MAY, 1929

SPECTRAL RELATIONS BETWEEN CERTAIN ISO-ELECTRONIC SYSTEMS AND SEQUENCES. PART II; Sc I, Ti II, V III, Cr IV, and Mn V.

By H. E. White

Abstract

The spectra of doubly ionized vanadium, V III, triply ionized chromium, Cr IV, and quadruply ionized manganese, Mn V.—The neutral atoms of vanadium chromium, and manganese in the normal state contain five valence electrons, $3d^34s^2$, six valence electrons, $3d^54s$, and seven valence electrons, $3d^54s^2$, respectively. The removal of two electrons, $4s^2$, from vanadium, of three electrons, $3d^24s$, from chromium, and of four electrons, $3d^24s^2$, from manganese yields three iso-electronic systems, V III, Cr IV and Mn V, the lowest energy levels of which arise from the three remaining electrons, $3d^3$. The spectra of these three elements so ionized resemble very closely the spectra of neutral scandium and of singly ionized titanium. Extrapolations from the already known data of Sc I, and Ti II, have led to the identification of terms arising from the electron configurations $3d^3$, $3d^24s$, $3d^24p$, and $3d^24d$, for V III, Cr IV and Mn V.

The irregular doublet law.—Following the irregular doublet law the radiated frequencies resulting from transitions between the terms arising from $3d^24p$ and $3d^24s$ as well as combinations between the terms arising from $3d^24d$ and $3d^24p$ in going from element to element are displaced to higher and higher frequencies by very nearly a constant frequency interval. The combination of ordinary energy level diagrams with a Moseley diagram brings out a number of interesting relations between the iso-electronic systems Sc I, Ti II, V III, Cr IV, and Mn V and the two sequences of iso-electronic systems starting with K I and Ca I, respectively. The Moseley diagram and the irregular doublet law are the chief guides in determining approximately the positions of the various doublet and quartet levels as well as the approximate location in the spectrum of the radiated frequencies.

Landé's interval rule and Hund's rule.—The quartet term separations follow fairly well the Landé interval rule, examples of which are given. In general Hund's rule for relative term positions is valid for low lying terms in each spectrum.

Ionization potentials.—The ionization potentials, that is the voltage necessary to remove one 3d electron from the normal state $a^4F_2'(3d^3)$ of V III, Cr IV, and Mn V, to the normal state $a^3F_2'(3d^2)$ of the once more ionized atoms, are determined at about 29.6 volts, 50.4 volts, and 75.7 volts respectively.

THE neutral atoms of vanadium, chromium, and manganese in the normal state contain five valence electrons $(3d^34s^2)$ six valence electrons $(3d^54s)$ and seven valence electrons $(3d^54s^2)$ respectively. The removal of two electrons $(4s^2)$ from vanadium, of three electrons $(3d^24s)$ from chromium, and of four electrons $(3d^24s^2)$ from manganese yields three iso-electronic systems V III, Cr IV, and Mn V the lowest energy levels of which arise from the three remaining valence electrons $(3d^3)$. The spectra of neutral scandium, Sc I, and of singly ionized titanium, Ti II, have been partially analyzed by a number of investigators.¹ The most complete analysis, how-

¹ Popow, Ann. d. Physik **45**, 163 (1914); Catalan, An. Soc. Esp. d Fis. y Quim. **21**, 464 (1923); Meggers, Kiess, and Walters, Jour. Opt. Soc. Amer. **9**, 363 (1924).

ever, has been given by Russell and Meggers² for Sc I and by Russell³ for Ti II. Using their data for Sc I and Ti II and extrapolating by means of the *irregular doublet law*, Gibbs and White⁴ in a preliminary report were able to identify three quartet multiplets in the spectra of doubly ionized vanadium. With the vacuum spectrograph now available a further study of doubly ionized vanadium has been made and the analysis extended so as to include both triply ionized chromium and quadruply ionized manganese.

Doubly ionized vanadium. The lowest energy levels in the spectrum of V III as already stated arise from the electron configuration $3d^3$. Of the possible nineteen predicted terms $({}^2P', {}^2D, {}^2F', {}^2G, {}^2H', {}^2D, {}^4P', {}^4F')$ arising from three similar d electrons $(3d^3)$ all but four have been found. About 45,000 cm⁻¹, above this low set of terms are found the metastable levels ${}^2F'$ and ${}^4F'$ of $3d^24s$. Some 42,000 cm⁻¹ still higher are found two triads of middle terms ${}^2D', {}^2F, {}^2G'$, and ${}^4D', {}^4F, {}^4G'$, arising from $3d^24p$ which combine strongly with the low set of levels of $3d^3$ and the metastable levels of $3d^24s$.

Since the irregular doublet law was so successful in locating the three quartet multiplets⁴ arising from transitions between $3d^24p$ and $3d^24s$ it was reasonable to expect that it might prove equally successful in locating the lines arising from the transitions $3d^24d$ to $3d^24p$. Such transitions, however, are known only for Ti II not having yet been found in Sc I, thus making extrapolation difficult. In the previous sequence of iso-electronic systems Ca I to Cr V the transitions 3d 4p to 3d 4s, Fig. 3,⁵ were displaced successively to the violet by about 11,000 cm⁻¹ while the transitions $3d \ 4d$ to $3d \ 4p$ were displaced successively to the violet by approximately 19,000 cm⁻¹. Since in this sequence of iso-electronic systems, Sc I to Mn V, the transitions $3d^24p$ to $3d^24s$ are displaced successively to the violet by about 12,000 cm⁻¹ it was predicted that the transition frequencies $3d^24d$ to $3d^24p$ for V III would lie 20,000 cm⁻¹ higher than the corresponding ones in Ti II. This prediction was confirmed by the finding of the ${}^{4}G'_{3,4,5,6} - {}^{4}H'_{4,5,6,7}$, multiplet, in V III, very nearly 20,000 cm⁻¹ higher than the corresponding multiplet in Ti II. The term values given in Table VII are computed with respect to $a^4F_2'(3d^3)$ as zero. Term values taken with respect to series limits are given in the fifth and tenth columns of the same table as the square root of the term value, $(\nu)^{1/2}$. All the terms for which $(\nu)^{1/2}$ has been given are taken with respect to the limit ${}^{3}F_{4}'(3d^{2})$ of the once more ionized atom. There may be some question as to what limits some of the terms arising from the configuration $3d^3$ approach as it is difficult to associate each term with any series. For convenience only, these terms have been computed with respect to ${}^{3}F_{4}'(3d^{2})$ as a limit.

The wave-lengths, frequencies, and intensities of the lines thus far identified in doubly ionized vanadium are given in Table VIII with their corresponding designations.

² Russell and Meggers, Bureau of Standards, Sci. Papers 22, 329 (1927).

³ Russell, Astrophys. J. 66, 283 (1927).

⁴ Gibbs and White, Phys. Rev. 29, 655 (1927).

⁵ White, Phys. Rev. 33, 538 (1929).

Triply ionized chromium. Extrapolating again by means of the irregular doublet law from Sc I, Ti II and V III, to Cr IV two strong doublets and the triad of quartets arising from transitions between the terms ${}^{4}D'$, ${}^{4}F$, ${}^{4}G'$, ${}^{2}F$, ${}^{2}G'$ $(3d^{2}4p)$ and the terms ${}^{4}F'$, ${}^{2}F'(3d^{2}4s)$ have been identified in the spectra of triply ionized chromium about 12,000 cm⁻¹ higher than the corresponding doublets and quartets in doubly ionized vanadium. In like manner the

Config. (limit)	Term	Value	Combina- tions	$(u)^{1/2}$	Config. (limit)	Term	Value	Combina- tions	$(u)^{1/2}$
	$a^4 F_{2}'$	000	${}^{4}G', {}^{4}F$		* ************************************	${}^{4}G_{3}'$	85523	$a^4 F', {}^2G$	
	a^4F_3'	145	${}^{4}D', {}^{2}F'$ ${}^{2}D'$			${}^4G_4'$	85874	0"1", "11	
	a^4F_4'	194 339				${}^{4}G_{5}'$	431 86305		
	a^4F_5'	244 583		490		${}^{4}G_{6}'$	503 86808		392
	${}^{2}P_{1}'$	11207	$^{2}D'$			${}^{4}F_{2}$	86716	a^4F', b^4F'	
	${}^2P_2{}^\prime$	180 11387		480		4F_3	86937		
3 <i>d</i> ³	${}^{4}P_{1}{}'$	11513	${}^{4}D', {}^{2}F$			${}^{4}F_{4}$	87218		
$(3d^2)$	${}^{4}P_{2}{}^{\prime}$	11590	2D'		$3d^24p$	4F_5	$\begin{array}{r} 326 \\ 87544 \end{array}$		391
	${}^4P_3{}^\prime$	$181 \\ 11771$		479	$(3d^2)$	${}^{2}F_{3}$	87881	${}^{2}H', {}^{2}G$	
	${}^{2}G_{4}$	11966	${}^{4}G', {}^{2}G'$			${}^{2}F_{4}$	448 88329	${}^{2}D, a^{*}F'$ ${}^{2}F', b^{4}F'$	390
	2G_5	12187	2F, 2D'?	478		${}^{2}D_{2}{}'$	88560	${}^{4}P'$ ${}^{2}D, {}^{2}P'$ ${}^{4}P'$	
	$^{2}D_{2}$	16229	² F, ² D'			${}^{2}D_{3}{}'$	380 88946	$a^{4}F', 4P''^{2}F', b^{4}F'$	389
	$^{2}D_{3}$	16376		474		${}^{4}D_{1}'$	89004	$a^{4}F', {}^{4}P'$	
	${}^2H_5{}^\prime$	16822	² G', ² F			${}^{4}D_{2}'$	89191	0°F ,	
	${}^{2}H_{6}{}^{\prime}$	16977		473		${}^{4}D_{3}{}^{\prime}$	89458		
••••••••••••••••••••••••••••••••••••••	b^4F_2'	43941	${}^{4}G', {}^{4}F$		-	${}^{4}D_{4}'$	-40 89418		388
	$b^4F_3{}^\prime$	44108	${}^{*D}_{2D'}, {}^{2}F_{2D'}$			${}^{2}G_{4}'$	91712	${}^{2}H'_{2}, {}^{2}G$	
$3d^24s$	b^4F_4'	44344				${}^2G_5'$	92055	2 F	385
$(3d^2)$	$b^4 F_5'$	44645		442		${}^{4}H_{4}'$	141269	${}^4G'$	
	${}^2F_3'$	49329	${}^{2}G', {}^{2}F$		$3d^24d$	${}^4H_5{}^\prime$	141486		
	${}^{2}F_{4}'$	478 49807	*D'	437	$(3d^2)$	${}^4{H}_6{}^\prime$	141733		
						${}^{4}H_{7}'$	258 141991		314

TABLE VII. Term values of doubly ionized vanadium, V III.

multiplet ${}^{4}G'_{3,4,5,6}(3d^{2}4p) - {}^{4}H'_{4,5,6,7}(3d^{2}4d)$ was predicted and identified at very nearly 20,000 cm⁻¹ higher than the corresponding multiplet in V III.

An extrapolation this time on the Moseley diagram of Sc I, Ti II, and V III, predicted the terms arising from $3d^3$, of Cr IV, about 160,000 cm⁻¹ lower than the terms arising from $3d^24p$. This predicted the radiated frequen-

TABLE VIII. Doubly ionized vanadium, V III

			and a second response of payment of some or the						
λ vac.	Int.	ν	Designation	Mult. No.	λ vac.	Int.	ν	Designation M	Iult. No.
2595.89	170	38522.4	${}^2F_4'-{}^2F_4$	1	1378.00	15	72568.9	$^{2}D_{3}-^{2}D_{3}'$	12
2593.84	160	38552.9	${}^{2}F_{3}' - {}^{2}F_{3}$	1	1359.39	1	73562.4	${}^{2}G_{4} - {}^{4}G_{3}'$	13
2564.05	8	39000.8	${}^{2}F_{3}' - {}^{2}F_{4}$	1	1352.99	10	73910.4	${}^{2}G_{4} - {}^{4}G_{4}'$	13
2555.00	160	39138.9	${}^{2}F_{4}' - {}^{2}D_{3}'$	2	1335.09	45	74901.3	${}^{2}H_{5}' - {}^{2}G_{4}'$	14
2548.98	150	39231.4	${}^{2}F_{3}' - {}^{2}D_{2}'$	2	1331.94	50	75078.4	${}^{2}H_{6}' - {}^{2}G_{5}'$	14
2524.16	5	39617.1	${}^{2}F_{3}' - {}^{2}D_{3}'$	2	1329.21	8	75232.6	$^{2}H_{5}'-^{2}G_{5}'$	14
2428.43	2	41178.8	$b^4F_4'-{}^4G_3'$	3	1317.25	20	75915.7	${}^{2}G_{4} - {}^{2}F_{3}$	15
2425.51	2	41228.4	$b^4F_5'-{}^4G_4'$	3	1313.31	30	76143.5	${}^{2}G_{5} - {}^{2}F_{4}$	15
2414.62	40	41414.4	$b^4F_{3}'-{}^4G_{3}'$	3	1310.79	1	76289.8	${}^{4}P_{2}' - {}^{2}F_{3}$	16
2407.90	80	41530.0	$b^4F_4'-{}^4G_4'$	3	1309.54	4	76362.7	${}^{2}G_{4} - {}^{2}F_{4}$	15
2404.89	100	41581.9	$b^4F_{2}'-{}^4G_{3}'$	3	1306.17	2d	76559.7	${}^{4}P_{3}' - {}^{2}F_{4}$	16
2400.40	75	41659.7	$b^4F_5'-{}^4G_5'$	3	1297.90	3	77047.5	${}^{4}P_{1}' - {}^{2}D_{2}'$	18
2394.27	125	41766.4	$b^4F_{3}'-{}^4G_{4}'$	3	1295.79	Ę	77173.0	${}^{4}P_{3}' - {}^{2}D_{3}'$	18
2386.35	10	41905.0	${}^{2}F_{4}' - {}^{2}G_{4}'$	4	1295.79	3	77173.0	$^{2}P_{2}' - ^{2}D_{2}'$	17
2383.18	150	41960.7	$b^4F_4'-{}^4G_5'$	3	1292.77	20	77353.3	${}^{4}P_{2}' - {}^{2}D_{3}'$	18
2371.76	200	42162.8	$b^4F_5'-{}^4G_6'$	3	1292.77	20	77353.3	${}^{2}P_{1}' - {}^{2}D_{2}'$	17
2366.99	180	42247.7	${}^{2}F_{4}' - {}^{2}G_{5}'$	4	1291.73	٨	77415.5	${}^{4}P_{2}' - {}^{4}D_{1}'$	19
2359.42	180	42383.2	${}^{2}F_{3}' - {}^{2}G_{4}'$	4	1291.73	4	77415.5	${}^{4}P_{3}' - {}^{4}D_{2}'$	19
2348.94	30	42572.4	$b^4F_5'-{}^4F_4$	5	1290.45	10	77492.3	${}^{4}P_{1}' - {}^{4}D_{1}'$	19
2347.78	30	42593.4	$b^4F_4'-{}^4F_3$	5	1289.42	30	77554.2	$^{2}P_{2}' - ^{2}D_{3}'$	17
2347.00	30	42607.6	$b^4F_3'-{}^4F_2$	5	1288.64	8	77601.2	${}^{4}P_{2}' - {}^{4}D_{2}'$	19
2337.80	75	42775.1	$b^4F_2'-{}^4F_2$	5	1287.88	20	77647.0	${}^{4}P_{3}' - {}^{4}D_{4}'$	19
2334.87	75	42829.0	$b^4F_{3}'-{}^4F_{3}$	5	1287.36	6	77678.3	${}^{4}P_{1}' - {}^{4}D_{2}'$	19
2332.39	75	42874.5	$b^4F_4' - {}^4F_4$	5	1287.23	6	77686.2	${}^{4}P_{3}' - {}^{4}D_{3}'$	19
2331.09	100	42898.4	$b^4F_5'-{}^4F_5$	5	1284.23	15	77867.7	${}^{4}P_{2}' - {}^{4}D_{3}'$	19
2325.78	40	42996.3	$b^4F_2'-^4F_3$	5	1257.46	4	79525.4	${}^{2}G_{5} - {}^{2}G_{4}'$	20
2319.65	40	43109.9	$b^4F_{3}'-{}^4F_4$	5	1253.99	30	79745.4	${}^{2}G_{4} - {}^{2}G_{4}'$	20
2314.81	50	43200.1	$b^4F_4' - {}^4F_5$	5	1252.12	40	79864.6	$^{2}G_{5} - ^{2}G_{5}'$	20
2296.89	3	43537.1	$b^4F_4' - {}^2F_3$	6	1248.62	3	80088.4	$^{2}G_{4} - ^{2}G_{5}'$	20
2289.21	6	43683.2	$b^4F_5' - {}^2F_4$	6	1172.47	1	85290.0	$a^4F_5' - {}^4G_4'$	21
2275.77	4	43941.2	$b^4F_{3}'-{}^2F_{3}$	6	1171.27	4	85377.4	$a^{4}F_{3}' - {}^{4}G_{3}'$	21
2261.37	2	44221.0	$b^4 F_3' - {}^2 F_4$	6	1169.28	20	85522.7	$a^4F_{2'} - {}^4G_{3'}$	21
2249.60	8	44452.3	$b^{4}F_{3}' - {}^{2}D_{2}'$	7	1169.11	15	85535.1	$a^4F_4' - {}^4G_4'$	21
2242.08	25	44601.4	$b^4 F_4' - {}^2D_3'$	2	1166.58	30	85720.6	$a^4F_5' - {}^4G_5'$	21
2241.13	6	44620.3	$b^{4}F_{2}' - {}^{2}D_{2}'$	7	1166.47	30	85728.7	$a^4F_3' - {}^4G_4'$	21
2233.40	70	44//3.0	$D^{*}F_{5} - {}^{*}D_{4}$	8	1103.27	-30	85964.0	$a^{*}F_{4} - {}^{*}G_{5}$	21
2230.24	15	44838.2	$D^{*}F_{3} - {}^{2}D_{3}$	1	1159.77	50	86224.0	$a^*F_5 - G_6$	21
2221.93	20	45005.9	$D^{*}F_{2} - {}^{2}D_{3}$	1	1155.12	0	805/1.1	$a^{*}F_{3} - {}^{*}F_{2}$	22
2219.04	30	45004.5	$D^*F_2 - D_1'$	8	1154.70	0.	80598.1	$a^*F_4 - F_3$	22
2218.49	25	45075.7	$D^{*}F_{4} - {}^{*}D_{4}$	8	1154.24	70	80037.1	$d^*F_5 - F_4$	22
2218.09	- 30	45085.8	$D^{*}\Gamma_{3} - D^{*}D_{2}$	ð	1153.19	10	80/15.9	$d^*F_2 - F_2$	22
2210.33	40	45115.2	$D^{*}F_{4} - D_{3}$	0	1152.18	00	80192.0	$u^{-}F_{3} - F_{3}$	22
2209.00	0	45251.4	$D^{*}F_{2} - D_{2}$	0	1151.04	90	86026 0	$u^{-}F_{4} - F_{4}$	22
2200.90	20	45311.2	$D^{*}F_{3} - D_{4}$ $b_{4}F' - 4D'$	0	1130.20	100	86061 C	$u^{*}F_{2} - F_{3}$	22
2205.00	20	45551.5	$D^{*}F_{3} - D_{3}$	0	1149.94	100	00901.0	$u^{-}F_{5} - F_{5}$	22
1979 90	2	54678 0	4C' - 4U'	0	1146.45	10	87202 0	$a^{4}F' - 4F$	22
1020.09	5	54078.0	4C' - 4U'	0	1140.75	00	07202.9	$a^{-1}a^{-1}b^{-$	22
1020.07	1	(55192 5)	$4C_{1}' - 4H_{1}'$	0	1142.30	2	07530.0	$a^{4}F' - 2F$	23
1012.17	50 ×	55102.5	$4C_{1}' - 4H_{1}'$	9	1139.02	2	01133.1 97091 C	$a^{2}F_{3} - F_{3}$	23
1805 23	50-5	55304 6	$4G_{1}' - 4H_{1}'$	0	1130.37	6	88177 5	$a^4 E_1' - 2E_1$	23
1803.23	40	55478 7	$4C_{1}' - 4H_{1}'$	0	1134.14	e U	99/1/ 2	$a^{4}F_{1}' = 2D_{1}'$	23
1708 16	25	55612 1	$4C_{1}' - 4H_{1}'$	0	1101.04	30	00414.2	$a^{4}F_{1}' = 4D_{2}'$	25
1703 85	20	55746 0	$4C_{1}' - 4H_{1}'$	0	1123.71	15	80003 6	$a^{4}F_{1}' = 4D_{1}'$	25
1398 47	20	71506 7	$2D_{2} - 2F_{-}$	10	1123.00	15	89047 7	$a^{4}F_{0}' - 4D_{0}'$	25
1398 44	3	71508 2	${}^{2}H' - {}^{2}F$	11	1122 61	12	89078 1	$a^{4}F_{4}' - 4D_{2}'$	25
1395 62	1	71652 7	${}^{2}D_{0} - {}^{2}F_{-}$	10	1122.01	15	89117 9	$a^{4}F_{4}' - 4D_{-}'$	25
1389.79	20	71953.3	$2D_{2}^{2}-2F_{4}^{2}$	10	1121.19	-8	89190 0	$a^{4}F_{0}' - {}^{4}D_{0}'$	25
1385.35	2	72183.9	$2\tilde{D}_{3}^{2}-2\tilde{D}_{3}^{4}$	$\tilde{1}\tilde{2}$	1119.67	10	89312.0	$a^{4}F_{3}' - {}^{4}D_{2}'$	25
1382.53	10	72331.1	${}^{2}D_{2} - {}^{2}D_{2}'$	12^{-12}	1117.84	3?	89458.2	$a^4 F_{2}' - {}^4 D_{2}'$	25

cies arising from transitions between these two sets of terms in the region of 625A. The triad of quartets ${}^{4}F'(3d^{3}) - {}^{4}D'$, ${}^{4}F$, ${}^{4}G'(3d^{2}4p)$ have been identified in the region 617A to 636A and the doublets ${}^{2}G$, ${}^{2}H'(3d^{3}) - {}^{2}F$, ${}^{2}G'(3d^{2}4p)$ in the region 665A to 695A.

Spectrograms taken in the region of 600A with a vacuum spectrograph in this laboratory have a dispersion of about 11.3A per millimeter. The seventeen lines which constitute the two quartet multiplets $a^4F'-{}^4F$ and $a^4F'-{}^4G'$ lie within the range of 9A, or a little less than one millimeter on the plates. This calls for spectrograms of sharp lines and high resolution which for chromium have been quite difficult to obtain from a vacuum spark. A line marked "tr" in the table of wave-lengths for Cr IV means that only a trace of the line is indicated on the plate, due either to its lying too near a strong line and hence masked or to its being very faint and therefore not accurately measurable. Intercombination lines between doublet and quartet terms in Cr IV seem to be very weak. For this reason the fixing of the doublet term levels with respect to the quartet system of levels by the two lines $\lambda\lambda 1791.82$ and 1765.15A may be rather questionable.

Config. (limit)	Term	Value	Combi- nations	$(u)^{1/2}$	Config. (limit)	Term	Value	Combi- nations	$(\nu)^{1/2}$
<u></u>	a^4F_2'	000	${}^{4}D', {}^{4}F$			${}^{4}F_{2}$	158519	a^4F'	
	a^4F_{3}'	233	${}^{4}G'$			${}^{4}F_{3}$	$158885 \\ 459$	b^4F'	
	a^4F_4'	558 391				${}^{4}F_{4}$	159344 512		
$3d^3$	$a^4 F_5'$	949		639		4F_5	159856		499
$(3d^2)$	${}^{2}G_{4}$	$15014 \\ 357$	${}^{2}F$, ${}^{2}G'$		$3d^24b$	${}^{2}F_{3}$	$160265 \\ 642$	${}^{2}F^{\prime}$, ${}^{2}G$	
	${}^{2}G_{5}$	15371		628	$(3d^2)$	${}^{2}F_{4}$	160907	$b^4 F'$	498
	$^{2}H_{5}'$	21027 251	$^{2}G'$			${}^{4}D_{1}'?$	161513	a^4F'	
	${}^{2}H_{6}'$	21278		623		${}^{4}D_{2}'?$	161834	b^4F'	
	b^4F_2'	103989	⁴ D', ⁴ F			${}^{4}D_{3}{}'$	162295 - 235		
	b^4F_3'	$\begin{array}{r} 264 \\ 104253 \end{array}$	² F, ⁴ G'			${}^{4}D_{4}{}'$	162060		497
$3d^24s$	b F4'	372 104625				${}^{2}G_{4}'$	$164870 \\ 527$	${}^{2}F'$, ${}^{2}G$	
$(3d^2)$	$b F_5'$	$\begin{array}{r} 476 \\ 105101 \end{array}$		552		${}^{2}G_{5}'$	165397	$^{2}H'$	494
	${}^2F_3'$	109903	${}^{2}F$, ${}^{2}G'$			${}^{4}H_{4}'$	233350 350	G'	
	${}^{2}F_{4}'$	760 110663		546	$3d^24d$	${}^{4}H_{5}'$	233700		
	${}^{4}G_{3}'$	157354	$a^4F', {}^4H'$		(3d ²)	${}^{4}\!H_{6}'$	234089 400		
•	${}^{4}G_{4}'$	572 157926	b^4F'			${}^{4}H_{7}{}^{\prime}$	234489		418
$3d^24p$	${}^{4}G_{5}'$	$\begin{array}{c} 696 \\ 158622 \end{array}$							
$(3d^2)$	${}^{4}G_{6}'$	821 159443		500					

TABLE IX. Term values of triply ionized chromium, Cr IV

The term values of Cr IV are given in Table IX with the ${}^{4}F_{2}'$ term taken as zero. The values of $(\nu)^{1/2}$ given in the fifth and tenth columns are taken with respect to the $a^{3}F_{4}'(3d)^{2}$ term of the once more ionized atom in the same way as was done in the case of V III. Wave-lengths, relative intensities, and frequencies of the lines of Cr IV are given in Table X with their corresponding designations.

λ vac.	Int.	ν	Designation	Mult. No.	λ vac.	Int.	ν	Designation	Mult. No.
1990.28 1985.62 1960.63 1883.22 1876.15 1873.97 1868.42 1863.14 1851.96 1844.73 1843.51 1843.51 1843.01 1842.77 1840.20 1833.85 1830.44 1827.53 1827.00 1826.30 1821.62 1819.37 1810.56 1791.82 1755.66 1791.82 1755.66 1741.09 1738.26 1738.26 1722.94 1339.65 1338.20	$\begin{array}{c} 100\\ 100\\ 100\\ tr\\ 35\\ 60\\ 100\\ 45\\ 125\\ 125\\ 125\\ 125\\ 125\\ 125\\ 125\\ 12$	50244.2 50362.1 51003 53300.6 53362.6 53521.1 53672.8 53996.8 54248.3 54208.5 54244.3 54229.0 54241.9 54266.2 54241.9 54530.1 54755.5 54755.5 54755.5 54964.1 55090.6 52231.5 55809.2 56652.4 5098.6 57435.3 57581.1 57667.8 57885.1 57845.0 57845.0 58040.0 724260.6 74260.6 74260.6 74260.7	$\begin{array}{c} 2F_4' - 2F_4\\ 2F_3' - 2F_3\\ 2F_3' - 2F_4\\ b^4F_3' - 4G_2'\\ b^4F_4' - 4G_4'\\ b^4F_2' - 4G_5'\\ b^4F_3' - 4G_6'\\ b^4F_3' - 4G_4'\\ b^4F_4' - 4G_3\\ b^4F_4' - 4G_3\\ b^4F_3' - 4F_4\\ b^4F_4' - 4F_3\\ b^4F_5' - 4F_4\\ b^4F_5' - 4F_4\\ b^4F_5' - 4F_4\\ b^4F_5' - 4F_4\\ b^4F_3' - 4F_3\\ b^4F_3' - 4F_3\\ b^4F_3' - 4F_3\\ b^4F_3' - 4F_4\\ b^4F_4' - 4F_5\\ b^4F_5' - 2F_4?\\ b^4F_5' - 2F_4?\\ b^4F_5' - 4F_4\\ b^4F_5' - 4D_4'\\ b^4F_2' - 4D_4'\\ b^4F_3' - 4D_4'\\ b^4F_2' - 4D_4'\\ b^4F_2' - 4D_4'\\ b^4F_5' - $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1325.08\\ 1319.71\\ 1315.86\\ 695.19\\ 693.87\\ 692.68\\ 688.46\\ 687.12\\ 688.44\\ 668.90\\ 667.31\\ 666.55\\ 664.97\\ 636.43\\ 635.51\\ 635.51\\ 635.47\\ 634.22\\ 634.12\\ 632.65\\ 631.78\\ 631.60\\ 631.33\\ 630.93\\ 630.86\\ 630.32\\ \hline \\ 629.40\\ 629.29\\ 628.52\\ 627.76\\ 620.69\\ \hline \\ 619.17\\ 618.81\\ 618.27\\ \hline \end{array}$	$\left.\begin{array}{c} 40\\ 30\\ 25\\ 130\\ 140\\ 29\\ 90\\ 100\\ 6\\ 20\\ 100\\ 6\\ 0\\ 120\\ 6\\ 0\\ 110\\ 120\\ 6\\ 0\\ 120\\ 60\\ 120\\ 60\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 100\\ 90\\ 120\\ 60\\ 40\\ 150\\ 60\\ 45\\ 100\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ $	$\begin{array}{c} 75467.1\\ 75774.2\\ 75995.9\\ 143846\\ 144119\\ 144367\\ 145252\\ 145535\\ 145892\\ 149499\\ 149855\\ 150026\\ 1500383\\ 157127\\ 157354\\ 157354\\ 157364\\ 157674\\ 157699\\ 158065\\ 158283\\ 158283\\ 158283\\ 158328\\ 158395\\ 158496\\ 158514\\ 158650\\ 158784\\ 158881\\ 158909\\ 159104\\ 159296\\ 161111\\ 161507\\ 161507\\ 161600\\ 161742\\ \end{array}$	$\begin{array}{c} & 4G_5' - 4H_6 \\ & 4G_4' - 4H_6' \\ & 4G_3' - 4H_4' \\ & 2H_5' - 2G_4' \\ & 2H_5' - 2G_5' \\ & 2G_4 - 2F_3 \\ & 2G_5 - 2F_4 \\ & 2G_5 - 2G_4' \\ & 2G_5 - 2G_4' \\ & 2G_5' - 2G$	No. 7
$1331.94 \\ 1325.83$	10 10	75077.9 75423.9	${}^{4}G_{5}' - {}^{4}H_{5}'$ ${}^{4}G_{4}' - {}^{4}H_{4}'$	7 7 7	617.04	30	162064	$a^{4}F_{3}' - {}^{4}D_{3}'$	13

TABLE X. Triply ionized chromium, Cr IV

Quadruply ionized manganese. Quadruply ionized manganese, Mn V, is the fifth element in the sequence of iso-electronic systems starting with Sc I. The process of extrapolating by use of the irregular doublet law and the Moseley law becomes quite accurate when extended from the radiated frequencies and energy levels of the four preceding elements to the corresponding radiated lines and energy levels of Mn V. As predicted, the transitions between ${}^{4}D'$, ${}^{4}F$, ${}^{4}G'$, ${}^{2}F$, ${}^{2}G'(3d^{2}4p)$ and $b^{4}F'$, ${}^{2}F'(3d^{2}4s)$ are found about 12,000

cm⁻¹ higher than the corresponding transitions in Cr IV, in the region of $\nu = 66,000 \text{ cm}^{-1}$, or about $\lambda = 1500 \text{ A}$. The doublet and quartet terms thus identified for $3d^24p$ combine with the lowest terms in the spectrum a^4F' , 2G , ${}^2H'(3d^3)$ giving lines in the region $\nu = 250,000 \text{ cm}^{-1}$ or about $\lambda = 400 \text{ A}$.

Fortunately the high voltage vacuum spark of manganese gives the sharpest lines that have been obtained from any of the elements in the iron-group. Unfortunately, however, long exposures have failed to bring out Mn V lines very strongly, especially in the short wave-length region of 400 to 500A. For this reason only those lines on the diagonals of the multiplets are readily measured at these short wave-lengths while the lines off the diagonals as well as intercombinations between doublets and quartets in many cases are missing or are very faint and uncertain.

Config. (limit)	Term	Value	Combi- nations	$(\nu)^{1/2}$	Config. (limit)	Term	Value	Combi- nations	$(\nu)^{1/2}$
••••••••••••••••••••••••••••••••••••••	a^4F_2'	000	${}^{4}D,' {}^{4}F$			${}^{4}G_{3}{}'$	241898 869	a^4F'	
	a^4F_3'	333 497	${}^{4}G'$			${}^{4}G_{4}'$	$242767 \\ 1040$	b^4F'	
	a^4F_4'	830 572				${}^{4}G_{5}'$	243807 1244		
$3d^3$	a^4F_5'	1402		783		${}^{4}G_{6}'$	245051		608
$(3d^2)$	${}^{2}G_{4}$	$17852 \\ 556$	${}^{2}F$, ${}^{2}G'$			${}^{4}F_{2}$	$243112 \\ 568$	a^4F'	
	2G5	18408		772	$3d^24p$	${}^{4}F_{3}$	$243680 \\ 705$	b^4F'	
	${}^{2}H_{5}'$	$\begin{array}{r} 24935\\ 426 \end{array}$	$^{2}G'$		$(3d^2)$	${}^{4}F_{4}$	$244385 \\ 756$		
	${}^{2}H_{6}'$	25361		767		${}^{4}F_{5}$	245141		608
	b^4F_2'	176938 390	⁴ D', ⁴ F			${}^{2}F_{3}$	$245418 \\ 911$	${}^{2}F'$, ${}^{2}G$	
	b^4F_3'	177328 551	${}^{4}G', {}^{2}F$			${}^{2}F_{4}$	246329	b^4F'	606
$3d^24s$	b^4F_4'	177879 700				${}^{4}D_{4}'$	247713	$a^{4}F', b^{4}F'$	606
$(3d^2)$	$b^4 F_5'$	178579		660		${}^{2}G_{4}'$	250893 815	${}^{2}F'$, ${}^{2}G$	
	${}^{2}F_{3}'$	$183466 \\ 1159$	${}^{2}F$, ${}^{2}G'$			${}^{2}G_{5}'$	251708	$^{2}H'$	601
	${}^{2}F_{4}'$	184625		656					

TABLE XI. Term values of quadruply ionized manganese, Mn V

The two quartet multiplets $a^4F' - {}^4F$, and $a^4F' - {}^4G'$, lie within an interval of 5 A which on the photographic plates cover a little less than 0.5 mm. Manganese in the vacuum spark, however, gives such sharp lines that even the three strongest lines in these two multiplets $\lambda\lambda 410.27$, 410.42, and 410.58 A are definitely resolved in spite of their closeness. The outside separation of these three lines on the plates is only 0.028 mm and yet at this short wave-length is equivalent to about 184 wave-numbers. Since small differences in wave-length cause such large differences in radiated frequencies in this region of the spectrum the accuracy of term values and term separations must be greatly impaired. The term values of Mn V are given in Table XI with the a^4F_2' term taken as zero. The values of $(\nu)^{1/2}$ given in the fifth and tenth columns are

TABLE XII. Quadruply ionized manganese, Mn V

taken with respect to the ${}^{3}F_{4}'(3d^{2})$ term of the once more ionized atom in the same way as was done in the case of V III and Cr IV. Wave-lengths,

Fig. 5. Energy levels and the Moseley law.

relative intensities, and frequencies of the lines thus far identified in Mn V are given in Table XII with their respective designations.

The Moseley diagram law. Combining the data now available for Sc I, and Ti II, and the data here given for V III, Cr IV and Mn V, the same type of energy-level Moseley diagram may be drawn for the doublet and quartet terms of these spectra as was drawn for the singlet and triplet terms of the sequence Ca I to Cr V, Fig. 4⁵, and for the doublet terms of the sequence K I to V V, Fig. 1⁵. From such a diagram, Fig. 5, two relations similar to those pointed out in Figs. 1⁵ and 4⁵ are at once recognized; first, the increased binding of a 3d electron over a 4p and a 4s electron and second, the parallelism between the lines 3d²4s, 3d²4p, and 3d²4d. The singlet and triplet term limits of all the terms are the low ${}^{1}S, {}^{3}P', {}^{1}D, {}^{3}F', {}^{1}G (3d^{2})$ terms of the once more ionized atoms as shown at the top of the figure. Although for each electron

Fig. 6. Relative shifting of energy levels.

configuration, including that of the limit, a point has been plotted for the term involving the largest R, L, and J values the points for all the terms in each configuration would lie within the range covered by the circle. A single line has been drawn to represent each set of energy levels and a single arrow to represent all of the observed radiated frequencies resulting from jumps between two sets of energy levels. In order to show the relative shifting of the various terms of any one configuration in going from one iso-electronic system to the next, Fig. 6 has been plotted. Each set of energy levels has been plotted with reference to the horizontal dotted line through the center of the figure. This line of reference is chosen arbitrarily for each set of levels as a weighted mean, each term being weighted in proportion

680

to its J value. Since only the ${}^{4}D_{4}'$ term has been found for Mn V the other three terms ${}^{4}D'_{1,2,3}$, may be predicted as shown in the figure by dotted lines. All of these levels in Fig. 6 are represented by but a single line, the line $3d^{2}4p$, in Fig. 5.

	$3d^24p$	$3d^24d$ to $3d^24p$			
${}^{4}F_{5}' - {}^{4}G_{6}'$	$\Delta \nu$	${}^{2}F_{4}' - {}^{2}G_{5}'$	$\Delta \nu$	${}^{4}G_{6}' - {}^{4}H_{7}'$	$\Delta \nu$
17626	10001	18109	11740	(15548)	(10200)
29847	12221	29851	11742	35348	(19800)
42163	12316	42248	12397	55182	19834
54342	12219	54734	12486	75046	19864
6 10 12	12131	(7092	12349	(04046)	(19900)
	${}^{4}F_{5}' - {}^{4}G_{6}'$ 17626 29847 42163 54342 66473	$\begin{array}{ccc} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	$\begin{array}{c cccccc} & & & & & & & & & & & & & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE XIII. Irregular doublet law.

The irregular doublet law. As has already been indicated two sets of radiated frequencies have been found which follow very closely the *irregular* doublet law first, the set of lines arising from the electron transition $3d^24p$ to $3d^24s$ and second, the set of lines arising from the electron transition $3d^24d$ to $3d^24d$ to $3d^24p$. Examples of this linear relation are given in Table XIII for

Fig. 7. Regular displacement of frequencies.

the lines ${}^{4}F_{5}' - {}^{4}G_{6}'$ and ${}^{2}F_{4}' - {}^{2}G_{5}'$ representing the first set of transitions and for the lines ${}^{4}G_{6}' - {}^{4}H_{7}'$ representing the second set of transitions. None of the terms arising from the electron configuration $3d^{2}4d$ has as yet been determined for Sc I. An extrapolation by means of the last column of Table XIII, however, would locate the frequency of the ${}^{4}G_{6}' - {}^{4}H_{7}'$ transition not far

from $\nu = 15,548$ cm⁻¹. This same multiplet ${}^{4}G'H'$, although quite accurately predicted for Mn V, has not been identified with certainty and is therefore not given in the other tables. It is even very weak in Cr IV.

The relative shifting to higher and higher frequencies by very nearly a constant frequency interval of the two triads ${}^{2}F'D'$, ${}^{2}F'F$, ${}^{2}F'G$, and ${}^{4}F'D'$, ${}^{4}F'F$, ${}^{4}F'G'$ ($3d^{2}4s-3d^{2}dp$) is shown in Fig. 7. Each frequency scale, although the same for all five elements, has been displaced to the left of the one just preceding it by 12,000 cm⁻¹. A comparison of this figure with the corresponding figure for the two triads ${}^{1}DP$, ${}^{1}DD'$, ${}^{1}DF$, and ${}^{3}DP$, ${}^{3}DD'$, ${}^{3}DF$ (3d4s-3d4p), Fig. 3⁵, of the once more ionized atoms reveals several interesting similarities. For example the more nearly exact linear relation for certain lines starts with the first element in the sequence while for other lines it starts with the second element.

Term separation; The Landé interval rule; and Hund's rule. The systematic increase in term separations in going from one element to the next for each of the four electron configurations $3d^3$, $3d^24s$, $3d^24p$, and $3d^24d$ is shown in Table XIV. In the lower half of the table it is seen that the Landé interval

	${}^{4}F_{2}'$ 4]	$3d^{3}_{F_{3}'} + F_{4}'$	${}^{4}F_{5}'$	4F2'	$3d^24s$ ${}^4F_{3}' {}^4F_{4}'$	${}^{4}F_{5}{}'$	${}^{4}G_{3}'$	$3d^24p \\ {}^4G_4' {}^4G_5$	′ 4G6′	${}^{4}H_{4}'$	$3d^{2}4d$ $^{4}H_{5}'$ $^{4}H_{6}$	3′ 4H7′
Sc I Ti II V III Cr IV Mn V	35 76 145 233 333	48 103 194 325 497	60 128 244 391 572	38 94 167 264 390	3 52 4 131 7 236 4 372 5 551	67 168 301 476 700	73 190 351 572 869	94 234 431 696 1040	114 273 503 821 1244	123 217 350	138 247 389	143 258 400
Theor. Sc I Ti II V III Cr IV Mn V	2.5 2.6 2.7 2.7 2.7 2.7 2.6	3.5 3.6 3.6 3.6 3.7 3.9	$\begin{array}{r} 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \end{array}$	2.5 2.5 2.5 2.5 2.5 2.5	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	4.5 4.5 4.5 4.5 4.5 4.5 4.5	3.5 3.5 3.8 3.8 3.8 3.8 3.8	$\begin{array}{r} 4.5 \\ 4.5 \\ 4.7 \\ 4.7 \\ 4.5 \\ 4.6 \end{array}$	5.5 5.5 5.5 5.5 5.5 5.5 5.5	4.5 5.6 5.5 5.7	5.5 6.3 6.2 6.3	6.5 6.5 6.5 6.5

TABLE XIV. Quartet term separations and the Landé interval rule.

Doublet Term Separations

	${3d^3\over {}^2G_4} {}^2G_5$	${3d^24s\over {}^2F_3{'}}{}^2F_4{'}$	${3d^24p}_{{}^2F_3}{}^2F_4$	$\begin{array}{c c} & 3d^24p \\ & ^2G_4' & ^2G_5' \end{array}$
Sc I Ti II V III Cr IV Mn V	121 221 357 556	116 269 478 758 1159	125 283 448 642 911	95 205 343 527 815

rule for quartet terms is followed. This is especially true for the ${}^{4}F'_{2,3,4,\varepsilon}$ terms of $(3d^{2}4s)$ where the observed interval ratios for all five elements are in exact agreement with those predicted by theory.

Hund's theory gives a satisfactory account of the terms thus far identified. The prediction that from each electron configuration the terms with highest multiplicity, R, and highest L values should lie deepest is verified in all three elements as can be seen from the tables of term values. All of the terms thus far determined for V III, Cr IV, and Mn V are given in Table XV. From

Electron Config.	Theoretical Terms	V III	Observed Terms Cr IV	Mn V
3 <i>d</i> ³	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	${}^{4}P', a^{4}F'_{2G, 2H'}_{2P', 2D}$	$a^4 F'_{2G, 2H'}$	a ⁴ F' ² G, ² H'
3 <i>d</i> ² 4 <i>s</i>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	b ⁴ F' ² F'	b ⁴ F' 2F'	b ⁴ F' 2F'
3d ² 4p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	⁴ D', ⁴ F, ⁴ G' ² D', ² F, ² G'	${}^{4}D', {}^{4}F, {}^{4}G'$ ${}^{2}F, {}^{2}G'$	⁴ D', ⁴ F, ⁴ G' ² F, ² G'
3d ² 4d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 <i>H'</i>	4 <i>H'</i>	4 <i>H'</i> ?

TABLE XV. Predicted and observed terms.

this table it is apparent that out of all the theoretically predicted terms comparatively few have so far been identified. There is little doubt, however, that the rest of the terms exist in each of the spectra. By analogy with singly ionized titanium where nearly all the predicted terms have been identified, many of them from weak lines, combinations between the remaining terms for the rest of the elements of the sequence will in general be so weak that one could hope to observe these lines only by making extremely long exposures. The terms given in Table XV do involve nearly all of the strong lines in each spectrum and at the same time include the lowest terms arising from each of the four electron configurations $3d^3$, $3d^24s$, $3d^24p$, and $3d^24d$.

The ionization potentials, that is the voltage necessary to remove one 3d electron from the normal state $a^4F_2'(3d^3)$ of V III, Cr IV, and Mn V, to the normal state $a^3F_2'(3d^2)$ of the once more ionized atoms are determined at about 29.6 volts, 50.4 volts, and 75.7 volts respectively.

CORNELL UNIVERSITY January 28, 1929.