. f. Physik 35, 557 (1926).


