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PERTURBATIONS IN MOLECULES AN D TH E
THEORY OF PREDISSOCIATION AND

DIFFUSE SPECTRA'

BY OSCAR KNEFLER RrCE'

ABSTRACT

It has been recognized for some time that, when the discrete vibration rotation
absorption bands connected with transitions to a certain final electronic state of a
molecule overlap the continuous region for the transitions to another final electronic
state, some of the discrete bands may be diffuse, i.e., the rotation lines may be broad
and blur into each other. The broadness of the lines has previously been assumed to
be connected with the short life period of a molecule in a discrete state, when there
is the possibility of its making a radiationless transition to a state of dissociation.
In this paper a calculation is made of the width directly. One starts with a wave equa-
tion which represents approximately the state of a molecule, and which has continuous
and discontinuous groups of eigenfunctions, Then the extra terms in the exact wave
equation may be treated in the usual manner as a perturbation, and the perturbed
eigenfunctions may be expressed as a linear function of the unperturbed ones. The
energy range over which the properties of a given discrete state may inHuence the
properties of the perturbed eigenfunctions is determined in terms of the perturbation
matrix components, and from this is found the width of the line and the total ab-
sorption over its width.

' "T HAS been' recognized for some time that, when a molecule is raised by
absorption of light to an excited state from which subsequent decom-

position may occur, the resultant vibration bands may be diffuse, i.e. , the
rotation lines may be broad and blur into each other. ' Several recent writers 4

have described the situation more specifically as follows. The molecule is
originally in some initial state, with definite electronic, rotational, and
vibrational quantum numbers. Through the absorption of radiation it
jumps to a higher electronic state, changing at the same time its vibrational
and rotational quantum numbers (the rotational in accordance with a
selection principle). The upper electronic state has a certain dissociation
limit; for smaller energies than the energy of dissociation there is a discrete
set of vibration-rotation levels, for larger energies a continuous set. In the
cases where predissociation occurs there are two higher electronic states
to which the molecule might jump, and some of the discrete vibration-
rotation levels of one of these electronic states have their energies in the
continuous range for the other electronic state. The broadness of the lines
has been connected with the short life period of a molecule in a discrete
state, when there is the possibility of its making a radiationless transition

~ Presented at the Pasadena meeting of the American Physical Society, Dec. 10, 1928.
2 National Research Fellow.
' Henri and Teves, Nature 114, 894 (1924).
4 Bonhoeffer and Farkas, Zeits, Phys. Chem. 134, 337 (1928); Kronig, Zeits. f. Physik

50, 360 (1928).
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to a state of dissociation. For example, Kronig4 assumes that the bands will
be diffuse if the life period of the molecule in its discrete state is shorter
than its period of rotation. This assumption was originally made by Henri
and Teves, ' and a similar assumption was made by Wentze15 to explain the
broadening of spectral lines. The work of Wentzel, 5 Fues, ' and Kronig
supplies a means of calculating the life period on the basis of wave mechanics.
It is the purpose of this paper to make a calculation of the width of the line
directly in terms of the perturbation matrices without employing the as-
sumption connecting width and life period. The total absorption over the
line is also calculated. For the sake of simplicity we will consider only dia-
tomic molecules.

To describe the molecule let us take as a 6.rst approximation a wave
equation whose eigenvalues are such that they may be associated with the
three electronic states (the initial state and the two final ones), and whose
eigenfunctions in the region where the overlapping of discrete and continuous
states occurs are of two distinct types, corresponding respectively to the
discrete and continuous states. We write this approximate wave equation
as follows:

(H Z)$=0—
where H is the usual Hamiltonian operator, E the energy, and P the wave
function, the eigenfunctions (with the time left out) being designated, say,
as P„and the corresponding eigenvalues as E„. Though the eigenfunctions,
as stated, are of two distinct types, continuous and discrete, it will be found
convenient to treat them all as if they belonged to discrete states (though
stilt using the terms continuous and discrete to distinguish the two types).
This may be done if we have the system enclosed in a box. The normalization
will then be such that fP„'dr =1 (where dr is a volume element, and the
integration is to be taken over all allowable values of the coordinates)
whether P„belongs to a discrete or a continuous state.

If now we set up an equation to represent conditions exactly it may be
considered as a perturbed form of Eq. (1), and, as the exact equation is
linear in P, it may be written in the form'

(& X+V)&=0—
where U is a perturbation function (or operator). Then this equation will
have a series of eigenvalues E„' with corresponding eigenfunctions P„'.
We shall see later that these eigenvalues form a continuous set (the distance
between eigenvalues being determined by the size of the box) and the eigen-
functions, unlike the unperturbed eigenfunctions, are essentially of but
one type, but their properties vary continuously with Z„; and it is this

' Wentzel, Zeits. f. Physik 43, 524 (1927).
Fues, Zeits. f. Physik 43, 726 (1927).
Sometimes it cannot be-put in this form, but the perturbation theory remains essentially

unaltered. See, e.g. , Kronig, Reference 4, p. 353; Slater, Proc. Nat. head. Sci., &3, 423 (1927).
These cases are included in our formulation if V operates specifically on each PI in Eq. (4).
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variation we wish to consider as it will show us how the perturbation pro-
duces the broadening of the lines.

The matrix component of the electric polarization I' determining the
probability of transition from one of the initial states, ' Pp, to one of the final
states is fppI't/I dr Sin. ce ltp refers to a discrete state, in which there is no
tendency for dissociation to occur, it wi11 have appreciable values only if
the distance between the nuclei r lies approximately within the limits of
the classical range of vibration. Thus we are interested in the values of
P„' only for r of the order of molecular dimensions, since if r is large the
integrand will be negligible anyhow. So we may now be more speciFic, and
say that we wish to find out how P ' (for such values of r) varies when E„'
varies in the neighborhood of a discrete state, for this will tell us over what
range of energies a particular discrete state is of importance in determining
the properties of the perturbed eigenfunctions.

APPLICATION OF PERTURBATION THEORY

The P„ form a complete orthogonal set, and it will be possible to expand
the P„' in terms of them, as a linear expression with constant coefficients,
thus:

This sum is to be taken over both discrete and continuous unperturbed
states. Substituting Eq. (3) into Eq. (2) gives

Now let us set

(H E„')Z+p Pp+—VZ+p„gp=0 (4)

(5)

v;p is the matrix component (without the exponential time factor) of V,
and is given by

Eq. (4) becomes, with the use of Eq. (5), and remembering that II/&=Epfp,

Zp5p„(Ep E„')Pp+Z+p„Z—;v;pP;=0

Interchanging the dummy subscriptsi and k and rearranging the last term,
we get

The coefficients of all gp must be zero. Thus

Sp„(E, E„')+ZP;„vp; 0. — ——

~ Since there is no other electronic state for the initial state" to interact with, it makes no
essential difference whether we take a perturbed or unperturbed eigenfunction for the initial
state.
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There is an infinite number of these equations, each with an infinite number
of terms, for every value of E„'. Complete solution of the problem demands
a simultaneous solution of these homogeneous equations for the $1,„, and a
discovery of the values of E„' which allow such a solution with the S&„
different from zero. We can, however, greatly reduce the complexity of
the problem by means of two simplifying assumptions, and some approxi-
mations, which we now proceed to make and explain.

AssUMPTIQNs AND APPRoxIMATIQNs

To avoid circumlocution we shall begin by defining an isorotational set
of quantum states as all those states which have the same nuclear-rotational
quantum numbers. We shall designate quantities referring to states of
specific isorotational sets by sub-subscripts; thus, v~;„means that k refers
to some state in the m isorotational set, and i refers to some state in the p
isorotational set.

Our first simplifying assumption may then be stated thus:

p~;, =0, unless m= p. (10)

Looking at the matter from the point of view of WentzeP and Kronig4 we
may express this by saying that we get no radiationless transitions in which
the nuclear-rotational quantum numbers change. All the consequences of
this assumption hold if the rotational quantum numbers change, but by a
definite amount. Thus extended it is an assumption which is very probably
true in all cases. '

We shall now consider the consequences of this assumption. Under it,
the equations (9) break up into sets, which we may call isorotational sets
of equations, thus:

Sp,„(Eg, E')+Z;,S;,—„g„r., = 0 (9g)

S„„(E,, E„')+Z,,S,,„—.„;,=0 (9,) . (9')

(9,), (92), etc. , each still represent an infinite number of equations. The
values of E„' which make possible a solution" of (9~) (we designate these
values as E,', and call them an isorotational set of perturbed eigenvalues)
will not in general'" make possible a solution of (92) with values of the Sq,„

It is true, for example, in the case of the perturbations considered by Kronig (Reference
4, p. 361). It is also true if the coordinates giving the orientation of the line joining the nuclei
are separable, and U does not depend on them. If it did not hold the selection principle govern-
ing the possible changes in the rotational quantum number on absorption of light would be
destroyed. This would probably be the most important change, though the question might be
investigated further; this, however, in the opinion of the writer, would not be a very fruitful
thing to investigate."These values are perfectly definite, and are later found.

» Actually the case we are considering is degenerate, and the rotation lines are multiple,
but we could imagine the degeneracy removed by a very small external field. The procedure
we follow will give us the broadening of a selected component of a rotation line, which is proba-
bly the same as that of any other of the components, since the perturbation matrices involving
the various components of a given rotation level are probably all the same.
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different from zero (etc.). Hence, corresponding to the various sets, E„'„
E„,', etc. , we get the following sets of equations for P„,', P„,', etc. , respectively

P„,' = &p,Sg, ,„,Pp, (3i)
'

(3')

The f„,', P„,', etc. , will not be related to each other, and each isorotational
set will produce a distinct spectrum. In general the values of E„,' will not
coincide but will interlace with the values of E„, , and hence the various
spectra will be superimposed upon each other. The eigenfunction of any
one of the discrete vibration rotation states will of course appear on the
right hand side of only one of the isorotational sets (3 ), i.e. , the set cor-
responding to the appropriate rotational quantum numbers. Hence any
apparent broadening of a line for which such a level is the final state in the
transition will depend solely on the properties of one of the isorotational sets
of P„'. Hence we investigate the properties of one" such set, say the f„,'
The resultant of all the superimposed spectra will appear diffuse if a line is
as wide as the distance between two rotation lines of the same vibration
band.

This allows us to make another approximation which further simplifies
matters. Since there is but one state per vibration band in any isorotational
set of discrete states, the discrete states in the sum on the right hand side
of (3~) are a distance apart of the order of the'heads of the vibration bands.
Since this is ordinarily large compared to the distance between rotation lines
it appears that we may neglect all the discrete states in that sum except one
if we are interested in the broadening of some one line (as we will not be
interested in the actual width of the line if it is so broad that the band is
diffuse). The one discrete state which is of importance we distinguish by
the subscript d~.

We can also make an approximation regarding the continuous states
which appear in the sum on the right hand side of (3,). These states all have,
of course, the same electronic as well as the same nuclear-rotational quantum
numbers. Furthermore, (as will appear later —Eq. (21)) the 5k„, will only
be appreciable, in the expression for any/„, , if their Ez, come in an extremely
small energy range. Since the continuous Pq, which contribute appreciably
to any P„,' diRer thus only in the vibrational quantum number and very
slightly in that, it is safe to consider them all equal, say to f„, as long as
r is small. " The f„ thus obtained will depend upon the particular P„,' we
are considering, but even here the change will be slight over an energy range
equal to the energy between two rotation lines, and for our purposes we
may neglect it.

We may thus write (3q) (for small values of r) in the form

"As we let r increase a difference in phase will develop between the eigenfunctions be-

longing to neighboring energy levels, and this may be expected- to be the chief. difference be-
tween these eigenfunctions.
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where now the discrete term is separated out and not included in the sum,
as indicated by the accent on the summation sign, and P„ is taken outside
the summation sign. The purposes of this paper can be accomplished if
we can find the values of Sd,„,and Z'A, , S~,„,for different values of E„,' in
the neighborhood of the discrete state. This concludes the discussion of
our first assumption with the accompanying approximations and simplif-

ication

.
Our second simplifying assumption is that the integrand of Eq. (6) is

appreciable only for small values" of r (molecular dimensions). Then re-
membering that for such values of r all continuous Pz, are equal to the definite
function P„, we see that if s~ and t~ refer to two continuous states, we have

8ltl slsl clcl

~dlsl ~dlcl

~8] d] vc] dl

If U is not an operator but only a multiplier we also have v, ,d, =vd, ,„' but if
U is an operator this is not necessarily true, at least, a priori.

Later another simplifying assumption is made which concerns the size
of s, ,„(seeAppendix I).

OTHER PROPERTIES QF THE PERTURBATION MATRIX—NORMALIZATION

CONSIDERATIONS

We will also need other properties of the v's which depend upon the
normalization of the unperturbed eigenfunctions. The unperturbed Eq. (1)
will be taken of such a form that we may set Pq ——O&R& where 0& depends
only on the electronic and nuclear-rotational coordinates, (except that r
enters as a parameter) while the only variable which enters R~ is the dis-
tance of the nuclei, r (though Rq depends also on the quantum numbers
involved in 0'~); also, if F„=rR~ we may write"

(13)

Here M is the reduced mass, h Planck's constant, E~ the unperturbed eigen-
value, as before, U a function of r (the potential energy), and 0. a constant
depending on the quantum numbers involved in 0&. We shall suppose that
0'q is so normalized that fOq'dr'=1 where dr' includes all the coordinates
except r Then the final norm. alization depends on the equation f,'RI, 'r'dr =
1, or f,' P&'dr =1, where r& is the largest possible value of r. We may vary

" In the case of vd. ..or v, ,d, (or vd, d,) this depends only on the properties of pd„, but in the
case of v..., or v ltl it depends on U. If the statement is true of v. , t, but not of v 1 l (as would
occur if V were constant for large values of r, on account of the orthogonal properties of the
continuous eigenfunctions) the theory can be worked through without change (see end Ap-
pendix I). A case of this type seems to arise from the perturbations considered by Kronig
and Slater. ~ This will be further investigated.

See, e.g. , Born and Oppenheimer, Ann. d.. Physik 84, 457 (1927); Kronig, Reference 4,
p. 347.
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r& as a very idealized way of finding the effect of changing the size of the
box in which the system is contained. 0& and the discrete F& will of course
not be affected by the box.

0 involves directly quantum numbers and their squares, '5 and for moder-
ate values of these quantum numbers the term a/r' will be small compared
to the first term in the square brackets in Eq. (13) even for r of the order of
molecular dimensions, if EI,—U is of the order of 0.1 volt electron. The
term involving a may therefore be neglected under these conditions. Also
for values of r ranging from r& to only slightly greater than a molecular
diameter, U may be taken as equal to a constant Ui. Eq. (13) will then
become

d'F i,/dr'+ (Sx-'M/h') (Ei, Ui)F i, =—0.

If Ei, is greater than Ui (as for a continuous state) the solution is
a sin I (2ir/h) I2(Ei, —Ui)M]i "r+rtiI where a and P are constants. Since r,
will be very much larger than the order of molecular dimensions, and can in
fact be made as large as we please by increasing the size of the box, we may
take this solution as holding over all except a negligible portion of the range
of r. The normalization then makes a=2 / r, ~' similarly to the case of a
freely moving particle in a box. So if/& corresponds to one of the continuous
states it may be said to vary as r, '". If fi, belongs to a discrete state it is
of course independent of r~.

We may at this point also consider the difference in energy between
adjacent continuous states of the same isorotational set. We will have
essentially the same energy levels as if U were constant for all values of r,
and the energy difference, e, between two adjacent energy levels is the same
as for a component of the translational motion of a freely moving particle
in a box.

d = (h/ra) k Ei, Ui)/2M]"'. —

The dependence of various quantities in which we are interested on rj,
as given above, or deduced with the aid of Eq. (6), may be summarized as
follows:

1oc r —'/2 —1
&cicI ~ r&

—1/o
&dlc1 & &cIdI ~ r&

&d1dI ~ rl.0

(16)

DEVELOPMENT OF THE EQUATIONS

Remembering Eqs. (12), we can write Eq. (9,) for the case k, =d, in the
form

~dyne(Edg Eat +&dyd])+&dycy+ iPiyny (17)

(The accent on the summation sign has the same meaning as before —Eq.
(11)). Taking the coefficients of the two definite continuous states si and li

we may also write from Eq. (9,)
"See, e.g. , Fues, Ann. d. Physik 80, 371 (1926); Kronig, Reference 4, p. 349.
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S„„,(E,, E„—,') +v„s,Ss,„,+v, ,„Z';,S;,„,= 0

Si, ,(K, E—,')+&.,s,Ss, ,+&.;,&'~,S, ,

Subtracting Eq. (19) from Eq. (18) we get

S, ,„,(E„—E„,') =S(,„,(Eg,—E„,') =E

(18)

(19)

(2o)

where X is a quantity which will be determined later by the normalization of
P'„,. Thus

Z';,S;,„,=X';,E/(E;, —E„,') . (21)

The difference between successive values of B;, in this sum is e. This may
be taken as a constant for the range for energies we will find it necessary to
consider (i.e. , approximately the energy between two adjacent rotation
lines). Now let us take the smallest positive value of E;,—E„,' in the sum as
a. Then the smallest negative value is —(e —n). cs can of course vary be-
tween 0 and e. Now let us set cr=a/2+p, where p can vary between —s/2
and c/2. Thus if P is zero the perturbed energy is halfway between two
unperturbed energies. Eq. (21) becomes

E E E E
';,5,,„,= + + ~ 0 ~ ~ 4 ~

e/2+P 3e/2+P s/2 —P 3s/2 —P
(22)

Combining the positive and negative terms pair by pair" the series can be
written

1 1
Z', ,S;,„,=2PE— + ~ ~ ~

P' —(s/2)' P' —(3s/2)'
(23)

The series in parentheses is equal" to (sr/2ep) [2cot(27rp/e) —cot(sp/e) j
which we shall designate as'. Then we may write from Eq. (17).

Soli&iE+ 2PEAV Jici =0 (24)

where E=Es, E„,'+vs, s,. And—from Eqs. (18) and (20), assuming that
v„„is small compared to e (an assumption which will be justified later —see
Appendix I—and which will make all terms containing v„„negligible unless

P is very close to —e/2 or e/2) we get

Sg,„,v„g,+E=0

From Eqs. (24) and (25) we get

E 2PA 8$iciV&ipi

(25)

(26)

'6 It is necessary to combine the terms to make the series converge. If, however, we take
into account the variation of e with E;, and the fact that E;,—E„,' has a lower limit, the series
in Eq. (22) converges without combining terms. It converges very slowly, and this might
leave some doubt as to whether we are justified in writing such sums as Z'&1@&gS&g+g as
fc & f&Sap, ~ It seems all right, however, when one remembers that p;, is an oscillating function,
not only of r when E;, is 6xed, but also of E;, when r is fixed, which, of course, considerably
inCreaSeS the rapidity Of COnVergenCe Of the Sum. The Same reaSOning applieS tO &'spd1%1Ssg'A1

which equals Z';,fgs, ViP;,d7.S;, , fdrd s, VZ';, A=,S;, ,"Knopp, "Unendliche Reihen, " p. 197 (Springer, 1922).
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and Sd,„,— E/v„«, . (27)

We will now see if we can find from Eq. (26) what series of values E„,'
may take. Now if /& represents the nearest continuous state with energy
greater than B„~' we may write

Z = E«, E(,+—«/2+P+r«, «,

If we substitute this in Eq. (26) we see that Eq. (26) may be regarded as an

equation in P (and hence in Z„,'). We must, however, find the roots that
satisfy the condition —«/2(P(«/2. But we see that as we let P go from
—«/2 to «/2 there is a monotonic change in the right hand side of Eq. (26),
which passes from .+~ to —~ or from —~ to +~, according as vd„, and

u„«, are or are not of the same sign. As we let P go from —«/2 to «/2 there
is also a monotonic change in the right hand side of Eq. (28), which changes

by «. Thus E from Eq. (26) and E from Eq. (28) will coincide at least at
one point which lies within a range of e. If vd„, and v„~, are of the same sign

- it is at once evident that there can be but one such point. But even if they
are not of the same sign, since the value of Z from Eq. (26) is entirely in-

dependent of r~ (with P a given fraction of «/2), while the range, through
which the right hand side of Eq. (28) varies, is «, and hence is inversely
proportional to r~, it is seen that we can make this range so small as to include
only one point of coincidence of the two calculated values of E. This means
that there will be only one allowable value of P and hence only one perturbed
state whose nearest unperturbed continuous state on the greater energy side
is the particular state E~,. Likewise there will be but one perturbed state
whose nearest unperturbed continuous state on the lower energy side is any
particular such state. So between each two adjoining states of the un-

perturbed continuous series there is one perturbed state. " These perturbed
states approach the unperturbed states as E grows large, and in such a way
that the number of perturbed states is equal to the total number of un-

perturbed states (including both the continuous states and the discrete state)
if vd... and v„~, have the same sign. If v~„, and v, gag have opposite signs the
total number of perturbed states is two less. It may be objected that the
above considerations are not valid, because by our approximations we have
deliberately excluded the regions where P is close to —«/2 or «/2, and that
roots of the equation may lie in these regions, where the term in v„„may
be of importance; but the arguments, which to prevent interruption of the
continuity of the article are presented in Appendix II, show this not to be
the case. It is also true that strictly the above conclusions do not apply when
the magnitude of E is very large, for then P is necessarily close to either «/2
or —«/2. But that the qualitative character of the conclusions should be
altered in these regions seems very unlikely.

"As we pass to the limit, letting rI become infinite, it is seen that E becomes continuous
and P/~ becomes a continuous monotonic function of Z ("since the value of E from Eq. (26) is
entirely independent of r& with P a given fraction e/2") given by Eq. (26), P/e increasing in

absolute value from 0 to —, as E increases in absolute value from 0 to ~. This fact is implied
in the deduction of Eq. (34).
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Let us return now to the final evaluation of Sq,„, from Eq. (27). The
value of X will be determined by the normalization equation fP,"dr=1.
Now

d, ,4~,+ (29)

and

Jl P,"dr =Sq,„,'+Z';,S;,„,' = 1 (30)

since figd. ,'dr =fig„,'dr =.1 and fP;,P,dr f/', P;,dr =0 where m& is a con-
tinuous state different from f&. Now from Eqs. (20), (27), and (30) and the
definition of P we get

1 1E' v ~'+E' + + o ~ ~

(~/2+P)' (3~/2+P)'

1
+— —+ + ~ ~

($/2 —P) ' (3p/2 —P) '
(31)

But v„~, does not decrease as fast as ~ when we increase the size of the box,
by (16). Hence, for p any given fraction of t/2, we can imagine the size of
the box to be so great that the first term in Eq. (31) is negligible. Then we
find

1 1- 1 1 —1/2

E= + + ' '+ + -+
('/2+»' ('/'+P)' (32)

We are enabled to evaluate S&,„, and Q;, 'S;, „but it is not necessary to
write them out. But it may be noted that the ratio of S&,„,14, to 11„p';,S,,„,
(small values of r) varies as 1/E (see Eq. (17)) and, as is to be expected, does
not depend on r, . Also/„, ' varies as r, '", as is to be expected, for any given
E. These facts may be readily verified with the aid of (16).

THE WIDTH OF THE LINE

In the case to which we wish particularly to apply the above consider-
ations the spectrum appears to consist of a series of discrete but more or less
diffuse vibration rotation lines, possibly in some of the vibration bands
completely blurred into each other, superimposed upon a continuous spec-
trum. The fact that the discontinuous spectrum shows up over the con-
tinuous indicates that 'the former is chiefly responsible for the absorption
i.e., for the purpose of determining the absorption we may write

4n, —~d,n,4d, (33)

Sz,„, will have a maximum when P is zero, hence by Eq. (26) when ~E~ is
zero." It will have decreased to 2 '" times its maximum value when ~P~

is equal to e/4 by Eqs. (27) and (32). Thus when p~ is s/4 the matrix com-
ponent of the polarization will have 2 'I' its maximum value and the ab-
sorption 1/2 its maximum value. So the half-absorption width, w, of the
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line will be the magnitude of 8, obtained by substituting s/4 for P in Eq. (26),
multiplied by 2, and is given by

(34)

Using Eq. (15) this becomes

27r(r&/h)v&„, v„&,[2&V/(E&, Ui)]—' '
I (35)

We write in Ed, since the energy is approximately that. This is assuming
that the normalization is so affected that F„=(2/ri)'"sin [(2'/Ii) [2(Zq, —
U&)M]"'r+P I as we have done throughout. It is rather more usual, how-
ever, to set

F„=(2/Ii)"'[23'/(Es, Ui)]"'—sin j(2+/Ii) [2(Es,—Ui)M]'i'r+P j

If this is done Eq. (35) would be written

(36)

where mdiv g and v, ]Qg are what mould be obtained by using the latter ex-
pression for F„. Kronig' did not actually calculate the width, but what he
has done is approximately equivalent to taking it equal to 4x'v„&,", which
is the same as (36) except for the factor 2ir, as

~ v„,s
~

=
~
v,s„~ (see below) .

THE ToTAL ABsoRPTIoN

The absorption due to one of the energy states E„,' is proportional to the
square of the matrix component of the electrical polarization (see following
Eq. (2)). By Eq. (33) the square of this matrix component is (S&,„,ffoPQ&, dr)'
The total absorption over the width of the broad line is thus seen to be pro-
portional to P„,(Sd,„,fgoPQ&, dr)'=P, d,'Q„,S&,„,'. The sum is unity if the
perturbed and unperturbed eigenfunctions both form complete orthogonal
sets, so the total absorption is unchanged by interaction with the continuum.
We may now convert the sum to an integral, writing

since dP/s is the number of states in the energy range dZ. We find the in-
tegral by Eqs. (27), (32), and (26) to be

~ vq„„/v„z, ~. So this ratio is unity.
In this paper no attempt will be made to apply the theory to any special

cases. Professor G. E. Gibson and I" hope shortly to apply it to the diffuse
spectrum of iodine monochloride, which has been observed by him. I also
hope to apply similar ideas to the theory of unimolecular reactions.

One of the problems which must be considered is the question of what
the perturbations which cause the diffuseness are due to, a problem which
resolves itself into a proper choice of the unperturbed eigenfunctions. On
this problem Kronig4 has made a good start.

" Gibson and Rice, Nature 123, 347 (1929).
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I wish to express my thanks to Professor Gibson for having directed my
attention to this problem.

APPENDIX I
We have left to the end the task of showing that v, I/I is small compared to e. Actually we

shall simply show that we may have a completely diffuse band spectrum even though v..., is
very small compared to e. In order to have a completely diffuse spectrum we must have two
adjacent lines blur into each other, which means that I must be of the order of the separation
of two rotation states, h'j/47r'Mrp, where j is the rotational quantum number, and rp is of the
order of molecular dimensions. Let us give j the value 821-, which is fairly large, We then have

22f h /3ffp or fr om Eq (34) vdIcIvcfg EA' /3&p As the magnitudes of vz...and v, ,z, are equal
we have vs.s. (sfi'/pro)'~s But sin. ce vs...=fgs, Vs/s. ,dr and v..., =ts/, , Vs/, ,dr the ratio of vs.s.
to v I 1 will be of the order of the average value of pd, in the region where the above integrand
is diferent from zero to the corresponding average value of P,, (We assume that both inte-
grands are diR'erent from zero only for small values of r.) This ratio will be approximately
equal to the corresponding average of F&, divided by that of F,, Now if the vibrations of the
nuclei take place over a distance comparable to rp, then Fq, rp 'I' while F,,~rI '~'. Hence,
by Eq. (15), vs. s,/sufi'~'[2d(Es, —I/s) ] ~ . Taking 2d as the mass of the hydrogen atom and
Eg, —UI as 0.1 volt electron we get v...,/e 10 '.

If the possibility mentioned in Footnote 13 is true, then V..., is not small compared to e,

but the argument still applies to vsIf1 (It will be remembered that sI and tI refer to two con-
tinuous states; and V..., may be regarded as independent of sI and v, , f., of s& and tI though now
v I Qv 1 &I ) It is not hard to see that this is all that is needed to make the considerations which
result in Eqs. (26) and (27) (and also the considerations of Appendix II, below) valid. For, from
Eq. (9s), bytakingki=si, wegetSs s(E,s Esli +vssss vssis—)+v ssSsssn+svssi+sssSssns=0, which
is to be used instead of Eq. (18), and similarly for Eq. (19). We then set S.. .(E,,—E,'+v, ,„—
v 1 f I) E. Since v, 1 $1 is small everything follows as before.

APPENDIX II
We wish. to get a little more exact expression than Eq. (26) for the case that P is very

close to —e/2 or e/2. We shall treat only the former case, as the latter is very similar. If P
is close to —e/2 we can neglect every term except E/(e/2+P) in Eq. (22). Substituting this
in Eq. (18) and going through the same derivation as for Eq. (26) except that we do not neglect
the term which is multiplied by V..., we arrive at the expression

E=2fiAvs. ..vtrs, /[1+v...,/(s/2+(3) ] (37)

If v 1 1 is of the same order as e/2 +p this gives for E a result which is of the same order as is
given by Eq. (26). But v..., will not be of the order of e/2+p unless ~/2+p is very small in
magnitude (see Appendix I), and E will then be much larger than the energy width of the
spectral line. If v, ,„=—(s/2+P), then E calculated from Eq. (37) would be infinite. If ~v..., ~

is considerably greater than
~
s/2+&~ then Eq. (37) reduces approximately (since A will be

approximately 1/2)8(e/2+ p)) to
"101 01"I/ oI~I '

But by comparing with Eq. {34)it is seen that this is a very large value compared to the width
of the line. Therefore it appears that if there are any inaccuracies in the qualitative description
of the positions of the new (perturbed) energy levels, which we have given above, they lie
outside the range of energies we are particularly interested in; but it seems very unlikely that
there could be qualitative errors for great values of E. The exact determination of this question
would involve considerable reexamination of the simplifications and approximations we have
made, and we will not attempt it.
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