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THE INTERACTION OF ELECTRON AND POSITIVE
ION SPACE CHARGES IN CATHODE

SHEATHS

BY IRVING LANGMUIR

ABSTRACT

Effect of positive iona generated at a plane anode upon the space charge limitation
pf electron currents from a parallel cathode. —Mathematical analysis shows that single
ions emitted with negligible velocity permit 0.378 (m~/m. }'I' additional electrons to
pass; but with an unlimited supply of ions the electron current approaches a limiting
value 1.860 times that which flows when no ions are present, and the electron current
is then (m„/m, )'1~ times the ion current, both currents thus being limited by space
charge and the electric field being symmetrically distributed between the electrodes.
Single ions introduced into a pure electron discharge at a point 4/9ths of the distance
from cathode to anode produce a maximum efl'ect, 0.582 (m„/m, }'I', in increasing the
electron current. These conditions apply to a cathode emitting a surplus of electrons
surrounded by ionized gas. The cathode sheath is then a double layer with an inner
negative space charge and an equal outer positive charge, the field being zero at the
cathode and at the sheath edge. The electron current is thus limited to (m„/m, }'I'
times the rate at which ions reach the sheath edge. If ions are generated without
initial velocities uniformly throughout the space between two plane electrodes, a
parabolic potential distribution results. If the total ion generation exceeds 2.86
times the ion current that could flow from the more positive to the more negative
electrode, a potential maximum develops in the space. Electrons produced by ioniza-
tion are trapped within this region and their accumulation modifies the potential
distribution yielding a region (named plasma) in which only weak fields exist and
where the space charge is nearly zero. The potential Cistribution in tke plasma, given
by the Boltzmann equation from the electron temperature and the electron concen-
trations, determines tke motions of tke ions and thus fixes the rate at which the ions
arrive at the cathode sheath. The anode skeutk is usually also a positive ion sheath,
but with anodes of small size a detached double-sheath may exist at the boundary of
the anode glow. In discharges from kot catkodes in gases where the current is limited
by resistance in series with the anode, the electron current is space-charge-limited,
being fixed by the rate of arrival of ions at the cathode sheath. Thus the cathode drop
is fixed by the necessity of supplying the requisite number of ions to the cathode. The
egect oJ tiie initial velacities of theions and electrons that enter a double-sheath from the
gas is to decrease the electron current by an amount that varies with the voltage drop
in the sheath. A nearly complete theory of this effect is worked out for plane elec-
trodes. A detailed study is made of the potential distributionin tke plasma and near
tke sheath edge for a particular case and the conclusion is drawn that the velocities
of the ions that enter the sheath can be calculated from the electron temperature if the
geometry of the source of ionization is given.

Experiments with double sheaths. —With large cathodes coated with barium
oxide in low pressure mercury vapor, simultaneous measurements showed that the
electron current density was independent of the cathode temperature and was from
140 to 200 times the ion current density, this ratio being independent of the intensity
of ionization and of the gas pressure but varying slowly with the voltage drop in the
cathode sheath, in good accord with the theory. The observed ratio, however, was
about 40 percent of that calculated, this discrepancy being probably due to non-
uniformity in the cathode coating. Similar results were obtained with double sheaths
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on wire type cathodes, the ratio of the electron current to the ion current through
the sheath ranging from 450:1 at high current densities to 2000:1 and more at very
low currents, this variation being in agreement with the approximate theory developed
for cylindrical sheaths. In these experiments tzvo cathodes were used; one at rather
large negative voltage to produce any desired intensity of ionization, while from the
volt-ampere characteristics of the other cathode the space-charge-limited electron
currents were measured. The ion currents were measured either by cooling the test
cathode so that it emitted no electrons, or by the use of an auxiliary ion collector.

'HE maximum electron current that can flow from a given hot cathode
to an anode in high vacuum is limited by the space charge of the elec-

trons. ' If even a small amount of gas is present and the applied anode volt-
age is appreciably higher than the ionizing potential, the positive ions form-
ed tend to neutralize the electron space charge and thus allow the current
to increase until, with sufficient gas, the current becomes limited only by
the electron emission from the cathode as determined by its temperature.

Since in a given electric field the ions move hundreds of times slower than
the electrons, the rate at which the ions need to be produced in order to
neutralize the space charge is usually less than one pet.ent of the rate at
which the electrons flow from the cathode. In formulating a quantitative
theory for calculating the increase in electron current produced by a given
amount of ionization we meet the difficulty that the ions are produced at
different points within the gas and therefore are not all moving with the
same velocity. Then, too, the probability of ionization as a function of the
electron velocity must be known. The problem thus becomes so compli-
cated that it seems hardly worth while to attempt a general solution.

About 13 years ago the writer derived the equations, given in the pre-
sent paper, for the space charge problem between parallel planes where the
cathode emits a surplus of electrons and the anode emits positive ions with-
out initial velocities. The results, although interesting, did not seem to be
applicable directly to experimental conditions and therefore the results were
not published. Some years later, ' however, by the discovery that all caesium
atoms which strike a tungsten surface at 1300'K are converted into ions,
it became practicable to generate positive ions at the anode in any desired
number, and thus obtain the conditions which were assumed in the theory.

Still more recently in a study of gaseous discharges at low pressures' it
was found that the space charge equations could be applied to the positive
ion currents flowing to negatively charged collectors.

If we consider a negatively charged hot collector or in fact any hot
cathode in a gas we see that there are present in the positive ion sheath elec-
trons as well as ions. In the present paper it will be shown that the theory
which was developed 13 years ago is now applicable to the calculation of the
properties of these double sheaths.

' Langmuir, Phys. Rev. 2, 450 (1913);Phys. Zeits. 15, 348, 516 (1914).
~ Langmuir and Kingdon, Proc. Royal Soc. A10V, 61 (1925).
' Langmuir and Mott-Smith, Gen. Elec. Rev. 27, 449, 538, 616, 762, 810 (1924), and Phys.

Rev. 28, 727 (1926).
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Jaffe4 has attempted to develop a theory of the effect of small amounts
of gas ionization on currents limited by space charge in gases at low pres-
sures. However, he based his entire treatment upon the inadmissible as-
sumption that as many ions recombine in each element of volume as are
produced by ionization within that volume. We now know that even with
the high current densities in a mercury vapor arc carrying amperes, recom-
bination of ions in the gas is negligible, compared to the removal of the ions
by diffusion to the walls and to the' electrodes. Thus the equations which
Jaffe derived are not even approximately correct.

THEORY OF THE EFFECT OF IONS ON SPACE CHARGE CURRENTS

BETwEEN PARALLEL PLANEs

Consider an infinite plane cathode C at zero potential, and a similar
parallel plane anode A at the potential V~ and at a distance a from C.
Let the cathode emit a surplus of electrons without appreciable initial ve-
locities. There will thus be an infinite concentration of electrons at the cath-
ode surface and the potential gradient will be zero, but a finite electron cur-
rent, Io per unit area, will flow to the anode, this current limited by space
charge being given by the equation'

(2) 1/2 e //2 U 3/2

Io=—
9~ m, a2

where e is the charge and ns, the mass of the electrons.
Let us now consider the effect of introducing positive ions without initial

velocities, uniformly distributed over a plane B which is at a distance b

from C. Between Band C there is thus an ion currentI~ per unit area. Because
of the partial neutralization of the electron space charge, the electron current
from the cathode will increase to a new value, say I, per unit area. We as-
sume that the ions and electrons do not collide with gas molecules nor with
each other and that no appreciable number of ions or electrons is lost by
recombination during the passage between the electrodes. Our problem is
to determine how the electron current I, depends on I„the positive ion emis-
sion and on b the location of the source of ions.

Let v, be the velocity of the electrons at any point P which is at a dis-
tance x from the cathode, p, the electron space charge density at P. The
corresponding quantities for the positive ions are denoted by the subscript
p. The signs of all these quantities will be taken as positive.

Then

p,v, =I, and

and assuming the ions have unit charge

1 2 T/gmgvg Vg and 2rm„s, '=(Us —U)e

where V is the potential at the point P and U~ the potential at B.
4 George JaEe, Ann. d. Physik 63, 145—174 (1920).
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Poisson's equation gives

d' V/d x' =4x(p, —p„) (4)

We may eliminate p and s by Eqs. (2) and (3) and then after substituting

we obtain

n=(I~/I. )(m„/m, )'" and y= V/V~

d2@ ~, »2 I,—=2(2)"' — —[4 "'-a(4 -4) '"]
dX2 P' 3/2

(6)

Combining Eqs. (1) and (6) and substituting

we have

d2y 4 I.
[~ '"—-(~. -~) '"-]-

dX2 9 Ip

(8)

Since the electron current is limited by space charge, we impose the condi-
tion d V/dx =0 when x =0, or in other words

dp/dX = 0 when

Integration of Eq. (8) then gives

dy/dX=(4/3)(I /Io)"'[y"'+ cx[(ys y)'"—yB'"—] ]'"

IQNs EMlTTED FRoM ANQDE) Q~ = 1

(10)

According to Eq. (10) the potential gradient at the surface of the anode,
(I]I QB 1), is proportional to (1—n)'~' and so becomes' imaginary if n) 1.
When n= 1 the potential gradient at the anode is zero and the positive ion
current as well as the electron current is thus limited by space charge.

It appears, therefore, that even an unlimited supply of positive ions
available at the anode is not capable of neutralizing the electron space charge,
for the positive ion current cannot become more than a definite fraction of
the electron current, this fraction (according to Eq. 5, when n=1) being
equal to the square root of the ratio of the mass of the electron to that of
the ion.

Examination of Eqs. (8) and (10) shows that when 4s ——1 and u=1 the
equations remain unchanged in form if we substitute 1 —P in place of @.
Thus the curve representing the potential distribution between the cathode
and anode is symmetrical about its central point (X = ~, p =-,'). Between the
cathode and this central point there is an excess of negative space charge,
while from the central point to the anode there is an excess of positive charge.

To calculate the potential distribution we integrate Eq. (10) after placing
@g=1
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The ratio I,/I, is found by observing that 4 = 1 when X = 1, thus

(12)

Table I gives values of X obtained from Eq. (11) by numerical integra-
tion. The values of I,/Io which were used in these calculations as found by
Eq. (12) are given for various values of n in the next to last horizontal line
of the table. '

From the values of I,/Io we see that the electron current increases as
more positive ions are emitted from the anode until the positive ion current
also becomes limited by space charge. When this occurs the electron current
and the positive ion current are each 1.860 times as great as the currents
of electrons or ions that could flow (with the same applied potentials) if
carriers of the opposite sign were absent.

It is interesting to inquire how large is the effect of single positive ions
emitted from the anode, in causing an increased electron How from the
cathode. By differentiating Eq. (12) with respect to n and then placing a = 0,
and I,=I0 we find in terms of Gamma functions

or by Eq. (5)

dI, /d~ = [3—3r(1.25)r(1.5)/r (1.75)]I,=0.378I, (13)

dI,/dI~= 0.378(m„/m, )'I' fol (14)

A similar calculation for the case +=1 involves a numerical evaluation of
the resulting integral giving

dI./dI„= 3.455 (m„/rs. )'" for

A plot of I,/Io as function of a from the data of Table I shows that the
slope of the curve increases gradually from 0.378 at a=0 up to 3.455 at
+=1. Thus the effectiveness of the ions in raising the electron current in-
creases as the field strength decreases in the region where they originate, but
only up to a certain limiting value. Of course when n = 1 the further increase
in the electron current is stopped by the space charge limitation of the ion
current.

The square root of the ratio of the masses of the ions and the electrons
is 607 for mercury vapor, 271 for argon, and 60.8 for hydrogen, and there-

~ In carrying out these calculations it was found convenient to replace p by a new variable
0 such that tt =0'I'. By so doing the infinite value of the integrand that occurs when @=0 is
avoided. When a=1 and @=1a similar difhculty still occurs but the value of X in the range
p = ~ to 1 can be obtained from those calculated in the range @=0 to $ by making use of the
fact already noted that in this case ) is symmetrical about the point @=&.
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fore each positive ion of these gases liberated at the anode will increase the
number of electrons that cross the space by 229, 102 or 23 respectively in the
case of a pure electron discharge (n =0).

TABLE I. Potential distribution between plane cathode emitting surplus of electrons and
parallel plane anode which emits given numbers ofi ons. Table of values of X, the fraction of the dis-
tance to the anode, at which the potential is a given fraction p of the anode potential (zero potential
at cathode).

n = (I„/I,) (m„/m, )'I~; X =g/a
n =0.2 a =0,4 a =0.6 u =0.8 a =0,9 cx =1.0

0
0,02
0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.0532

.1057

.1778

.2991

.4054

.5030

.5946

.6817

.7653

.8459

.9240
1.0000

0
0.0513

.1022

.1723

.2911

.3962

.4932

.5847

.6723

.7570

.8395

.9201
1.0000

0
0.0491

.0981

.1661

.2823

.3855

.4815

.5731

.6612

.7471

.8314

.9149
1.0000

0
0.0467
.0934
.1588
.2714
.3721
.4667
.5580
.6461
.7332
.8198
.9074

1.0000

0
0.0438

~ 0879
.1498
.2573
.3546
.4467
~ 5371
.6245
.7123
.8016
.8940

1.0000

0
0.0419

.0842
~ 1437
~ 2477
.3423
.4324
.5218
.6080
.6958
.7861
.8813

1.0000

0
0.0396
.0798
.1367
.2363
.3274
.4146
.5000
.5854
.6726
.7637
.8633

1.0000

I./Ip
a/ap

1.0000
1.0000

1.0839 1.1872
1.0411 1.0896

1.3237
1.1505

1.5186
1.2323

1.6644
1.2901

1.8605
1.3640

THE SOURCE OF IONS IS AT A PLANE BETWEEN CATHODE

AND ANODE Qg (1.

Let us consider the effect produced by ions that start from a plane B
which lies between C and A. In the region between C and B, Eqs. (6) and
(10) are applicable and thus the value of dP/dX at B is found by putting
p=p//in Eq. (10). Equation (6) is applicable also in the region between
B and A but here o. =0 for there is no ion current. Thus by integration we
obtain the two equations

1

4(1 /f )1/2g —3P 3/4 [pl/2+~( (1 p)1/2 1 I ] 1/2d~—
0

4(I /I, )"'(1—1 )=3I [y"'—y '"I-"'dy
(15)

The constant of the first integration for the second equation was chosen to
make dpjdX at p =p// the same as for the first equation.

Differentiating Eqs. (15) with respect to n, putting a =0, adding the re-
sulting equations and combining with Eq. (5) gives rigorously'

dI, nz. '"
=3@gg'I' —2.622'~'I .

dI„m„
(16)

& The coefficient 2.622 is equal to 3 minus the coefficient 0.378 as given in Eq. (14).
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This equation, which reduces to Eq. (14) if gs ——1, allows us to calculate the
number of additional electrons that can flow in a pure electron discharge
(n = 0) if single positive ions are introduced at any point in the space between
the electrodes. The values given in Column 3 of Table II were calculated
by Eq. (16);the second column represents Xs the fraction of the distance from
cathode to anode at which the ions originate. From Eq. (1) we see that

TABLE II. The increasein electron current caused by ions originating at various positions bet@teen
cathode and anode, a=0. Initial velocities neglected.

0.00
0.001
0.01
0.1
0.2
0.338
0.5
0.6
0.7
0.8
0.9
1.0

0.00
0.0056
0.0316
0.177
0.300
0,444
0.595
0.683
0.765
0.846
0.925
1.000

0.0
0.080
0.217
0.483
0.554
0.582 max.
0.561
0.534
0.502
0.464
0.419
0.378

The ions have a maximum effect in increasing the electron current when
they are introduced at a point which is 4/9 of the distance from cathode to
anode. If a trace of gas is present and the voltage is so high that we may
assume the probability of ionization per cm of electron path is uniform, we
find readily from Eq. (16) (integrating with respect to X) that the average
value of dI,/dI„ is 0.489 (m„/m, )'~'.

If the probability of ionization is greater near the end of the path, as in
the case of low anode voltages, the coefficient will lie between 0.489 and
0.378.

LOW PRESSURE DISCHARGES WITH HOT CATHODE

Let us consider for a moment the phenomena that are observed as we
pass from a pure electron discharge to a discharge at low gas pressure in which
there is abundant gas ionization. When the ions originate at the anode or
at a definite plane between the electrodes we have been able to follow through
the effects produced by even an unlimited supply of ions. But when the ions
are produced throughout all or a large part of the space between the elec-
trodes, we have been able to analyze only the effects produced by a very
small total number of ions (u=0). To understand the typical characteris-
tics of gas discharges, however, we must devise methods of treating the prob-
lem involving a large intensity of ionization throughout a volume. The
nature of the problem will best be realized by considering briefly some ex-
perimental observations.
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Suppose for example, we have a hot tungsten cathode (at zero volts)
capable of emitting 50 ma in a bulb containing mercury vapor saturated at
room temperature. With an anode at 10 volts the current is limited by elec-
tron space charge and is practically the same as in the absence of mercury
vapor. Beginning at the ionization voltage (10.4 volts) the current increases
with the anode voltage more rapidly than in good vacuum until at a voltage
of 15 to 25 volts depending on the vapor pressure, and the geometry of the
tube, the current rises abruptly to the saturation value corresponding to the
cathode temperature.

In this second state of the discharge practically the whole of the voltage
difference from cathode to anode is concentrated in a cathode sheath in which
there is a positive ion space charge; the rest of the volume is nearly field-
free, the space charge of the positive ions being neutralized by low-velocity
or "ultimate electrons" which accumulate in this space until their concen-
tration is hundreds or thousands of times greater than that of the primary
electrons from the cathode.

By means of a sufficiently large resistance in series with the anode it is
possible to observe points on the negative resistance part of the current
voltage curve that lies between the parts corresponding to the two regions
we have just considered. In this transition region the current is limited by
the electron and ion space charges in a double layer or double sheath on the
cathode.

In order to understand the formation of this double sheath, the final neu-
tralization of space charge and the accumulation of the ultimate electrons, we
will first consider the following problem.

POTENTIAL DISTRIBUTION AND CURRENT FLOW RESULTING
FROM THE PRODUCTION OF IONS UNIFORMLY THROUGH-

OUT THE VOLUME BETWEEN TWO PLANES

Consider two parallel plane electrodes A and C separated by the distance
a and let U, be the potential of C taking that of A to be zero. We assume
that 5 ions of charge e are generated per unit time in each unit volume, and
for the present will assume that no electrons are generated by this ioniza-
tion.

We will first consider the case in which there is no maximum potential
in the space between A and C. We will take U, negative so that the ions move
towards C. Then the ion current density I at any plane at a distance x
from A is

I=Sex (17)

but this current is composed of ions having widely different velocities de-
pending on the potentials of their points of origin. The space charge p at
any point at a distance x from A where the potential is U& is thus given by
the integral f(1/v)dI where v, the velocity of an ion which originated at a
point of potential U, is found from
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-2m„v' = (V—Vg) e (18)

&1

p=S(em„/2)'I' (V—Vq) "'dx.
0

(19)

The problem is now to find V as a function of x which satisfies this integral
equation simultaneously with Poisson's equation. By trial the following is
found to be a particular solution

V = V,x'/a' (2o)

which we may now prove as follows.
Substituting this value of V and the corresponding value of V& in Eq. (19)
We obtain

where

p = -', 7rI. Im„/( —2eU, )]"'

I,=Spec

(21)

(22)

is the ion current which reaches C, and S~ is the particular value of 5 which
corresponds to the potential distribution assumed in Eq. (20).
Differentiation of Eq. (20) gives

d V/dx = 2V, x/a' (23)

and a second differentiation and combination with Poisson's equation gives

whence

O'V/d x' = 2 V./a' = —4xp

p = —V,/2xa'

(24)

(25)

We see that both Eqs. (21) and (25) give p independent of x or a uniform
space charge between the planes. Equating the two expressions for p and
solving the resulting equation for I, gives

I = (2e/m )'I'( —V)"'/s'a'. (26)

If, as before, Io is the current calculated by the ordinary space charge equa-
tion, Eq. (1), we see that

I,= (9/x)Ie ——2.865Ie (27)

We now recognize that the parabolic potential distribution assumed in

Eq. (20) is a solution of our problem only when the rate of ionization S has
the particular value S& given by Eq. (22) and where I, is given by Eq. (26).
Curve 1 in Fig. 1 illustrates this parabolic distribution. It will be noted by
Eq. (23) that the potential gradient is zero at A, i.e. at x =0.
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If S&S~ the potential distribution curve will lie between the straight
line 0 and Curve 1 in Fig. 1, but will not be parabolic. On the other hand,
if S&S& it is evident that there will be a potential maximum between A and
C and that Eq. (26) can then be applied separately to the two branches of

-0.8

-/.0' a

X/a

Fig. i. Potential distributions between plane electrodes when ions
are generated uniformly between them.

the curve on the opposite sides of the maximum. The potential distribution
curve is thus still a parabola but the origin is no longer at A. The curves
mar'ked, 2, 3, 5 and 10 in Fig. 1 have been calculated for values of S equal
respectively to 2, 3, 5 and 10 times S&. The equation of these parabolas is

(28)

EFFECT OF THE ELECTRONS GENERATED BY IONIZATION

If the positive ions in the foregoing problem are produced by the ioniza-
tion of a gas an equal number of electrons will be generated simultaneously.
If S&S~ there will be no potential maximum between the electrodes so that
these electrons will fiow to the electrode A without having appreciable effect
on the space charge, for it would take an electron current hundreds of times
greater than I to neutralize the positive ion space charge due to I .

The situation is very different, however, if S&S& for there is then a ten-
dency to develop a potential maximum as illustrated in Fig. 1. In any region
at a potential higher than that of both electrodes the low velocity electrons
produced by ionization will accumulate until they nearly neutralize the posi-
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tive space charge. The potential of the region which would otherwise be
above anode potential (above line ON in Fig. 1) is thus lowered to a value at
which the electrons, in virtue of their initial velocities, can just escape to
the anode as fast as they are produced. The accumulation of the ultimate
or low velocity electrons is greatly favored by the smallness of the field
available for drawing away the positive ions. In general there will still be
a maximum potential in the space but this usually exceeds the anode po-
tential by not more than a volt or so, and thus the ions flow in nearly equal
numbers to anode and cathode, while the electrons go to the anode only.
Any calculation of the exact potential distribution must involve some know-
ledge of the velocity distribution of the electrons and ions.

We see from Fig. 1 that when S/Sq is as great as 10, the fields at the
cathode and anode which are necessary to draw these ion currents, are very
large.

These regions of strong field due to space charge which cover the elec-
trodes will be referred to as the sheaths. The relatively field-free regions be-
tween the sheaths where the positive and negative space charges are nearly
balanced will be called the plasma. We shall find in general that these two
regions are rather distinct and have very diff'erent properties. Let us first
consider some of the characteristics of the plasma.

RANDOM CURRENTS AND POTENTIAL DISTRIBUTION IN THE

PLASMA

Experiment has shown' that the ultimate el'ectrons in the plasma usually
have a velocity distribution corresponding closely with that of Maxwell.
Thus we may define the electron velocities in terms of an electron tempera-
ture T,. Through any imaginary plane there is a certain current density I,
of electrons passing from one side to the other and a nearly equal current
in the reverse direction, this current being related to n, the number of elec-
trons per unit volume by the equation

e, = (2sm, /AT. )'"21./e =4.03X10"I./T '" (29)

if I, is expressed in amperes per cm' and n in cm ', k being the Boltzmann
constant 1.372)&10 " erg per degree.

The ion velocity distribution is not so easily determined and is far less
accurately Maxwell&an. Measurements with perforated collectors have
shown that the normal components of velocity of the ions that reach the
edge of a cathode are roughly that of a Maxwellian distribution' corres-
ponding to a temperature T„which is about half that of the electron, i.e. ,
T~=-,'T, . In these low pressure discharges the ions probably acquire prac-
tically all the kinetic energy they possess from the electric fields within the
plasma. The momentum of the electrons is so small that ionizing collisions
of electrons with gas molecules cannot impart to the ions appreciable kinetic
energy.

~ Tonks, Mott-Smith and Langmuir, Phys. Rev. 28, 104 (1926). See pp. 120—123.
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All the ions which reach the edge of a cathode sheath pass to the elec-
trodes and thus only half of the ions corresponding to a Maxwellian distri-
bution T„can be present in the plasma near the sheath edge, so that the
directions of the ions can be distributed only over a hemisphere. Thus if
I, is the positive ion current density reaching the sheath edge, and therefore
the electrode, we have by analogy with Eq. (29)

I„=,'(2sm—~/kT„)'~'I./e=2. 02&&10"I,(m~/m T )'~' (29a)

The accumulation of ultimate electrons in the plasma will go on until
n, and n„are very nearly equal and thus from Eqs. (29) and (29a)

or if
I,/I, = ', (m, T,/m-, T,)"'

Tp 4 Tg

I,/I, = (m„/2m, ) '"

(30)

(30a

For mercury vapor this gives

I,=429I, (30b)

The electron current density I, which enters this equation is practically
the same as that in the plasma at a small distance from the sheath edge for
since no electron current flows to the collector the electrons are in a state
of equilibrium and have a full Maxwellian velocity distribution. The values
of n, and n„at the sheath edge are thus the same as in the plasma.

To measure I, we need merely to determine the current density of the
ions flowing to a negatively charged plane collector. By then making the
collector positive it is frequently possible in a similar way to obtain an
electron current independent of applied voltage and thus to measure the rate
I,' at which electxons red, ch the edge of the electron sheath. Although now
equilibrium of the electrons is disturbed, so that only half of the full Max-
wellian distribution can exist at the sheath edge, we may assume with reason-
able accuracy that the observed electron current density I,' at the sheath
edge is the same as that in neighboring regions of the plasma where the
distribution has more nearly spherical symmetry. Thus the values of n,
and n„at the sheath edge are half of those in the interior of the plasma. This
non-uniform distribution n, and n„ is made possible by the fact that the
positive ions contain no intrinsic energy by which they could force the
electron concentration to become uniform. We can therefore conclude that
the measured I, ' is the same as the I, in Eq. (30b).

Direct measurements' of I,' and I, in mercury arcs have given for the
ratio I,/I, the values 405 -t- 25 for 14 experiments, 423 + 30 for 8 experiments

' These data are the averages of the values given as I,/I„ in Tables III, XIII and XV on
pages 544, 765 and 769 of Vol. 27 General Electric Rev. Reference 3. At that time the necessity
for introducing the factor 1/2 in Eq. (29a) was not realized and therefore it was thought that
I,/I~ should be equal to the square root of the ratio of the masses, viz. 607. The difference
between this and the observed value of about 410 was attributed to the possible presence of
negative ions.
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and 407+ 15 for 3 other experiments or for the average of all 25 exps. 411
+17 which is in good agreement with the value 429 from Eq. (30a).'
Returning to our consideration of a plasma discharge between parallel
plane electrodes we see that, since the current of ultimate electrons flowing
to the anode cannot exceed the positive ion current which is simultaneously
produced by ionization, there must be an anode sheath with a 6eld sufhcient
to repel all but this small fraction of the electrons that move towards the
anode, but the ions are not repelled.

To obtain clearer conceptions of the typical distribution of ions and
electrons in the plasma and of the resulting plasma fields, we may consider,
as before, that there is a uniform rate of ionization throughout the plasma
and we may neglect for the present the currents carried by primary electrons.

If a is the distance betweeen the anode and cathode sheaths then the
current density I, of ions Howing to each sheath is approximately

Ig = gS88

and to the anode the ultimate electron current density is 2 I, since no elec-
trons pass to the cathode.

At somewhat higher gas pressures than we have been considering the
mean free paths X~ of the ions may be small compared to a and then the ions
and electrons that are formed in the interior of the plasma must move to the
sheaths by diffusion. Since the electrons tend to diffuse more rapidly they
leave the interior of the plasma positively charged and thus there is a Geld

which aids in moving the ions. The general differential equations for this
"ambipolar diffusion" of ions and electrons have been given by Schottky
and v. Issendorf. " The "ambipolar diffusion coe%cient" is

M„iV,k(2', +2'„)D=-
(M~+ M.)e

(32)

where 3II~ and M, are the mobilities of the ions and electrons (velocity per
unit field). The effect of the field produced by the electrons, in accelerating
the ions, has been taken into account in this derivation and is represented by
the term 1, in the equation.

The current density I of ions (drift current, not random current) at any
point in a direction normal to the sheaths is then

I= De(dn/dx)— (33)

n being the number of ions, or electrons per unit volume. At any point at
a distance x from the central plane of the plasma the current will be Sex
and therefore from Eq. (33) by integration we find that the ion concentra-
tion at x is

4

I=IJtr Sx'/2D— (34)

' Dr. Tonks is developing the more rigorous theory of the positive ion velocity distribution
assuming that the energies are acquired from the plasma fields.

"W.Schottky and J. v. Issendorf, Zeits. f. Physik 31, 163 (1925).
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or at the sheath edges where x = + a/2 we have

n s nu ——Sa'/—8D.

The drift ion current I is zero at the center x=0 and increases to Iq at
the sheath edge while the random ion current is proportional to m and there-
fore should decrease from a maximum value I~ at the center to a value
I~(ns/n~) at the sheath edge. Although strictly speaking the current at
the sheath edge is not a random current for it flows in one directly only
we may provisionally" identify this calculated value of the random current
with the drift current Iq at the sheath edge, so that

Is =Isr(ns/n~) . (36)

The mobility M„of Eq. (32) is very small compared to 3II, and therefore
M, drops out. The ion mobility is

and thus by Eq. (32)

3I,= eX„(2/nrn, k T„)'" (3/)

(38)

if we use c. g. s. units.
Substituting this value of D and the value of S from Eq. (31) in Eq.

(34) and combining with Eqs. (36) and (29a)

I3II ÃM Sa CTy————1+ =1+-
Is ns 8nsD 8X„(T,+T„)

or if we put 1,=2T„
Ier/Is = 1+s/24K y.

(39)

(4o)

This simple result indicates that the ion concentration will be nearly
uniform throughout the plasma if the free path of the ions is large compared
to 1/24th of the distance between the electrodes. With mercury vapor at
1 barye pressure and 20'C, X„ is of the order of 5 cm and therefore if a, the
distance between the electrode sheaths, is 5 cm the pressure may be as great
as 24 baryes (saturated vapor at 56'C) before the concentration of ions at
the center of the plasma becomes twice as great as at the edges.

The potential distribution within the plasma may now be calculated by
means of the Boltzmann equation

n/nn ——exp [(V Vsr)e/kT, ]j— (41)

"Although this assumption isof doubtful accuracy because of the non-Maxwellian charac-
ter of the ion velocity distribution near the sheath edge, it is far more nearly in accord with the
facts than the assumption made by Schottky and Issendorf and others that ng =0 at the sheath
edge.
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which will be applicable within the plasma since the electron drift currents
are negligible compared to the random currents and therefore the conditions
will not depart appreciably from those of equilibrium. The difference of
potential between the sheath edge and the center of the plasma is thus by
Eqs. (41) and (40), since e/k = 11600 degrees per volt,

V~ —Ve ——1.98X10 'T, logio (1+a/24l „) volts. (42)

These fields are ordinarily very weak, for example if T, = 10,000' in a mercury
arc at 24 baryes pressure and with a=5 cm we find U~ —U&=0.6 volts.
At a pressure of 240 baryes this voltage difference would be 2.1 volts if T,
remained the same, but actually 1,decreases as the pressure rises so that the
potential difference would probably remain approximately constant at about
0.6 volt. Although this field is extremely small compared to that in the
sheaths, it must play an essential role in gaseous discharges in drawing the
positive ions towards the sheath edges. In fact the kinetic energy of the posi-
tive ions is probably almost entirely derived from the action of this field.

ANODE SHEATH

The electron current fIowing to the anode is usually dependent on the
conditions that exist in other parts of the circuit which supplies the energy
for the anode current. For example, it may be fixed by the electron emis-
sion from the cathode or by the current that can How through an external
resistance placed in series with the anode. If the anode area is comparable
with the cross-section of the plasma the current density I, of the electron
current Howing to the anode is usually far smaller than I, the electron current
density in the plasma near the anode. There will then be a retarding poten-
tial U, (negative anode drop) in the anode sheath whose magnitude can be
calculated from the Boltzmann equation which takes the form

U, =1.98X10 'T, log&0 (I,/I, ). (43)

In cases of low pressure plasma discharges with hot cathodes when no mea-
surements of I, are available, methods of the following type will usually
give I, with sufhcient accuracy to give a fairly reliable value of the anode
drop.

Each primary electron from the cathode, in falling through the cathode
sheath, acquires a high kinetic energy, which it retains until the energy is
dissipated in excitation and ionization of the gas molecules. The glass walls
of the tube become so strongly negatively charged that they receive no more
electrons than positive ions and thus in ordinary cases only a negligible frac-
tion of the primary electrons are lost to the walls. It has been shown" under
a wide range of conditions of this kind, that the total number of ions formed
per primary electron, which we may call P, is independent of current density,
of pressure and of the geometry of the tube, but depends only on the nature

" I. Langmuir and H. A. Jones. Phys. Rev. 31, 357—404 (1928). See particularly pp.
402-3.
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of the gas and the energy of the primary electrons. Thus 50 volt electrons
in mercury vapor give 1.4 ions per primary electron. Neglecting the relatively
small ion currents to the cathode and anode, the primary electron current
from the cathode is equal to i, the electron current to the anode. Thus the
total rate of production of ions within the tube is Pi, .

Since recombination in the gas is negligible at low pressures, all these
Pi, ions will flow to the electrodes and to the walls of the tube. With envelopes
of roughly spherical shape, the ion current density will be fairly uniform over
the whole surface. Thus if 8 is the area of the plasma envelope (sheaths over
all electrodes and glass surfaces) find that the positive ion current density
I„ is given by

I„=Pi,/B. (44)

Substituting this value of I„for I. in Eq. (30) we can thus calculate I., the
random electron current density and then Eq. (43) gives the negative anode
drop:

AP m~T, 'I'
V = 1.98)&10 4T, log go -28 m. ry

(45)

where A is the anode area.
Experiments with discharges from hot cathodes in mercury vapor in

spherical arid cylindrical bulbs and with anodes of various sizes have demon-
strated the general usefulness and reasonable accuracy of this equation.

With large anode area A the anode sheath ih thus a positive ion sheath
bu't as A decreases a point is reached where the sheath disappears and is
then replaced by an electron sheath, the anode drop becoming positive.
When the positive anode drop approaches the ionizing voltage an anode
glow appears and with sufficiently high gas pressure the rate of positive ion
production becomes so great as to break-down the electron space charge,
causing a second plasma to develop near the anode. This second plasma
usually takes the form of a globular luminous protuberance from the anode.
Its interior is a typical plasma with high electrical conductivity; its boundary
is a double sheath with an inner positive space charge and an outer negative
space charge, the potential drop being of the order of the ionizing potential.

The conditions at thisdouble layer are essentiallylike those thatwe postu-
lated in the first section of this paper; the potential gradient vanishes at the
inner and outer edges and the potential distribution is determined by the
charges of moving ions which acquire their kinetic energy mainly from the
field within the double layer.

CATHODE SHEATHS

An electrode which is at a negative potential with respect to the plasma
repels all the ultimate electrons which move towards it, except those that
have a sufficient component of energy normal to the surface of the electrode,
to enable them to move against the retarding field. The positive ions in the
plasma that move towards the electrode are collected by it. The fraction
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of the ultimate electrons that penetrate through this positive ion sheath is
given by the Boltzmann equation or may be calculated from the ratio
I,/I, in Eq. (43). Thus if the temperature of the ultimate electrons is 10000'
the cu,rrent density of these electrons which reach the electrode will be only
1/1000th of that in the plasma if the electrode is 5.9 volts negative with re-
spect to the plasma.

If the electrode is 50 volts or more negative with respect to the plasma
the sheath will contain no appreciable number of electrons and the positive
ions mill enter the sheath with energies negligible compared to those they
acquire in the sheath itself. Thus the velocity of the ions is given by

and since there is no appreciable field in the plasma itself we will have at
the outer edge of the sheath d V/dx =0.

Since these conditions are exactly those that are postulated in the de-
rivation of the ordinary space charge Eq. (1) we may apply this equation to
cathode sheaths in gaseous discharges, merely replacing ns, by nz„.

In the usual applications of Eq. (1) the voltage and the distance between
the electrodes are known and we wish to calculate the current density that
can How when the current is limited by space charge. In the present case,
however, the current density I„is fixed by conditions within the plasma and
since the applied voltage is usually known the equation can be used to cal-
culate only the thickness x of the sheath (a in Eq. (1)). Thus the current
density I„ is independent of the applied voltage and x varies in proportion
to V'f4.

The cathode sheath can usually be seen as a dark space and under favor-
able conditions its thickness can be measured. In low pressure discharges
in mercury vapor the observed sheath thickness agrees well with that cal-
culated by the space charge equations. "

Of course, modifications or corrections to this theory may be necessary
under special conditions, for example, when the gas pressure is so high that
the ions collide with gas molecules within the sheath or when the voltage is
so low that the initial velocities of the ions and electrons at the sheath edge
can not be neglected.

SHEATH ON HOT CATHODE. DOUBLE SHEATH.

If the cathode is heated so that it emits electrons these flow out through
the positive ion sheath and if this electron current becomes sufficiently
great it will neutralize the positive ion space charge in the immediate neigh-
borhood of the cathode. Since the electrons start with negligible velocities
from the cathode, the conditions are the same as those postulated when we
calculated the effect of ions liberated at the anode upon the electron currents
from a hot cathode emitting a surplus of electrons, for example, in our de-
rivation of Eqs. (5), (11) and (12). In the present case, however, it is the

"Reference 3, p. 545.
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sheath edge, functioning as anode, that emits a surplus of ions (since d U/dg = 0
at this point) while a limited number of electrons is emitted from the cathode.
Thus, in applying our equations to the present problem we need merely
interchange the subscripts p and e.

Let us consider the currents of ions and electrons that How to or from
a plane cathode in a plasma having given characteristics, such as I„I~ and
T,. Let the cathode, at potential —U with respect: to the plasma first be
at such low temperature that it emits no electrons. We let ao denote the
sheath thickness under these conditions, as calculated from the known
value of I„by means of Eq. (1), in which for this purpose we replace Ia by
I„, V, by V, nz, by m„and a by ao.

Now let the cathode temperature be raised until the current density of
the emitted electrons is I,. To calculate the coeScient 0. we interchange e
and p in Eq. (5) giving

a.= (I,/I, ) (rs./rs, )'" (46)

The e8ect of these electrons in neutralizing the ion space charge cannot
cause an increase in I„ for this is fixed by the plasma, but manifests itself
by changing the sheath thi, ckness so that this becomes a instead of ao. In
Eq. (12) the ratio I,/Io was calculated on the assumption that the distance
between the electrodes was fixed. Evidently for our present problem we
must replace I, in this ratio by I„and Io must be replaced by the positive
ion current density that would flow to a cathode of voltage —V if no electrons
were emitted and if the sheath thickness were a. This current may be cal-
culated from Eq. (1) by replacing m, by m„, and V, by U. Thus we see that
(I,/Io)'i' in Eq. (12) must be replaced by a/ao. The last horizontal line of
Table I gives the values of a/ao (which are merely the square roots of the
numbers in the line above) for various values of n, . An electron emission for
which 0., =0.2 would correspond to I,=0.2&&607I~=121I„ in a discharge
in mercury vapor. The electron current would then be 121 times the positive
ion current and yet we see from Table I that this would cause the sheath
thickness to increase merely 4.1 percent. The potential distribution functions
of Table I are of cours'e applicable to these sheaths on a hot cathode,

As the cathode temperature is raised the electron current density I.
increases and is equal to the electron emission from the cathode until,
when n, becomes equal to unity, the current becomes limited by space charge
and a further increase jn electron current can not occur. The cathode is
then covered by a double layer or double sheath and the ratio of the elec-
tron current to the ion current is equal to (m„/m, )'". Even a change in
cathode voltage will not cause a change in electron current if the positive
ion current I„remains constant.

These facts are of vital importance in any understanding of discharges
from hot cathodes in low pressures of gas. We see that the use of a hot cath-
ode, no matter how high its temperature, does not destroy the cathode
drop.
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In d!ischarges with a single cathode the intensity of ionization in the
plasma depends on the electron current from the cathode and on the cathode
drop which gives to these electrons their velocity. Under these conditions,
when the total current is restricted by a resistance in series with the anode,
and a surplus of electrons is emitted by the cathode, the cathode drop ad-
justs itself to such a value that I„ in the plasma bears the proper ratio
(corresponding to n = 1) to the electron current that is drawn. For example,
with mercury vapor, the cathode drop must be such as to cause an ionization
in the plasma that will give a positive ion current equal to 1/607th of the
electron current that flows from the cathode.

For very low pressure discharges in which the plasma is very uniform
we may calculate the magnitude of the cathode drop and thus learn upon
what factors it depends. If C is the effective area of the cathode, then the
electron current from it wi11 be CI, and this will be practically equal to the
anode currents, . Substituting CI, for f., in Eq. (44) and then putting for
I,/I~ its value (m~/m, )'» we find

P = (8/C) (m./is„) '» (47)

where as before, 8 is the surface of the plasma envelope. The cathode drop
will become such as to give to P (which is a function of voltage only) this
value. The ratio C/8 measures the fraction of the positive ions that are
generated that get back to the cathode. The greater this ratio the smaller
will be the cathode drop.

At higher gas pressures the intensity of ionization in the plasma will

not be uniform but there will be a greater intensity near the cathode; this
will greatly decrease the cathode drop. Under the most favorable conditions
nearly all the ions formed will pass to the cathode and then P (for mercury
vapor) will only need to be 0.0016, a value which will be reached at about
0.1 volt above the ionizing voltage.

THEORY OF DOUBLE-SHEATH CONSIDERING INITIAL VELOCITIES

The foregoing theory of the cathode double sheath, simplified by neg-
lecting the effects of the initial velocities of the ions and electrons, has
given us a useful picture of the essential character of the phenomena at a
hot cathode in gas. We have seen, however, that its main field of appli-
cation will be to cases involving cathode drops of 10 or 20 volts so that we
are not wholly justified in ignoring these initial velocities. Fortunately
there is no great difficulty in calculating the ratio I,/I„even when these
velocities are taken into account.

Let us consider a sheath having parallel plane boundaries or "edges. "
Any group of electrons or ions entering the sheath with a given velocity
distribution will contribute to the space charge at any point P within the
sheath the amount f(1/v)dI, where dI denotes the current density, normal
to the plane of the sheath, of an elementary group which has the normal
component of velocity v. Since with a given initial distribution, both dI
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and v are functions solely of the potential at the point P, it follows that the
total space charge p at any point depends only on the potential at that point.

Multiplying both members of the Poisson equation (for plane case)
by d V and integrating we obtain

(dV/dx)'= —Bx Jf pdV+const. (48)

In the case of the double sheath where the electron and ion currents are both
limited by space charge, dV/dx=0 at both the inner and outer edges so
that we have

pVs

J .d. =o (49)

where VM and Us are the potentials at these two edges, or more speci-
fically at the places where d V/dx is zero, one of these being at the minimum
potential region very close to the cathode and the other S, the outer edge
of the sheath.

Later we shall find it necessary to analyze more closely the nature of
this sheath edge S, but for the present we will define it as a place where
dV/dx=0 and p =0 (as in the plasma) so that according to the Poisson
equation d'V/dx' is also zero.

Within the sheath there are three groups of carriers to be considered;—
the positive ions from the plasma, the ultimate electrons from the plasma
and the electrons emitted by the hot cathode. For each of these groups we
shall express its space charge in terms of the potential.

1. Plasma ~ons. We have already seen that the velocity distribution
at S cannot be Maxwellian and we shall see that it cannot even have hemi-
spherical symmetry. Assuming that the velocities of the ions originate from
the weak plasma fields which we now wish to ignore, the velocity must
in general be nearly normal to the plane of the sheath. Although the velocities
of all the ions cannot be equal, we shall make no great error (especially
since the ions are accelerated into the sheath) if we replace the actual dis-
tribution by a homogenous swarm of ions moving normal to the plane of
the sheath with a kinetic energy corresponding to the potential B„. If p»
is the space charge of these ions at S then their space charge p~ at a point
of potential V is

We shall wish to calculate the integral of Eq. (49). If we let H„be the
part contributed to this integral by the ions, we have

VS
H = p dV=2p sZ ~ {(Vsm+E ) ~ —Z ~2}

VM

where VsM is the difference of potential between S and M, ie. : Vs —UM.
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The space charge p„8 at the sheath edge can be determined from the
positive ion current density I„ flowing to the cathode from the equation

p„e= I„(m„/2E,e) "". (52)

2. Plasma electrons. We assume that the cathode is su%ciently negative
with respect to the plasma so that no appreciable fraction of the ultimate
electrons reaches the cathode and thus the velocity distribution of these
electrons at S will be a complete Maxwellian distribution corresponding
to a temperature T, and a random electron current density I,z. Then accord-
ing to the Boltzmann equation the space charge at any point due to these
electrons is

p. = p.s exp {(V—U.)/E. } (53)

where E, is the potential which corresponds to the energy kT, that is, E, = T,/
11600 volts. The integral B, is

~s
JI,= p,dV =E,p,s (54)

Finally p, & may be expressed in terms of I, :

p.e =I.s(2', /E, e) "' (55)

3. Efectrorts from cathode If the ca. thode emits more electrons than can
flow across the sheath there will be a potential minimum V~ at a short dis-
tance from the cathode surface.

If V, is the potential of the cathode then V~ may be calculated "from
the equation

I,))r I, exp {(V))r——V,)/E, }— (56)

where I, is the current density of the saturation emission from the cathode
corresponding to its temperature T, and I,~ is that which gets past the
potential minimum and is thus the electron current density passing through
the sheath; E, is the potential corresponding to kT„ that is T,/11 600volts.

The space charge of the electrons at any point in the sheath, between M
and S is thus rigorously

p, =p, xr exp {(V—Vxr)/E, } erf {(U—V))r)/E, }'"
where erf denotes the error function defined by

())&"J=v ( —)'")A

(57)

When x is greater than about 2 a very close approximation is

exp x' erf x=1/)r"'(x+. 1/2x). (58)

"Eq, (56) and (57) have been derived from equations in a paper by I. Langmuir, Phys.
Rev. 21, 419 (1923).
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The quantity B, is only 0.1 or 0.2 volts and if U —U, is more than 4 times
as great this approximation is justified and Eq. (57) thus becomes

p, =p, m[E, /7r(V VM—+E,) ] '" (59)

Here p,~ is the space charge density of the emitted electrons at the point
of minimum potential.

Integration of Eq. (57) gives rigorously

S
II,= p,dU =E.[p.s p;m+—2p, M(Vs~/~E, ) '"].

VM
(60)

Putting V= Us in Eq. (59) we can express p, ~ in terms of p, s. Thus
Eq. (60), expanded as a power series in E,/Us~, becomes

K= 2pcsV s~ [1 (~K/—4Vs~r) '"+K/Vs~ ] .

The space charge p,8 expressed as a function of I,~ is

p.s =I,~[m, /2(UsM+E, )e]'"

(61)

(62)

When the current I~ is limited by space charge Eq. (49) can now be
used to determine the relation between I~ and I„. The equation takes the
form

II„=II,+XI,. (63)

The values of these quantities from Eqs. (51), (54) and (61) substituted
in this equation give a relation between the p's and then by means of Eqs.
(52), (55) and (62) we find the following relation between the currents

I8M [1 (7rEe/4VsM)' +E /2Vsxs] (64)

=I„(m„/rs )'"[1—(E,/Vs~)'"+E, /2Vs~] I.s(7rE./Vs—v)"'
We have defined S as a place where d V/dx is zero. At this region we may

also put p =0, so that

P,B=PeS+PeS ~

Expressing the p's in terms of the I's by Eqs. (52), (55) and (62) and
using this equation to eliminate I,z we obtain

1 —(E~/Vsm) ~ (I+E./2Ey)+E&/2UsmI,gr/I„= (m„/m, ) '"—————
1—(~E./4V s~) '" (E —E.) /2 Vs.v—

(66)

An examination of this result shows that when (1/2)E, (E„(Vsl an in-
crease in either E„or E, causes a decrease in I,M, Thus the effect of the
initial velocities of both the ions and the electrons at the sheath edge is
to decrease the electron current that cari How from a hot cathode. As a
typical example we may take E, =2 volts (corresponding to T, =23000'),
E„=1volt, E, =0.2 volt. The ratio I,~/I„ instead of being 607 for mercury
vapor, will be only 31 percent of this for Ug~=5 volts, 53 percent for 10
volts'and 71 percent for 25 volts.
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THE SHEATH EDGE

If the initial velocities of the plasma electrons and ions could be neg-
lected we would be justified in regarding the edge of the sheath as sharp.
In our study of the double sheath we must now recognize that the velocities
of the ions which are measured by E~ are derived from the weak fields that
extend from the sheath a considerable distance into the plasma.

To develop clear conceptions of the relation between the plasma and the
sheath we will analyze in some detail a typical although somewhat simplified
example. Let us imagine two parallel plane electrodes with a plane between
them which acts as a source of ions and electrons, but which is not to be
regarded as an electrode. Thus the potential of the source will be deter-
mined by space charges and cannot be arbitrarily varied as that of an elec-
trode could be.

If the source emits only ions having no initial velocities, the potential
will rise until the ions can How to the two electrodes in accord with the space
charge equation for ions (similar to Eq. (1)). Thus at the source the potential
gradient is zero. Without loss of generality we may take the source as the
origin both for the potential V and for the distance x and for simplicity
may consider phenomena only on one side of the source, i.e. for positive
values of x. Let I„be the positive ion current density that Hows from the
source in this positive direction.

Now let us introduce electrons having a Maxwellian velocity d istribution
correspondi'ng to a temperature 1,. We assume that the electrode is at a
negative potential suf6cient to prevent any appreciable number of electrons
from reaching it, and thus the Maxwellian distribution is not disturbed.
We assume also that the electrons pass freely. through the source in both
directions, which is equivalent to assuming that th'e source is a perfect re-
Hector for electrons. Let I,o be the electron current density passing in one
direction through the source (random current). At any point having the
potential V the positive ion space charge is

p„=I„(nz„/ 2Ue)'"—
and the electron charge density according to Eqs. (29), (41) and (53) is

p, =I,o(27rm, /E, e) ) (2 exp (U/I(, ) .

We now substitute the total space charge p„—p, into the Poisson equation
and then reduce the result to a dimensionless form by introducing the
variables g and x„defined by

)) = —U/E,

((19 )(2 I )"8"* '=)' (67)

This last equation is similar in form to the space charge Eq. (1). Thus x„
is the positive ion sheath thickness calculated for a collector voltage E,
ignoring the effects of initial velocities. The Poisson equation thus gives

d'g/dX'= (4/9) [q '"—2s'"(). exp (—))) ] (6g)
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where X is a dimensionless parameter proportional to length defined by
X =x/x„and n, o in accordance with Eq. (46) is

n, o
——(I,o/I„) (m, /m„) "'. (69)

Multiplication by dr//dX and integration gives

d~/dg —(4/3) [//1/2 xl/2~ [Q exp ( ~) ] }//2 (70)

where X is a constant of integration. The potential distribution is given by

X = (3/4) I q"' x'—"//. [I/ exp (——//) ] } '"dp
0

(71)

For the case that we are now considering where the ions start from the
source without initial velocity, we can determine X by the conditions/1/d)/. =0
when g = 0, and find from Eq. (70) that X= 1. Let us now consider the nature
of this solution to our problem given by Eqs. (70) and (71).

IO

e, = l.Oq

eL..-O 'l384 07
rl 1.2$ L 5

I, . 'P. ;

5 io g ts PO 2S

Fig. 2. EEect of electrons of temperature I, on the potential distribution
between planes at one of which ions are generated.

The family of curves shown in Fig. 2 represents the solutions of Eq.
(71) for the case%=1 for a series of different values of n, o. By plotting —

g
as ordinate instead of q the curves give directly the potential distribution V
as a function of x in terms of E, and x~ as units. The data for the curves
shown in Fig. 2 have been calculated accurately either by numerical quad-
rature of Eq. (71) or by using some of the equations given below.

If n p =0 that is, if no electrons are present, Eq. (71) becomes

which corresponds to the ordinary space charge equation for ions.
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For values of n, o small compared to unity, expansion of Eq. (71) gives

X =g'" [1+0.3x"'n,oq"'+ (9/56) am, o'ij — ]

if g is small, while if g)4
X =7/ / +2.660.'pg —2.41K p.

Thus the effect of the electrons is to increase ) and decrease the potential
grad, ient.

When o.,p is zero there is an infinite positive space charge at g =0 and
elsewhere the charge decreases continuously as g increases. Electrons, when
introduced, are confined almost wholly to regions where g is less than 3 or 4.
These electrons tend to produce a minimum in the space charge. The con-
dition for the occurrence of such a minimum is that

d'q/dX' = (2/9) [ g3i'+ 4—z' "n,o exp (—ij) ]dq/dh = 0. (72)

Before a negative space charge can occur as n, p increases, it is necessary
that d' /ilDP shall pass through zero. Equating both the third and the second
derivatives to zero we find il =0.5 and n, o =(e/2ir)'i'=0. 6577. The curve
obtained with this value is plotted in Fig. 2.

When n, p increases beyond 0.6577 there are two points of inflection
between which there is a negative space charge. At the upper one (il (0.5)
the potential gradient dil/dX is a maximum while at the lower one it is a
minimum. At a certain value of o.,p which we shall call o;,1 the slope at this
second inflection becomes zero. Ke find this value by placing the second
members of Eqs. (68) and (70) each equal to zero, thus obtaining

o;,1=0.88407; q1 ——1.2565.

This solution as shown in Fig. 2 is one that gives a region where the space
charge and the potential gradient are both zero, conditions which char-
acterize an ideal plasma. We shall return to a consideration of this case
later.

When n, p increases beyond n, 1 the second point of inflection becomes im-

aginary and the curve no longer dips indefinitely downward but after passing
through a minimum rises again to q=0. Thus for larger values of c1 p

must remain so small that we can replace 1 —exp( —il) by il and then Eq.
(71) after integration gives

where

X=(3/2)ir —"'u, o
—' '[sin 'v —v(1 —v )' 2]

~1/4~ 1/2~1/4~ep

(73)

Thus the potential is a periodic function of the distance ), the wave-
length corresponds to

Xi = (3/2) ir "4,i,o
—'&'
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and the minimum potential at X = 1/2X~ corresponds to

Umae = 1/erneo

Periodic solutions of this kind are illustrated in Fig. 2 for values of
n, o of 0.9, 1.0 and 1.5. These data have been obtained directly from Eq. (71)
by quadrature since Eq. (73) is only applicable accurately for still larger
values of u,o.

Examination of Fig. 2 shows that when n, o is only slightly less than the
critical value o. p =0.88407 the curves show an extended region in which the
potential gradient is nearly zero, This clearly corresponds to a plasma.
Close to the source of ions at ) =0 there is a field which draws the ions
outward into the plasma. However, for large enough values of X, the potential
begins to drop again and we thus pass from the plasma into a positive ion
sheath. As o.,o approaches n, & this descending portion rapidly approaches
a limiting form in which the successive curves differ from one another merely
in a horizontal displacement. Thus for the limit n,0=o;,~ the lower part of
the curve is like that shown in the curves for o. =0.88207, 0.88307, 0.88397
etc. except that it lies at an infinite. distance to the right.

To investigate this transition from plasma to sheath we may write
Eq. (71)

where
f= q'~' —r'"e. [n1 0—exp ( —g) ].

(74)

An expansion in the neighborhood of q=g~ and o.,o=n, ~ gives to 3 terms

f=Ahn+Bphn+Cp'
where

DA =Ag] Ago

and A = 1.2679, 8 = —0.5046 and C =0.13428.
Substitution of this value of f in Eq. (74) and integration gives

),=0.75C t log [f ~ +C't p+0. 5BC I gn]+const.

When Ao. is small this reduces to

AX=4. 713 loggo [0.424pg( —p3)/An]

where p, ~ and p3 correspond to 2 points q2 and g3 that lie on opposite sides of
g~, and AX is the distance between the points g~ and g3. It is assumed that
p: and —p3 are large compared to Dn.

When g is larger than about 4 the exponential term iu Eq. (75) can be
neglected in comparison with unity. Integration of Eq. (74) for n, o

——n„
then gives

X=(q'"+3.134)(g'"—1.567)' '—4 713 logn An 193—(77)
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the integration constant having been determined from the data of Curve
VII in Fig. 2 together with Eq. (76).

Our equations enable us to study the transition between plasma and
sheath. Let us consider a typical numerical example, A one ampere arc
in a 3 cm diameter tube containing mercury vapor saturated at 30'C gives
for a collector Hush with the tube wall I„=2&10 4 amperes per cm', T, =
21000' and thus E, =1.81 volts. Then from Eq. (67) we find x„=0.00686 cm
as our unit of length for the sheath measurement" P =1). If a collector is
at —25 volts with respect to the ionized gas then at the collector surface
g=1.256+25/1. 81=15.1. The effective distance between the collector and
the source of ions may be taken to be 1 cm so that in Eq. (77) we put X =
1/0. 0068 = 146, and obtain An = 10 ". From Eq. (76) we see that the plasma
field near the sheath falls to 1/10th for an increase in distance from the sheath
equal to 0.032 cm (i.e. 4.71 X0.0068).

According to the data of Fig. 2 the potential distribution within the
sheath is given by

0
25

0.049
5.

0.073
1.34

0.089
0.44

0.114
0.080

0.149
0.006

where V is the negative voltage at a point whose distance from the collector
surface is x cm. If the initial velocities of the ions and electrons could be
neglected the total thickness of the 25 volt sheath, calculated by the or-
dinary space charge equation, like Eq. (67), would be 0.049 cm.

From the foregoing analysis it .appears that the motions of the positive
ions in the plasma are not to be chosen arbitrarily but are fixed by the elec-
tron temperatures and by the geometry of the ion source. With the plane
source we have assumed above, we found gI ——1.2565 which means according
to the nomenclature of Eq. (66) that B„=1.2565K, .

This particular assumption, however, is of course not directly applicable
to experimental conditions. Dr. Tonks has been able to solve the integral
equations involved in the problem of potential distribution resulting from
a uniform generation of ions throughout the plasma (plane, cylindrical or
spherical) and also for the more usual case where the rate of generation at
each point is proportional to n, the concentration of electrons at that point.
It is intended to publish these results soon. The way in which the distribution
of ion generation in the plasma affects the conditions in the sheath is by alter-
ing the average velocity of the ions which enter the sheath. The equations
that we derived for the double sheath, such as Eq. (66), are applicable if
we choose the proper value for the ratio Z„/E, . For the case of ion generation
proportional to n, and an infinite plane collector the effective value of this
ratio is 0.751 for very high intensity of ionization, decreasing somewhat
as the intensity of ionization decreases but probably never falling as low as
0.5 which according to our discussion of Eq. (72) is the limit at which only
periodic plasma solutions are possible.

For most experimental conditions we are thus justified in placing E„=
0.7Z, in Eq. (66).
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In determining the space potential by the hot probe method, " the volt-
ampere characteristic of a small filament is determined first when the filament
is cold and then again when heated to a temperature at which electrons are
emitted. Only when the filament is below the space potential do the electrons
escape. Thus the voltage at which the two curves separate is the space
potential. At lower potentials the difference between corresponding or-
dinates measures the electron current from the probe.

In using this method in ionized gases it was soon found, when the probe
potential was lowered below space potential, that the electron current did
not rise abruptly to the saturation emission corresponding to the probe
temperature, but often a transition region of several volts was observed.
Clearly in this range the current is limited by space charge in spite of the fact
that an abundant supply of positive ions is present in the ionized gas. The
double sheath theory should apply in such cases.

Experiment 559. Similar limitation of current by space charges in double
sheaths is observed in hot cathode tubes containing gas if the current to the
anode is lowered below its saturation value by using a large resistance in
series with the anode. For example, a spherical bulb 12.5 cm in diameter
contained a tungsten filament 1 cm long and 0.18 mm diameter, a disk shaped
anode 2.2 cm diameter, and a mica-backed collector 1.'1 cm in diameter.
The filament was heated to a temperature at which it gave a saturation
current of 22.5 ma. The volt-ampere characteristics of the anode were
measured when the bulb contained mercury vapor saturated at 20'C, while
simultaneous readings were made of the positive ion current flowing to the
disk collector, this being kept at —80 volts with respect to the anode. Until
the anode potential was raised to about 12 volts above that of the cathode,
negative charges on the walls of the tube prevented any appreciable current
from flowing. At 15 volts, however, the current rose to about 1 ma and as the
voltage was increased to 25 the current increased only slowly to 1.9 ma. Elec-
trons of 25 volts energy have an ionizing power 3.3 times as great as those of
15 volts. This small increase in current in spite of the considerable rise of
voltage is probably due to the fact that the sheaths on the walls are relatively
thick. As the ion production increases the sheaths become thinner so that
the area of the sheath boundary, (which collects the ions that pass to the
walls) increases and prevents any large rise of ion concentration. The small
ion currents to the collector, ranging from 5 to 8 microamperes, indicate
that the sheaths must have been several cm thick.

At voltages above 27 volts the behavior is quite diR'erent; as the current is
raised from 2 to 22.5 ma the voltage ri'ses slowly from 27 to a sharp maximum
33 at 15 ma and falls to 28 at 22 ma. As saturation is approached the voltage
can be raised to 60 or more without increasing the current above 22.5.

In the range of relatively constant voltage (27—33) the collector current
rose from 8 to 80 microamperes while the electron current changed from 2

'~ I. Langmuir, J. Franklin Inst. 196, 754 (1923).
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to 22. With such low intensity of ionization the collector currents do not
measure accurately the ion current density since the sheath on the collector
is many mm thick.

Similarly the diameter of the double sheath on the cathode must have
been 10 to 30 times that of the cathode itself. Rough calculations based on
the space charge theory of sheaths indicate that the electron current from
the cathode, at the higher currents (20 ma) was about 2000 times as great
as the positive ion current that Howed to the cathode and at lower currents
the ratio may have increased to 4000:1.

In this range the electron current from the cathode is evidently limited
by the rate of arrival of positive ions at the cathode sheath. If the total
current is Axed by an external resistance, the voltage drop in the sheath
adjusts itself to a value which will give just the required number of ions.
Since the number of ions formed in the plasma is proportional to the current
and increases rapidly with voltage, we have an explanation of the relatively
constant voltage. "

TUBE WITH OXIDE COATED CYLINDRICAL CATHODE

Conditions more nearly approaching those of the theory we have de-
veloped are to be found in discharges using relatively large oxide coated
cathodes. The following data were obtained by F. B. Vogdes. The cathode
was a nickel cylinder of 0.63 cm diameter, 2.5 cm length closed at one end
and heated by radiation from an inner tungsten helix. The outer cylindrical
surface was coated with barium oxide. This cathode was mounted in a well
exhausted spherical bulb 10 cm diameter provided with an appendix con-
taining mercury. A collector disk 0.6 cm diameter was placed 2 cm opposite
the central part of the cathode, the axis of the cathode lying in the plane of
the disk. Shortly after starting to operate the tube (appendix at 12'C) with
an anode current of 4 amperes, the arc drop was 50 volts and the current
depended greatly on the cathode heating current. Thus the current was
limited by the cathode emission. The positive ion current density given by
the collector was 14 ma per cm' and the electron temperature T, was 140000'.
The ratio I,/I„was thus 57.

After operation for some time, the activity of the cathode suddenly
increased, the arc drop fell to 17 volts, and T, became 38,000. On the follow-
ing day the characteristics were steady and reproducible and the data given
in the accompanying table were taken. The arc current was now independent
of the cathode heating current and adjusted to 4 amperes by means of a
resistance in series with the anode.

'6 Approximate calculations of the ratio of electron current to ion current for cylindrical
sheaths indicate that this ratio should increase from (w~/nz, )'l" for very thin sheaths up to
2,25 (m~/m, )'~' for sheaths of large diameter. However, this theory neglects the fact that for
sheaths of large diameter many of the ions may escape from the sheath after describing orbits
about the cathode. Thus the ratio i,/i„may increase to values much greater than that just
given. In the case of mercury vapor, values of this ratio as high as 2000 or 4000 are therefore
consistent with the theory.
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Appendix Pressure
Temp. baryes

Arc
drop

I, I„
ma cm 'ma cm 2

obs.

I,1IR

cal.

Ratio
obs.

ca1.

19.7
8.8

1.5
- 0.55

16.0 24000
20.2 35000

800
800

5.6
6.0

143.
133.

372
350

0.385
0.380

The effect of lowering the vapor pressure of the mercury in a ratio of
about 3:1 was to increase the electron temperatures and the arc drop but
the ratio of the observed electron to ion currents remained nearly constant
at about 140:1. In the last column of the table are given the ratios calculated
by the double sheath theory according to Eq. (66) placing 8„/E.=0.7;
2, = T,/11600, E, =0.1 and Vs~=are drop+0. 5.

We see that the small variation of the observed value of I,/I„ from 143
to 133 is in accord with the effect to be expected from the increased electron
temperature. However, the observed ratio is only 38 percent of that given
by our theory. Such a difference may probably be explained by a lack of
uniformity in the emission from the oxide coated surface.

Experiment 560. In this experiment the intensity of ionization and the
voltage drop in the sheath could be varied independently of one another.
Two cathodes were used, one to produce the ionization while the volt-
ampere characteristics of the second were determined. The spherical bulb
having a mercury appendix was of 12.5 cm diameter and contained a cathode
K of tungsten wire 0.25 mm diameter wound as an open helix, and an oxide
coated cathode C like that used before: a nickel cylinder 2.5 cm long and
0.63 cm diameter heated by an internal tungsten coil. There was also a col-
lector disk B 1.1 cm diameter, backed by mica and a disk shaped anode A
2.2 cm diameter. The collector was so placed in the bulb that primary elec-
trons reflected from the sheath on the bulb were not focussed upon it, for
if this precaution is not taken serious errors may sometimes result, especially
at low pressures of mercury vapor.

In exhausting the tube all metal electrodes were heated to bright red by
high frequency induction and the bulb was baked at about 400'C. During the
whole experiment the tube remained connected to a glass condensation
pump through a liquid air trap, the readings of a McLeod gauge showing
pressures of non-condensible gases less than 10 ' barye.

A typical set of data obtained with this tube containing saturated mercury
vapor at 20'C is illustrated in Fig. 3. In this case the tungsten cathode
K was maintained at —50 volts with respect to the anode (taken as zero
potential) and heated to a temperature at which it emitted 60 ma. of electrons.
The ionization produced by these 50 volt electrons was such as to give
0.127 ma of ion current to the collector B (kept at —75 volts). This corres-
ponds to I„=65X10 ' amps. cm ' after correction for the edge effect."

"Reference 3, p. 540.
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Curve I represents the observed volt-ampere characteristic of the oxide-
cathode C when the heating current in the tungsten coil was 5 amperes, —
the cathode then being at a temperature too low to emit an appreciable
electron current. The rise in current as the voltage approaches zero is due
to electrons collected from the plasma. At positive voltages C becomes
anode and the current is then limited by the emission from K. By plotting
the ratio" of the electron currents to C and to the anode A (the sum being
approximately 60 ma. ) on semi-logarithmic paper against the voltage of C,
a straight line was obtained extending over a range of 6 volts, in which the
ratio increased 10' fold. From the slope of this line, the temperature of the
plasma electrons was found to be 8500' which gives E, =0.733 volt.

0(:

50———

E ('v(~/. r.~) Ex/I 5&0 5 'l244
"/0 -9 -8 -7 —6 -8 -4 -8 -c -/ 0 / 2

Fig. 3. Volt-ampere characteristics of oxide coated cylindrical cathode; 8, is voltage of the
cathode C with respect to the anode A; B/, = —50;i/, =60 ma (disregard "i/, =0" on curve I).

When the current through the tungsten coil was raised to 9.5 amperes,
the saturation emission from C, calculated by Richardson's equation from
measurements of saturation currents at lower temperatures, increased to
2.2 amperes. We see, however, from the observed volt-ampere Curve II,
Fig. 3, that the electron currents were less than 80 ma. These currents
remained unchanged if the heating current was lowered to 8.0 amperes
(calculated emission 180 ma. ) but the electron current became saturated at
—14 ma. with a heating current of 7.0 amps. Thus the currents of Curve I I
are limited by space charge.

For positive voltages the two curves coincide since no electrons can
escape. The difference between corresponding ordinates for negative volt-
ages thus represents the current of thermionic electrons that leaves the cath-
ode, which we shall calli, . As the voltage is lowered below 0 volts, a few
electrons escape because of their initial velocities which correspond to about
B,'=0.1 volt. The point of infiection at about E,= —0.5 volt thus lies close
to the space potential. This would seem to indicate a positive anode drop

» Langmuir and Jones, Phys. Rev. 3I, 396 (1928).
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of 0.5 volt. However, because of the contact potential of the oxide on the
cathode the effective cathode potential is probably a volt or so more positive
than indicated by the value of E,.

The values of i, obtained by subtracting the ordinates of Curve II from
those of Curve I are tabulated in Column 6 of Table III. A corresponding
set of data obtained with an ionizing current iI, = 20 ma and a heating current
of 9.5 amperes for the oxide cathode C is given in Column 3. We see that
although these currents are independent of the temperature of C they are
nearly proportional to the current from K showing that the electron current
is determined by the supply of ions to the cathode.

Let us first examine these data from the point of view of Eq. (66), that is,
let us see whether the variation of i, with B, can be explained as the effect
of the velocities of the plasma electrons and ions. Placing E,=0.733 volt

TABLE III. Variation of electron current with cathode potential.
Mercury vapor sat. at 20' E&= —60 Emission of C 2.2 amps.

3 4 5
iI, =20 ma; I„=0.025 macm ' 6 7 8

iI, =60 ma; I„=0.061 macm '

—3

—5—6—8—10

I,
I„
310
347
375
393
420
437

Ze

obs.

22.4
23.9
25.5
27.0
31.5
34.0

Ze

cal.

20. 7
23.7
26.2
27.9
30.9
33.0

cm

0.040
0.048
0.056
0.063
0.076
0.087

Ze

obs.

57.7
58.9
62.2
65.2
73.8
79.9

Ze

cal.

50.9
57.8
63.4
67. 1
73.5
78. 1

cm

0.026
0.031
0.036
0.040
0.048
0.056

from the data of Curve I, E„=0.7E.=0.513 volt and E,'=0.1 volt, we
calculate from Eq. (66) the values of the ratio I,/'I„given in Column 2.
Dividing the observed values of i, by this factor we should obtain the posi-
tive ion current to the cathode. However, although I„ in the plasma may
be assumed to be independent of Z, (since —8, is less than the ionizing
potential) the positive ion current will vary slightly with Z, because of
the changes in the sheath thickness. The fifth and eighth columns give
the sheath thickness in cm calculated by the space charge equation making
allowance for the initial velocities of the ions." The values of I„used in these
calculations, according to a method which will be described later, were taken
to be 0.025 and 0.061 ma cm ' for if, = 20 and 60 ma respectively.

From the diameter of the sheath (0.635+2x) the collecting area of the
cylindrical sheath was found (length 2.54 cm) and thus a positive ion cur-
rent density I„'was calculated from each value of i,. The averages of these,
excluding only those at E,= —3, gave 0.0117 and 0.0299 ma cm ' for iI, =
20 and 60 ma. These multiplied by the sheath areas and the factor I,/I„
of Column 2, gave the values of i, (calc.) in Columns 4 and 7. The dotted

"Calculated by Eqs. (10) and (11), Reference 3, p. 452. The positive ion "temperature"
which enters only as a small correction, was taken to be 5000' and the voltage in the sheath
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curve in Fig. 3 represents the values in Column 7. A comparison of these
observed and calculated values (which involve only one empirically deter-
mined parameter I„') shows that the observed variation of ~, with 8, is in
satisfactory agreement with Eq. (66) and is thus explained by the velocities
of the plasma electrons and ions. Only about 1/4 of the observed variation
is due to changes in the sheath thickness.

The slight differences in the shape of the curves obtained from the cal-
culated and the observed values of i, are probably to be explained; —1. By
uncertainties in the contact potentials which would displace the curves hori-
zontally a volt or so;—2. By changes in the distribution of ion currents in
in the plasma, resulting from the space charges of the escaping electrons. If
the cathode is made more negative than —10 volts ionization is produced
by the emitted electrons which may cause considerable departures from the
theoretical curve; for this reason we have confined ourselves in this dis-
cussion to the region above —10 volts.

Since in deriving Eq. (66) we have assumed that plasma electrons in

appreciable numbers are not able to reach the cathode we must not expect
this equation to apply when, according to Curve I, any large electron current
passes to this electrode. Thus we should not expect agreement between the
observed and calculated values of i, at voltages much higher than —4. We
see in fact that considerable differences are observed at —3 volts.

TABLE IV. Relation between electron and ion currents.
Hg at 20 C BI,= —50 Eg= —85 E,= —8

Currents in milliamps.

Hg
Temp.

20'

Exponent

10'

Exponent
!

10
20
30
40
50
60

60

16.7
28. 6
38.0
47.9
57.7
66.5

0.77

63.9

0.80

ZB

0.0376
O. O591
0.0765
0.0940
0.1098

. 0.1270

0.67

0.117

0.67

0.0063
0.0168
0.0269
0.0379
0.0484
0.0604

1.17

'Lp

0.0923
0.1580
0.2100
0.2646
0.3188
[0.3674]

0.77

0.0534 0.328

0.80

0.1316
0 ~ 0994
0.0854
0.0755
0.0685
0.0636

0.0676

0.0129
0.0237
0.0327
0.0422
0.0517
[0.0604J

0.86

[o.o534J

0.$8

Studies were also made of the variation of i, with ionizing current i~,
of the relation of i, to the ion current density I„and the effect of varying the
mercury vapor pressure. For these purposes E, was kept constant pt —8

volts, and, while iI, was varied from 10 to 60 ma measurements were made

of i, and of i~, the ion current to the collector B, this being at voltages rang-

ing from —70 to —1.20. The cathode C was heated to a temperature at
which it emitted 2.2 amps. Table IV gives data obtained in this way.
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Plotting i, against i~ on double logarithmic paper gives a straight line of
slope 0.77 showing that the electron current increases in proportion to the
0.77 power of the ionizing current i~. The ion current to the collector i~,
plotted similarly gives approximately a straight line of slope 0.67.

Before we can test the proportionality between i, and i„, the ion current
to the cathode, which is to be expected by our double sheath theory, correc-
tions must be made for the effects of the thickness of the sheaths on C and
B. The theory of these edge corrections'~ indicates that i&')' should be a
linear function of v'i", the slope S of this line being

S=0.00306g(m./m)'~'amp'"volt 'I' (78)

where g is a numerical factor approximately equal to unity and which is
dependent solely on the geometry of the collector and where

v = V"'
I 1+0.0247(T/V) '"

I (79)

is the V'i" of the space charge equation multiplied by a correction factor
which allows for the effects of the initial velocities of the ions as they enter
the sheath. Numerous experiments in which collectors like B have been used
for ions in mercury vapor have given g =0.98 which corresponds by Eq. (78)
to S=1.21X10 '. By this theory, to correct i& for the edge effects, we sub-
tract Sv"' from i~"' and thus obtain io'" where io is the corrected current;—that is, the current that would flow if no edge correction were needed. Di-
viding io by the actual area of the collector gives I„the ion current density.
The figures in Column 4 were obtained in this way. Putting V=85 volts,
T = 5000 for the ion temperature, gives v =932 and Sv'~' = 3.694 g 10 '
amps'~', so that if i~ is expressed in microamps we subtract 3.694 from i~"'
to obtain ~0'", io also being in microamps. Dividing io by 0.95 cm', the col-
lector surface, gives I„.

For the lower currents at least, these values are certainly over-corrected.
We realize this if we consider that the sheath thickness for iI, = 10 ma cal-
culated from the value of I„in Column 4 is 0.7 cm as compared to a collector
diameter of 1.1 cm. We also find by a double logarithmic plot that I„ is
proportional to the 1.17 power of fq, whereas numerous experiments (un-
published) with guard-ring collectors, that need no corrections, have shown
that I„, as observed by a collector mounted not far from the center of a
spherical bulb, varies with a power of the ionizing current that ranges from
0.85 to 0.90."

"In mercury arcs, (Reference 3, p. 764) I„varies in proportion to the 1.25 power of' the
arc current indicating appreciable ionization of excited atoms. Experiments (Langmuir and
Jones, Phys. Rev. 31, 403 (1928)) with ionization by 30—100 volt electrons in which the total
ion currents were measured using the walls of the cylinder enclosing the discharge as collector
have shown that I„varies with the 1.0 power of the ionizing current even when this varies in a
ratio of more than 1:100. The reason for exponents less than unity is undoubtedly to be sought
in a variation of the plasma fields which causes the distribution of ions between a central col-
lector and the glass walls to vary with the intensity of the discharge. The fact that the best
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Let us see whether the experimental data of Columns 1, 2 and 3 are con-
sistent with the assumption that the electron current from the cathode is
proportional to i„, the ion current that Rows to the cathode. The thickness
of the double sheath x according to the last line of Table I, is 1.364 times that
calculated by the ordinary space charge equation. The current density used
for this calculation should be that at a surface half way between the cathode
and the outer edge of the sheath, so that the effective area of the cathode
sheath is s(0.635+x) 2.54 cm'. Thus from Eqs. (1) and (79) taking T=
5000, V = 8 and expressing i„in ma we get

z' =0.00212(0.635+x) /i„ (80)

The collecting area for ions, however, is vr(0. 635+2x) 2.54 cm' and there-
fore

i„7.9=8(0.635+2x)I„. (81)

For the highest current, iI, =60, we may assume that the value of I„ in
Column 4 is approximately correct. With this value of I„,Eqs. (80) and (81)
solved as simultaneous equations, give @=0.0636 cm and i„=0.3674 ma. We
obtain the other values ofi„in Column 5 by taking them proportional toi, in
Column 2, and from these the sheath thickness x (Column 6) is found by
Eq. (80). Equation (81) then enables us to calculate I~ as given in Column 7.
These values of I~ give a straight logarithmic plot against i~ of slope 0.86
which agrees with the exponents 0.85 to 0.90 found in the experiments with
guard-ring collectors, and therefore our experimental data are consistent
with the double sheath theory that requires a proportionality between i,
and ~„.

The ratio i,/i„giv ebny these data is 181:1.By Table III at this cathode
voltage ( —8) we should have the ratio 420:1 so the observed electron current
is 0.431 of that calculated, only a little greater than the ratio 0.38 we found
from the data supplied by Mr. Vogdes. Undoubtedly part at least of this
discrepancy is accounted for by lack of uniformity of the oxide coating and

perhaps the lower temperature of the ends of the cathode cylinder.
The last two lines of Table IV give data obtained with mercury vapor

saturated at 10' at which the pressure is only 0.40 that at 20'. The exponents
were found from logarithmic plots of data with values of i~ ranging from 10
to 60. The ratioi, /i~ is here 195,somewhat closer to the theoretical value 420.

FILAMENTARY CATHODES

A large number of experiments (Experiment 562—a) have been made with
two tungsten cathodes 0.25 mm in diameter, one (K) to produce the ioniza-
tion of the mercury vapor and the other (C) to give the volt-ampere char-
acteristics. The values of I„were determined simultaneously using a guard-

data (with guard rings) give a straight double logarithmic plot, is entirely inconsistent with
recombination of ions and electrons as a cause of the low value of the exponent. Recomb jnat ion

would introduce a term varying with I„which cannot be reconciled with the observed data.
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ring collector. With C cold the positive ion currents i„to C could be measured
as a function of voltage. Then with C hot enough to emit a surplus of elec-
trons the electron current was measured. The ratio i,/i„depe nded on I„
and on the voltage, Z„but was independent of the pressure of mercury vapor
(10 to 20'C) and of the voltage Eq of the ionizing electrons. For Z. = —10
volts the following values were obtained.

I„
0.140 ma cm —'
0.38
0.57

Ze 1gp

940
530
450

A more detailed analysis of the curves obtained in these experiments
will be reserved for a subsequent paper.

The writer wishes to express his appreciation of the assistance of Mr.
S. P. Sweetser who carried out most of the experiments.
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