
NOVEMBER 1, 1989 PHYSICAL RE VIEW VOI. UME 34
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ABSTRACT

It is proved rigorously for multipole radiation that the transition j=O~j =0
cannot occur. The relative intensities of the lines of the multiplet 'P~'D are cal-
culated. They are in the ratio 3/2~5/2:1 /2~3/2:3/2~3/2-'1/2~5/2 =10:5:2:1,
approximately. This is not in agreement with experiment in that the weaker lines are
not observed. The relative intensities of the intercombination lines comprising the
multiplet 'D~'P are calculated, using in part the Darwin-Pauli theory of the spinning
election as applied by Houston to the study of intercombination lines. The line
'D&~'P2 always is strongest according to the calculations, and the experiments
confirm this. The line 'D2~'Pi is about half as strong, which also checks experiment.
The intensity of 'D&~'Po varies, however, from zero to a value of the same order of
magnitude as that of 'D2~'P&. This is in disagreement with experiment in that
the line is not observed. This is the same sort of disagreement as for the multiplet
'P~'D. It is concluded that Bowen's hypothesis, attributing the emission of the
"forbidden" nebular lines to quadrupole radiation, is substantiated to some extent,
but not fully. The discrepancies between theory and experiment may arise from the
simplifying assumptions introduced.

C ERTAIN lines in nebular spectra have been interpreted' as due to
transitions in 0 III, N II, 0 II and S II, occurring in violation of La-

porte's rule. According to theory, ' these lines can only be emitted either when
an electric field (or an inhomogeneous magnetic field) is present, or when
the atom is left undisturbed for a time long enough that quadrupole radia-
tion' can become effective. The first possibility has been considered' and
found to be improbable, due to the non-observation of a broadening of
the Balmer lines such as would be expected. Accordingly, the other alterna-
tive (corresponding to the hypothesis of Bowen) is treated in the present
paper. The rigorous handling of this problem would require calculations of
a complication hardly justifiable, but it is hoped that the work here presented
is sufhcient to warrant a qualitative conclusion. In particular, we cannot
give the relative transition probabilities from the normal state to excited
states corresponding to difi'erent electronic configurations (such as (2s)'2p3s
and 2s2p' in 0 III). It should be remarked in passing that the emission

For a full discussion, see F. Becker u. W. Gotrian, Ergebnisse der exakten Naturwissen
schaften, Bd. 7, 8 K (1928).

~ I. S. Bowen, Nature 123, 450 (1929).
3 E. W'igner, Zeits. f. Physik 43, 624 (1927) and 45, 601 (1927). Also J. v. Neumann and

E. wigner, Zeits f. Physik 49, 91 (1928).
' For the development of the theory, see I. I. Placinteanu, Zeits. f. Physik 39, 276 (1926)

and J. Frenkel, Elektrodynamik (1926) Bd. I, p. 93. Also see A. Rubinowicz. Zeits. f. Physik
53, 267 (1929). This will be referred to as l.c.
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1248 JAMES H. BARTLETT, JR.

of forbidden lines, in the optical region, under conditions that subsist in the
laboratory, must have another cause than quadrupole radiation, for to talk
of an undisturbed atom in this case would be absurd. On the other hand,
it may be possible to ascribe the emission of forbidden x-ray lines to quadru-
pole radiation, since the action of external disturbances for the inner electrons
is much smaller and since the quadrupole radiation is much greater because
the wave-length is comparable with the atomic radius. 5

It was possible for Rubinowicz' to show that the radiation in any given
direction from a multipole has, at large distances, the properties of a plane
wave. The intensity of radiation in the z direction is determined by the time
mean of the s component of the Poynting vector S, so that if A is the vector
potential, and A* its complex conjugate, we have:

ck' ck'
(sS) = [sA][sA*]= (AQ *+A„A„*)

Sm Sx

ck'
[(A,+—iA„)(A,+iA„)*+(A, iA„)(A-,-iA„)+]

Sx 2

where c =velocity of light, v =frequency of emitted light, k = 2s.v/c, and s de-
notes a unit vector in the s direction. From formula (2) of Rubinowicz, '

~
—ikR

A„=— i.dT
c R

where the time factor e' '"' is omitted, i signifies the component of current
in the x direction, and R is the distance from the source of radiation to the
point under consideration. Let r be the distance from the center of the atom
to this same point.

Then
e—

iver

A —— i f,'f'd~
c r

Expanding in series, and letting i =eP/m, where p is the momentum,
—ikr

p,d + skip, d +
mc r

The first term gives the part due to dipole radiation (Rubinowicz' p. 272)
the second that due to quadrupole radiation (l.c., formula (14), p= 1), and
so on. Thus, we shall deal with matrix elements of the types p, zp, s'p, etc.
For quadrupole radiation, therefore,

A,+iA„s(P +iP„); A —iA„z(p, ip„). —

The problem then essentially reduces to calculating the matrix ampli-
tudes of s(p +ip„) with aid of the relation

t
+ ~ ~, &,~

s(Pe+ zPv) )n, l',i', m—1 ~sn', l",j",m(Pz+ &P )n, l', jv', m1—
5 I owe this suggestion to Professor %. Pauli, Jr.
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where the summation is to be taken over all such intermediate states as
are accessible both from the end state (n, l', j'. m —1) as well as from the
initial state(n, l, jm, )

I. QUADRUPOLE RADIATION BETWEEN STATES OF THE SAME MULTIPLICITY

The following formulae are necessary for our calculation:
a. Zeeman Lines.

A,' 1 A,'
A~+q, , —— —(j+m)(j+m+1); A„,;= m'

j(j+1) 2
'

jV+1)
1

A +&, ;+~ = ——(j+m+ 2) (j+m+ 1);
(j+1)(2j+3)

TISA-,.=, . „„.„l(j+» —
1

A; g 1
A gi, ; p= (j+m)—(j+m 1);-

j(2j 1) 2—
7

A, gA, ; &=— (j'—m')
j(2j—1)

b. Multiplet Lines.

CJ g G; A g, ( g= P(j, l)P(j —1,l)—
4jl

j,l~l= —1 ' Jp=G; A, , ) g

j—1,l
J+g=G; gAj, g g

2j+1=C . . —P(j, l)QV, l)
4jl(j+ 1)

C=—;QV,1)Q(j—1,1)
4jl

~z=o

C 2l+1 2j+1
Jo =G; A, ( = — R'(j, l)

4jl l+1 j+1
C 2l+1

=G, &A;, &

' ———— P(j, l)Q(j —i, l)
4jl l+1

CJ i=G; A; i, &+i= Q(j, l+1)Q(j—1,l+1)
4j(1+1)

C 2j+1~1=+1 ' Jo=G~ AI. ~+~ = —. . P(j,l+1)Q(j,l+1)
4j(1+1) j+1

Ji+™ ;G&A;&+ &= , 'P(j, l+ 1)P(j—1,l+ 1) .
4j(l+ 1)

'See W. Pauli, Handbuch der Physik, Bd. XXIII, p, 67 and p. 243 in particular, and
the accompanying text, fop @ thoroughgoing discussion.
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Here are made the following abbreviations:

P(j, l) = (j +l)(j +l+1)—s(s+1)
—Q(j, l) = V —l) (j—l+1)—s(s+ 1)

R(j, l) =j (j +1)+l(l+1)—s(s+1)

where s =0 for singlets, ~ for doublets, etc.
One verifies readily that

P(j, l) =R(j,l)+2j l

—Q(j l) =RV l) —2(j+~)l.

The A's above are squares of matrix amplitudes.
Now let v =x+iy, p„=p +ip„, m =x—iy, p„=p —ip„.
In the calculations, products of the form AB=zqv, s, vy occur, where

the letters e to f denote values which the inner quantum number takes on.
Such products are listed in Table I. (AB =BA)

TASI.E I. PrOduCts AB.

7' j—1
V.

1—1 &

Zj V
j-1

j—1 j

(jz—m2) (j—m+1) (j—m)

j2(2j—»(2j+»

Z? V?j 1
Z? V

~+1
j+1 j

Zj~V j

j+1
j+1

(j2—mz)(j —m+1)m m2(j+m)(j —m+»

j'U+» [(2j—»(2j+1)]' ' [j(j+»]'
(jz—m')(j-m+»(j+m+1) m(j+m)(j-m+»(j+m+»

j(j+»(2j+»[(2j—»(2j+3) jlj& j(j+» [(2j+»(2j+3)j'
(j+ )(j- +»U+ +»

(2j+3)(2j+»(j+»'

Z .V.+? j
J

Zj Vj+1
j+1 j+2

Z? V?j j+1

j j+1
Zj+lVj+1

m2(j —m+2)(j-m+»
j(j+»'(2j+3) j+1 (j-m+»(j+m+»(j-m+»(j —m+2)

j+lV j+2
m(j—m+»( j-m+2)(j+m+1) (j -m+1)(j +m+»'(j —m+2) (j+»(j+3)(2j+3)(2j+5)

(j+»'(2j+3) [jU+2)]' ' (2j+3)(j+1)'(j+2)

The procedure is to determine [(sp,) "„'I",~', ,I' and then to sum over m to
eliminate the effect of spacial degeneracy. Natural excitation is assumed
to be the case.

Let

3j'+3j—1
r(j) =

5

The products AB given above are dependent on m. We sum them over all
possible values of m. The-results are given in Table II

In the case of the multiplet 'P~'D, the intermediate state can be either
a P—state or a D —state. We shall calculate the relative intensities of the
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lines of this multiplet assuming (1) that there is one intermediate P —state
effective and (2) that there is one intermediate D —state effective.

A sample calculation for the line 'Pl/2~'D3/2 follows.

Case (I).

(
n, l, 1/2, m n, l, l/2, m n', l, l/2, m n, 1,1/2, m n', 1,3/2, m

Spv)n, 2, 3/2, m —i S nl, l/2, m pvn, 2, 3/2, m —I+S 1n, 3/2, pmvn, 2, 1/2, m —i ~

Using the relation
n', 1 n', 1 n', 1

Pvn, 2 2Z'ZSSPn 2 8n 2

we calculate that

n', 1 4 n, l, l/2 n', l, l/2 28 n, l, l/2 n', 1,3/2g [sp. ] (m) (i,2) —A:,i, i/iA, a, ay. + A ', i,s/aA„, Q, 3/2
9 45

4
n, 1,1/2 n', 1,1/2 n', 1,1/2 n', 1,3/2

9/5) / v', , /v, , / v, , / A

n 1 nl n 1 40 14 4 n', 1 n, 1 n', 1= (~-,2 )'A- .iA-. ~ + =4. 3(v„,2 )'A„,iA„,~.
9 45 9

The relative intensities are then as follows:

3/2 —&5/2: 1/2. —:&3/2:3/2~3/2: 1/2 —+5/2 = 10 .8:4. 3:2 .8:1.8

Case (2).
The relative intensities when a D —state is intermediate are

3/2~5/2: 1/2 —+3/2: 3/2-+3/2: 1/2 —+5/2 = 23.8:14:4: 1

Only the line 'Pl~~'D2~ is observed experimentally. It is to be noted that
the transition. j=2—+j=2~1 is especially weak, as one would expect. This
calculation is in error insofar as it leaves out of account the effect of the possi-
ble intermediate state 2s2P4 4P, which lies so low that it may have some in-
fluence. Transitions to and from this state would, however, be intercombina-
tions, and so it is believed that its effect is quite negligible.

Since m must change' by + 1, it is a trivial conclusion that the transition

j=0—+j =0 cannot occur for multipole radiation. A corresponding rule, '
which is not exact in that it neglects the interaction of angular momenta
of spin and orbit, states that the transition l =0~i=0 cannot occur. The
rule for the inner quantum number, is however, perfectly rigorous (for mul-
tipole radiation). When, however, electric fields or similar influences are
present, then both of the above rules will be violated.

II. DIPOLE RADIATION FOR INTERCOMBINATIONS BETWEEN STATES
OF DIFFERENT MULTIPLICITIES

i. The Secular EguaIfions and Perturbed TVave Functions. To calculate
quadrupole radiation for intercombination lines, we must first know the

' This follows from the fact that the matrix elements are of the type z"P, as already stated.
8 A. Rubinowicz, Phys. Zeits, 29, 823 I,'1928),
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dipole radiation to or from the intermediate state. It is simplest to treat
as intermediate states those arising from the 2P3s configuration. The 2P 3d
configuration can probably be neglected, since the combinations with the
ground state are rather weak. As to 2s 2p, ' a straightforward method of
attact such as employed for Zp 3s is much too complicated to be worthwhile.
For this reason, the present paper deals only with 2P 3s. A short discussion
of 2s 2p' is given later.

To calculate the dipole radiation, we make use of the method developed
by Houston for determining the wave functions which result from the dis-
turbance of symmetry coming from the mutual interaction between the an-
gular momenta of spin and orbit. The function of the co-ordinates of one
electron may be written as R&„&"& P& &, where l is the azimuthal quantum
number, and m& its projection on a prefered axis. Also,

( si~ag)! im, p

P ~=(l —m )~ sin»~ tl —'+~& —e
dcos8

The two possible values of the spin variable are denoted by S and Sp,
respectively. The perturbing energy arises (1) from the electrostatic interac-
tion of the two electrons and (2) from two magnetic interactions, namely
between the spin of each electron and its orbit. As unperturbed wave func-
tions of (2p)', we take the following":

i 2 ( )i(PIP,o(1)P i(2) P,o(2)P, i(1)}S(1)S (2)

& '= (-')"'P '( ) ~'( ) IS-(1)Sp( ) —Sp( )5-(2) }

lp»'=(-')"'IP '(1)P '(2) —Py
—'(2)P "(1)}5»(1)5»(2)

f~'= —', IPg'(1)Pg'(2) —PP(2)Pg'(1). j IS (1)Sp(2)+Sp(1)5 (2) }
1ip~= —' IP, '(1)P,~(2)+P, '(2)P, '(1) }IS (1)Sp(2) —Sp(1)5 (2) }

P o (t)i~sIP~o(1)P~&(2) P~o(2)P, &(1) }Sp(1)Sp(2
6'= (-')'"IPi'(1) ~ '(2) — ~'(2)P '( ) }5-( )5-( )

f„'=g IP, '(1)Pg'(2) —Pg '(2)Pg'(1) } I5»(1)Sp(2)+Sp(1)S»(2) }
fp' —', IPg '(1)P,'(——2)+P,—'(2)Pg'(1) }I5 (1)Sp(2)—Sp(1)S (2) }
f, ' = (-', ) '~'Pg'(1)Pg'(2) IS (1)Sp(2)—Sp(1)5 (2) }

P» '=(-', )"'(P,—'(1)P,'(2) —P,—'(2)P, '(1) }Sp(1)Sp(2)

fq '= i IPg'(1)Pg '(2) —PP(2)Pg '(1) } IS (2)Sp(2)+Sp(1)S»(2) }
P,

—~=pI PP(1)P,—'(2)+PP(2)P,—'(1) }[5 (1)Sp(2)—Sp(1)5 (2) }

rP» '= (—', )'~'IP, '(1)P,—'(2) —Pg'(2)Pg "(1)}Sp(1)Sp(2)
'=(-')""Pi '(1)P '(2){5-(1)Sp(2)—Sp(1)5-(2)}.

' W. V. Houston, Phys. Rev. 33, 297 (1929).
See J. A. Gaunt, Phil. Trans. A228, 184 (1929) for similar functions.
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The common radial function is not written. The superscript of P specifies
//1 = pm/+//0„ the quantum number corresponding to the projection of
the angular momentum in a fixed direction, which is a constant of the mo-
tion when the atom is not subject to an external field. The subscript of
P serves to distinguish between functions with the same m. Since, for an
undisturbed atom, terms with diferent m cannot combine, the original fif-
teen-rowed secular equation may be broken up into (1) two equivalent two-
rowed equations, (2), two equivalent three-rowed equations, and (3) one
five-rowed equation. From (1), one solves for the energy levels which are
consistent with m=2 and these are 'D2 and 'P2. One also has a possibility
of //0 = 1 for these, and so from (2) we obtain them and 0P1 in addition. From
(3), we obtain all the energy levels, namely 'D0, 0P0, 1,0, and '50.

The procedure adopted here is to start out with wave functions which
are correct zeroth approximations if only the electrostatic interaction of
the electrons is considered. Of these functions written above, 11/00 and 11/,

0 are
not such. Applying a perturbation calculation, " the perturbation being
the electrostatic interaction, we find for the proper wave functions,

1D ~

P 0 —(1)1/2P 0+ (0) 1/2P 0

15' ~ P 0 — (0)1/2P 0+(1)1/2P 0

The problem is then to find linear combinations which are correct zeroth
approximations when the magnetic interaction resulting in the splitting-up
of the multiplet is taken into account.

If we define

h2 Se2 (' 1
+12 ~ ~12

16x2 mp2C2 y

and
DER

Vg= )
'Y12

AE2
I'2 =

f12 +12

where AB& and AE2 are the excitation energies of 'D2 and 'Sp, respectively,
then it is possible to write the secular equation for m =0 as follows:

1

(1/3) I/2

(8/3) 1/2

0 1

—1
—1

(1/3) "' —(4/3) "'
(g/3) "' (g/3) "'

(l/3)1/0

(1/3) 1/0

—(4/3) '"
I'~ —e

0

—(g/3)"'
(8/3) "'
(g/3) "'

0

P2 —e

=0

The energies are measured from a zero between the two outer triplet
terms, which would be the energy of the unresolved triplet.

"This is in every respect the same as that of Gaunt (ref. 10) except that we use normal-
ized functions.
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The calculation may be simplified" by considering the triplet by itself
and 6nding the wave functions for the various values ofj (in zeroth approxi-
mation). Thus, for m=0, we solve the secular equation:

0
—1 =0

obtaining as roots el = —2, e2 = —1, e3 = 1 and as wave functions

~3 P2:4 '=(-')'"(4 ' 6'+2—0 ')

«. 'Pg.'pg'= (—')' '(%f' '+pp')

~i Po:4 '=('-')"'(4 ' —4 ' —4 ')

Then, for j= 2

0 f 0

1 6 21/2

0 21/2 P
=0

and for j=0
f 0 f 0

—2 —c —2(2) '"
—2(2)U&

=0

The roots become:

'So.'« ——(—,') [F2—2+ {(72+2)'+32 }"'J
~D, :«= P) [y,+l+ {(y, —l) 2 —8 j ~1~]

3P,:.,=(-,') [l,yl —{(V,—l)' —8}'»]
'Pl. e2 = —1

'Po'.« ——(-', ) [I'2—2 —{(I'2+2) '+ 32 }'"]
The wave functions are:

m=2 'D:(l/c ~ )'"(-2"V-'+cA«')
'P, :($/c3/&)'~'(2 "I'p '+cap ')

'D:(&/ ~ )'"(—0-' —4'+cd ')

'P: (&/"~.)"'(0-'+4, '+c 0 ')

'P: (l/2)'"( —0-'+0 ')

"This became apparent during a discussion of the matter with Dr. L. L. Rosenfeld
whom I wish to thank for his helpfulness.
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m=o '50'. (1/coho)'"(2 2."/'P '+c gov')

(1/C4/4, )1/2( 21/2p 0+Coplvo)

322 . (1/C g ) 1/2(21/2' 0+C P 0)

'&1:(1/2)"'(0 '+0 ')

'&0 (1/el~0)""(2 2"/V. ' —CA ')

m= —1 'D2.'(1/c462) '/'( —p
—'+p —'+ C4$4

—
)

'P2:(1/C262)'"g» ' p—'+co/4 ')

'&:(1/2)"'(4- '+0 ')

1D ~ (1/c g ) 1/2(22/2$ —2+c P
—

2)

0P, :(1/c062) "'(—2"'f '+cog ')

In these formulae, 6; means the separation, in terms of e, of the two levels
with the same j. Thus: 60 ——Ioo

—olI. For brevity we have written

c =
I
2+0'I c =

I
2+4

One Ands that

c~c5 ——Sand c3c4 ——2. %hen 7~ and I'2 are large, c& —Ap, c4 —62.

For the case where interaction between spin and orbit is negligible, the
triplet has the 2:1 ratio of separations. When the interaction between the
electrons is zero, (thatis, Fl= Y2=0), el= —4, 02=00= —1, 4=o002, or the
'Sp and 'D2 levels merge" together, as do the 'P& and 'P& levels. The quintet
degenerates into a triplet with separation ratio 1:1. In the case treated by
Houston, neighboring levels such as 'P& and 'P~ and 'P& and 'Pp merged to-
gether likewise.

Following Houston, let
I

h' Ze' 1
Yln ~ln

16m' mp'c' r'

and X=AE0/y/„, s=D'J4/yl„, where AZ2 is the singlet-triplet separation.

"For details as to the reason for this, see S. Goudsmit, Phys. Rev. 31, 956 (1928). For
the case of (jj) coupling in the singlet-triplet case, see W. Pauli, Handbuch der Physik, vol.
XXIII, pp. 254-257. The two pairs of levels ('P1 and P2 P1 and 'P0) are expected to form a
relativistic doublet.

We may note that the splitting-up of the multiplets 'P and 'D of the configuration 2s2P'
is, according to the approximation of Goudsmit, zero. One finds for the (ii) coupling case
(1) for j1=1/2, j2=1/2, j3=1/2, j4=3/2 onestate with j=2 and one with j=1, (2) for j1=1/2,

j& ——1/2, j3——3/2, j4=3/2 one state with j=3,one with j=0, and two each with j =3 and j=1,
and (3) for j1=1/2, j2=3/2, j3=3/2, j4=3/2 one state with j=2 and one with j=i. The
F value for j=3 is 0; forj= 2, ZF =0; for j= 1, ZI' =0; and forj=0, F =0.This gives immediately
the result of non-splitting. Actually, one observes a small splitting-up in 0 III, both triplets
being resolved into two lines each. This is no doubt due to the presence of the other terms
arising from the same electronic configuration. In C I, N II, and F IV, on the other hand,
the triplets appear unresolved.
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Also, choose as the functions of the unperturbed system the following:

pi=( —',) [Pii'(1)P, (2)+PP'(2)P/ (1) j [S (1)S3(2)—S (2)S//(1) }
4 =(-')"'[ '( ) 1" '( )- o'( ) '( )} -( ) -( )

yp=(23) [Pp'(1)PI (2) —P, '(2)P, (1) j [S (1)S/2(2)+S (2)S/2(1) j

4 3= (-:) / [ PpP(1) Pz™+1(2)-PpP(2) Pz-+1(1) }"(1)"(2)

With no magnetic held, the secular equation is

7 m 1 6 7 =0

Here

and

S2 1

r = (-,') '"(l+m) "'(l—m+ 1)'"

r' = (-,') "'(l—m) "'(i+m+1) '".
When the triplet and singlet can be handled separately, the energy values
are:

eg =X,

The wave functions are:

~gy = —/ —1.

il'11 = [ 1/(l+ 1)(2E+ 1) j "'[(21)"'
[ (1+m) (E+m+ 1) }' "iEi2

+ j (l m+1)(l+m+—1) j "'/Ei +(2)' 'I (l m)(l m+—1) } /'—ili3]

pp= [1/l(l+1) j"'[—(-')'"[(l+m)(l m+1) j—"'$2+m/3
+(I)"'[(l—m)(i+m+1) j '/'y3]

iliv ——j 1/l(l+1) j "'[('2)'"[(E m)(l m+1)—j—'"$2—(l' m')'/'/13—3

+(-', )"'j(l+m)(E+m+1) }I/'y, ].
Applying our previous method, we then solve the secular equation (j=l)

This results in

—1—e

(E2+l) I/2

(E2+l) 1/2

X—e
=0

il/I = (1/czhz)"'[czil I—(l +l) /
iE/3 }

il'III= (1/CIIIA/) [CIIIQI+(l +l) $3}
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where

rz=
I 1+« I

an«»z=
I 1+«zz

I
'z.zzz=f'+I.

When X is large, cq —~I
For the 2P 3s configuration, the wave functions fz, Pzz, Pzzz, Pzv are then used,
with l =1, to find the matrix elements.

2. The TriP/et SeParations. For 0 III,
~Sp —P:Av —43130

'D2 —'P:Av —20120.

It is at once seen that the ratio of separation 2:3 as derived from a first order
perturbation calculation" is not in agreement with experiment, perhaps due
to second order effects. Ke shall use the experimental data for what follows.

'P2 —'PI'. av = 193

Pi —Pp'. Av = 116.
Then

1 1 4( I'z+1)«=—[Yg+1—[(I',—1)'+8 ] '~'] =—2—
2 2 (Y'z —1)'

Likewise,

If we assume

then

and

YI—3

8
CI—

V2 —6

2
so that c3 ——

Fg —3

Y2 —6

I' = 100 ( = 309/3),

V2 ——431, FI.——201

~3 =0.99) eg = —2.02

The separation ratio is then 102:199, in much worse agreement with experi-
ment than the results of Gaunt. It should be noted that the calculation here
neglects the interaction between each electron and the orbit of the other,
and also the magnetic interaction between the two electron spins.

For N II,
ISp —3P:Av —32670; Pg —Py = 83

'D2 —'P:» =15300 ) 'Px —'Pp =50

assuming"

v —206160 for «Sp .
If we take y =45 ( —133/3), then Fq = 726, Yz ——340 and « = .99, sz = —2.01.

Here the separation ratio is 101:199.
'4 Reference 1, p. 65,
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3. The Matnzc Amplitudes W.hen one calculates integrals such as fltzzvp. 2dr

the only ones that do not vanish are as.in this case, where P& and $,2 have the
same spin factor. We abbreviate as follows: v(1b.2) = fztlzvf, 2dr, etc. , and
z(f.') =fp.'zzt)ldr F.urther let a= fP008P, 'dr and b=fPI0«P0'dr A.list of
integrals needed in the further calculation is given below.

8(0.') = o

8(1b.2) = 0

8(6') =o
zg, ') =0
«Q-') =b

z(4.') = b

8(xbz') = o

8(zb-') = a

864') =a
«941) =b

zg ') =0
«44') =o

8(zb')=a 8(4')=0 8(0 ')=a vg, —2) —a21/2

8(P.') =0
")=—a

z($0') =0
z(0-') = b

«(6 ')=b

8(A') = —a 8(4- ') =a 8(4- ') = —a

8(zb 0) —a/31/2 vg, 0) — a21/2/31/2

z(P, 0) =b21/2 z(zb I) =b z(y, 2) =0
z(6') =b z(4- ') =0 «8- ') =b

z(zbxv') = 2b/3"' «Qv') =b2'"/3'"

One readily verifies the Laporte rule for dipole radiation for 'D~'I'.
The matrix components which we need follow4

1D ~lP 4()+«) 4 — ')'i'
z(m, m) =-

(czhzc462) '/' 3

b ~z
'D2—4'P2' .'«(m, m) =-

(c,h )'/' 2'

]D ~3p I ~
b( 1+c4cxxz) — 4—m'

z(mm) =,
(czxx&zc4~2) "'
a(1+cxcz) 1

Pl + P2'. v(m, m 1) =—— — [(3™)(2—m) ]"'
(cz/1 IC2/I 2) '" 6

IP1~2PI: v(m, m 1) = —— [(1+m)(2—m) ]' '
2(czhz) "'

'P,—+2P0'. 8(m, m 1) = — (2/3)—'/'(4+ clcz)
(czh IC150) '" (m=1)

2P2'~2P2: 8(m, m 1) — —[—(2+m) (3—m) ]"'
2(C2/12) '"

2P2' —4 Pl.'v(m, m —1) = — [(2+m) (1+m) ]' '
2(6) 1/2

a(1 —cicxxx)
0PII —42P2'. 8(m, m —1)= — — [(3—m)(2 —m) ]"

(cxxzdzc262) 6

'P I' —&2P I .'v(m, m —1)=— [(1+m) (2 —m) ]"'
2 (CIII~1)

'P ' —+'P
1/2

8(1,0) = (—4+clcnz) .
(czzz&ICA0) "'
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It is seen, on going to the limit of non-intercombination, that these matrix
elements are precisely equivalent to those ordinarily used, as for instance
corresponding to the formulae given at the beginning of this paper. This is a
useful check on the correctness of the calculation. Another check would be to
go to the limit of (jj) coupling, but, to the writer s knowledge, the intensities
have not been worked out for this case. Granted that this probem had been
solved, however, it might be possible, without going through our perturbation
calculation, to derive the necessary matrix components by a process of inter-
polation between the two limiting cases. This method should be particularly
advantageous in treating the 2s2P' configuration, where the wave functions
appear in the form of determinants" with four rows and columns, and where,
by a straightforward method such as used here, one would need to solve two
secular equations of the fourth degree, for j= 2 and for j= 1, respectively.

4. The Irrtensities (Amplitudes Squared) and the Summation Rule In.
Table III, the squared amplitudes for the transitions of 2p3s —2p' are given,

TABLE III. Intensities for 2P3s —2p'.

'So

3P

'Po

Sum

Limit of

sum

1P

2 {c,c,—4}'
Ce~0 CIAI

10 {1+cecr }'
C462 CZ51

10 {cecr—1}'
C3l-i 2 CI2-r 1

3

Czt-11

2 {cree+4}'
Clko CIA1

12(c12+1)

Czr-11

12

3P2

C462

15

C362

5

2

10

10

{err rce+4 }'

Cee-to CIII~1

10 {cecrrr —1 }'
C4e-12 CI I12-11

10 {1+cecrn}'
C3r-12 CIIIt-11

3

CZII61

2 {4—crcnr }'
Cle-r 0 CII Ir-11

12(czrz'+ 1)

CZII61

'Po Sum

10

10

30

Limit o&
sum

10

10

30

together with sums from a given upper level or a given lower level. To cal-
culate the sums, we use relations such as cz+cs=ho, can+8 =csho, etc. The
limit of the sum, as the electrostatic interaction between the electrons is
increased, ia also given. In general, these limits are proportional to the
statistical weights of the corresponding levels, excepting when 'PI is the upper
level, where the limit is twice as much, probably due to the existence of
two lower levels ('S and 'D) of the same multiplicity. (The 2p3s eP level
may, in the limit, only combine with the one level (2p)' 'P.

'6 See J. C. Slater, Phys. Rev. (being published). The separations between multiplets
of the 2s2p3 configuration, as well as of 2p2 are in fair agreement with theoretical expectations
although there is probably a mutual disturbance, givinga second-order correction. I am in-
debted to Professor Slater for the privilege of seeing the manuscript before publication.
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III. QUADRUPOLE RADIATION FOR INTERCOMBINATIONS BETWEEN
STATES OF DIFFERENT MULTIPLICITIES

As before, we shall calculate for extreme cases, and suppose the actual
relations of intensities to correspond to an intermediate case.
Case 1. 'P the intermediate state.

ab(1+cqcz)(1+c2cz)(2 —m) [(2+m)(3 —m) }'
'D,~'P2 [vv](m, m —1)=-

62czA1(18C3c4) '"
11a'b'(1+ C4cz) '(1+c2cz) '

8'V

3cz c3c46y A2

ab(1+C4cz)(2 m) [—(2+m)(1+m) }'"
b 1D. 2~2Pz [vv](m, m —1) =

czA1(12C462) '/'

7azb2(1+c4cz) '
SS

6cz 6 y c452

c. 'Da —&3Po
2 a'b'(1+ c4cz) '(4+ czcz) '

3cz cgc46pkg Ag

For 0 III,

cz =Ai= 45.6, c~-
Y2 —6 425

2 2
and c3-

y~-3 198

The relative intensities are then a'. b:c=3.9:1.2:1.9
For N II,

8 2
cz=4, c~ ——

~ End c3= — ~

720 337

Here the relative intensities are u. b:c=1.9:1.2:1.4
Case 2. 3P2' the intermediate state.

abm[(2+m)(3 —m) }'"'D2~'P2' [vv](m, m —1)=—
62(8czc2) '"

13a'b'
(vv)'=

462 c3c4

lD ~3P abm [ (2+m) (1+m) }"'
[vv](m, m —1) =

31/2(C g )1/2

25a'b'
(vv) '=

24c4hg

The relative intensities are a.'b = 39:25. c = 0
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Case 3. 3P'1 the intermediate state.

ab( —1+c4czzz) (1—c3czzz) (2—m) I (2+m) (3—m) I
z Z'

a. zD,~'Pz [zz](m, m —1)=
czzzkzz1z(18czc4)

11a'b'( —1+cgczzz) '
SS

3&III &3t 4~1 ~2

b. 'D2~3P 1

C. 'D2~3P8

7 a b ( 1+c4czzz)
S'V

6 CIII 61 C452

32 a'b'( —1+c4czzz)'
I [zz](10) I

'=—
3 CIII Al C160C4~2

The relative intensities in this case are 0, '. b:c=1i:7:8.
The experimental data indicates that the relative intensities should be
approximately a'.b: c = 2:1:0.

Deism ssl:oN

The purpose of this paper has been to test the idea that quadrupole radia-
tion is the important factor in causing the nebular lines (forbidden for dipole
radiation) to be emitted. One result stands forth quite clearly, namely, that,
with such an assumption, the line of a multiplet which should theoretical-
ly be strongest, is in fact such according to the experiments. We obtain a
disagreement, however, when the relative intensities of the weaker line are
considered. This may be because of the simplifications and approximations
made during the course of the calculations.
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inating remarks. It is also a privilege to thank Harvard University for the
award of a Parker Travelling Fellowship, without which study in Europe
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