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THE

COMPTON MODIFIED LINE STRUCTURE AND ITS .RELATION
TO THE ELECTRON THEORY OF SOLID BODIES

BY JEssE W. M. DU MQND

ABSTRACT

A tube especially designed for the study of the Compton e5ect at large angles of
scattering. —The structure of the Compton line obtained with this tube for a scattering
angle of nearly 180' with a metallic beryllium scatterer is shown.

Interpretation of the structure of the Compton line.—The disuse structure of the
Compton line is here attributed to a broadening caused by the velocity distribution of
the scattering electrons in the solid scatterer analagous to a Doppler broadening
and a relation between line structure and velocity distribution is derived. The
observed line structure from the beryllium scatterer is compared with theoretical
structures computed on several alternative assumptions as to electron velocity
distribution. It is assumed: —1.That electrons in the solid scattering substance have
the velocity distribution required by a wave-mechanical atom model for a free atom
of that substance far removed from neighbors. 2. That electrons may be divided into
two classes, one class the metallic or conductive electrons in the state of a degenerate
electron gas subject to the Pauli Exclusion Principle and having the velocity distribu-
tion derived by Sommerfeld, and the other class as in the 1st assumption unperturbed
by the neighboring atoms. 3. That electrons may be divided into two classes as before
but that those forming an electron gas have the classical velocity distribution re-
quired by the Maxwell-Boltzmann equipartition law. 4. That electrons have the ve-
locity distribution required by the older Bohr-Sommerfeld atom model with point
electrons executing Kepler orbits and as in the first assumption unperturbed by
neighboring atoms.

The distribution of electron velocities in metals. —The results strongly contradict
the classical distribution of electron velocities in solid bodies predicted by the rigid
interpretation of the Maxwell-Boltzmann equipartition principle. They are also in
contradiction with the older Bohr-Sommerfeld atom model. The results are in accord
with the wave-mechanical atom model and constitute favorable evidence for the
Sommerfeld distribution of metallic electron velocities and for the degenerate gas
state.

PRELIMINARY report of an experimental study of the structure of
Compton line made by the author has recently appeared. ' The present

paper is intended as an interpretation of some of the results of this work.
The experimental procedure was not previously described, however, and we
therefore here give a brief account of it also.

' J. W. Du Mond, Proceedings Natl. Acad, , 14, 875—878 (1928).
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The purpose of this investigation has been to study the diA'use structure
of the Compton shifted line and to correlate this structure with the internal
momenta associated with the atoms of the scattering substance. We have
chosen the region near 180' as the most appropriate scattering angle for
three reasons. At this angle the inhomogeneity of shift due to the un-
avoidable inhomogeneity of scattering angle is reduced to a very small
minimum. This angle also gives the maximum shift and the maximum
breadth of Compton line structure. For this angle double scattering if any
be present affects the shift and structure of the line to the smallest extent.
As scattering substances aluminum and beryllium have been studied. These
were chosen as convenient for use in vacuum inside the x-ray tube described
below and as representing two extremes in the atomic number region which
could conveniently be studied with Mo Z radiation.

EXPERIMENTAL PROCEDURE

Figure 1 shows a cross section of the special tube used. ' The anticathode
is of the copper water cooled type with molybdenum button manufactured
by the General Electric Company. The cylindrical box surrounding the
anticathode contains the scatterer and the small Seeman type spectrograph.
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Great care was taken in the internal design of this box to insure that the
radiation analyzed by the spectrograph came only from the scattering
body. Four such tubes were built before satisfactory results were obtained.
The water-cooled shield between the box and the cathode was found neces-
sary to prevent stray electron impacts from overheating the box. Before
enclosing the anticathode and its box in the x-ray tube the quartz crystal and

J.W. Du Mond, Nature, 116, 937 (1925).
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wedge in the small cylindrical container were carefuIly oriented to such an
angle that the region of the spectrum studied came exactly from the center
of the scattering substance. This was done by placing two small sheets of
lead across the opening from which the scattering body had previously been
removed so as to leave a narrow slit at the center of the opening. Molyb-
denum radiation from an auxiliary tube passed through this slit diametrically
across the cylindrical box and fell on the quartz crystal. This latter was
oriented and clamped so that the desired spectral region containing the
Mo X spectrum and extending from about 615 X.U. to 800 X.U. was
reHected from the crystal. This entire region only occupies a breadth of about
0.4 mm in the scattering block.

In spite of the proximity of scatterer and source it was not found possible
to work satisfactorily with very short exposures as we at first hoped. Ex-
posures of eight hours were sufficient for beryllium but in the case of alum-
inum fifty hours or more were found necessary. It is not possible to use
more than 10 milliamperes at about 50 k.v. in this tube as the slightest
overheating causes the molybdenum anticathode to vaporize. The molyb-
denum vapor sublimes on the scatterer forming a layer opaque to the radia-
tion. The high resolution and dispersion and the short length of crystal and
wedge also account in part for the relatively long exposures which we found
necessary.

The spectra were photographed at the end of a long lead camera. East-
man duplitized film was used without any intensifying screen. The lead
walls of the camera completely enclosed the film.

The experimental curve shown in Fig. 2 at I was obtained by a micro-
photometric analysis of the photographic spectra. The optical system of
the microphotometer outfit used permitted the exploration of film blackening
over a strip only about 6 mm high. The films however had spectral lines
about 25 mm high. On account of film grain it was necessary to take several
runs with the microphotometer across the spectral lines in different regions
of their height. The curves so obtained were then numerically averaged to
reduce the accidental Huctuations of the film grain. The beryllium curve is
the average of three microphotometer curves taken on one film. In the case
of beryllium two other films were obtained both being in agreement' with
the one here shown. The lines appear superposed on a rather heavy smooth
continuous background. For this reason the relation between x-ray intensity
and microphotometric deflection is closely linear over the small range
represented by the line intensities. To test this, calibration films were made
using Mo Xn radiation with equal steps of intensity produced by means of
an accurately cut exposure disk mounted on a motor shaft. The disk exposed
the film in different regions for different intervals of time varying from one

' These two other exposures were of longer duration than the one whose intensity curve
is reproduced here. They were rather dense and had suKered a slight shifting during the
exposure also some slight halation was suspected. They showed a modified line structure
slightly broader than the one here reproduced.
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tenth to full exposure in tenth steps. It was found that over the same range
of xnicrophotometric deflection as that of the films of the experiment, the
scale was sensibly linear.
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The small peaks X& and X2 in Fig. 2 are not yet definitely accounted for.
They are perhaps fluorescence lines due to impurities in the beryllium
scattering block, perhaps strontium. If they correspond to Smekal tran-
sitions (such as those recently observed by Bergen Davis, Phys. Rev. , p. 331,
Sept. 1928) one would be obliged to suppose energy level differences in
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beryllium of much greater magnitude than we can yet explain. The separation
of X& and X2 is 8 X.U. about double the separation of the Xn doublet of
molybdenum. These lines appeared clearly in all the exposures made with
the beryllium scatterer.

THE RELATION BETWEEN COMPTON LINE STRUCTURE AND

ELECTRON VELOCITY DISTRIBUTION

The structure of the modified line is a key to the distribution of velocity
of the electrons which scatter the modified radiation, the line being broadened
by the random motion of these electrons in a way similar to that of the
Doppler broadening of optical lines emitted by moving atoms. It is shown
by means of certain approximative assumptions in an appendix to this paper
that an ensemble of electrons all moving at one speed, 4 v, in random direc-
tions will modify initially monochromatic radiation by scattering so as to
give (as a first approximation) a spectral distribution consisting of a shifted
rectangular band with a Hat

top and vertical discontinu-
. ous limits or edges, see Fig.
3A. The spectral width of the I

band 6) is proportional to
the speed, v, of the electrons.
This band is nearly sym-
metrically distributed about
the shifted position cor-

!responding to free stationary prbh'

electrons. The approxima-
WAI, A .I.

tion involves an error of the
order of P'/unity (though P
therefore need not be negli- Fig. 3.
gible compared to unity). In
particular when the radiation is scattered at 180' or thereabouts the width
due to such an ensemble is shown

where X*=X+h/mc and P=s/c, the speed of the electrons divided by the
speed of light. (The theory presented here is completely non-commital as
to the @mechanism of this so called Doppler broadening and employs only
the principles of conservation of energy and momentum. It is not therefore
an attempt to explain the Compton e8ect on classical principles. ) The area
of the rectangular spectral band, Fig. 3A, is proportional to the number of
electrons in the ensemble and to the time during which they are exposed
to the radiation if we assume that all electrons have the same a-priori

4 Throughout this paper the word "velocity" will be used to indicate a vector quantity
while the word "speed" will be used to indicate the absolute value of the velocity.
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probability of scattering (see footnote 12). We shall therefore choose an
area I; corresponding to the area of the modified band produced by one
ensemble of electrons, i having a standard population of say one electron
per atom and corresponding to the total time of the exposure. The height
of the corresponding rectangle is then given by I;/4ph*. The choice of I;
establishes the scale of ordinates (intensities) and is so chosen as to normalize
the final total computed curve with respect to the area under the experi-
mentally observed curve.

In order to compute the shifted distribution produced by all ensembles
of electrons an assumption as to the relative c-priori probabilities of scatter-
ing by electrons in the different ensembles or classes mu'st be made. We here
assume these a-priori probabilities the same for all electrons.

With these considerations and assumptions we can compute a modified
distribution for the scattered radiation from any atom model. For example,
for a Bohr hydrogen-like model, having elliptical orbits account can be taken
of the variable velocity in the Kepler motion by a study of the proportionate
times rtt/r spent by the electron in different speed ranges p to p+dp between
the maximum and minimum values P',„, P; (perihelion and aphelion),
where 7. is the orbital period. The resulting distribution will be formed of
infinitesimal elementary rectangles as shown in Fig. 3B. The widths of
rectangles are made proportional to the speeds and their areas are given
by (r,/r)I; so as to make the area of the total curved distribution equal to I;.
The height of each rectangle is given by (r~/r)I~/4'"

The curve representing the shape or structure of the Compton modified
line may then be obtained by assuming finite speed ranges and calculating
finite rectangles to form a staircase distribution whose discontinuities are
finally smoothed out by drawing a smooth curve as shown in Fig. 3B. Where

practicable, however, it is
better to obtain the curve
by the following analyti-
cal method.

Referring to Fig. 4, a
d4 function C'(P) is supposed

given which expresses
the probability of encoun-
tering an electron with
speed between P an d
P+dP as a function of P.
The electron ensemble

Fig. 4.
having this speed P and

' This Method of treatment is slightly different in form but identical in substance to the
theory developed by G. E. M. Jauncey (Phys. Rev. 25, 314—322 (1925) 723—736 (1925)) for
computing line structures due to electrons in Kepler orbits. It is developed in the form here
given to permit of extension to wave-mechanical atom models. The author wishes explicitly
to acknowledge his indebtedness to Dr. G. E. M. Jauncey.
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randomly distributed velocity orientations contributes to the total line
structure the elementary rectangle A whose area is proportional to C(tl)dP
and whose width is given as mentioned above by 4'*. The area of this
rectangle is therefore

—2ldy=kC(P)dP

where k is a constant determining the scale of y, and f ='A' —A-2k/mc is the
abscissa of the structure curve measured from its median point. 1=2PA*
and P =I/2A* we can thus replace dP by dl/2'A* and C (P) by C (f/2A~).

The differential equation of the curve is given therefore by

2ldy —= kC (f/2A*) df/2A*

Dividing by —2l and integrating this from y =0, l = to y =y, / = L we obtain
the equation of the line structure curve for continuous functions which vanish
as l—+~

& l=g)
(2)

Formula (2) permits us either to start with an observed line structure
and to deduce from this the electron velocity distribution function 4(P) or
to start with possible assumed velocity distributions 4(P) and compute ideal
line structures for comparison with the observed structure. The line struc-
tures so far determined are not sufficiently well defined to warrant the first
mentioned procedure but many interesting conclusions can be drawn by
following the second.

GENERAL )METHOD OF COMPUTING AND NORMALI2ING LINE
STRUCTURE CURVES

Each electron class (X, I., III, etc.) is assumed to contribute to the total
line structure independently. Separate line structure curves are computed
for each class of electrons. The ordinate scales are so chosen as to make the
area under each of these component curves proportional to the number of
electrons responsible for that curve. These curves are then added to obtain
the total line structure.

The primary radiation is not truly monochromatic but consists of a
doublet (Xnq, Kn2). Mo Xn2 is 4 X.U. longer in wave-length and half as
intense as Mo Xn~. In order to render the computed structure curves strictly
comparable with the observed curves the following procedure was followed
in all cases. The total structure curve was computed for a primary wave-
length of 708 X.U. (Mo Xn~) and the scale of ordinates was so chosen as
to make the area under this curve equal to two thirds the area under the
experimentally observed curve. This gives the contribution due to Eo.&. To
this we add a precisely similar curve shifted however 4 X.U. in the direction
of longer wave-lengths and having ordinates half as great as those of the
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first curve. This gives the contribution of Eu2. The final curve has obviously
an area just equal to the experimentally observed curve with which it is to
be compared. By following this procedure no arbitrary assumptions need
be introduced as to absolute intensities and the ordinate scale is uniquely
determined.

The correction for the doublet character of the primary radiation above
mentioned introduced a plainly visible asymmetry in all of the computed
curves.

ELECTRON VELOCITY DISTRIBUTIONS FOR WAVE MECHANICAL ATOM MODELS

AND DERIVATION OF THE CORRESPONDING LINE STRUCTURE CURVES

By means of the Dirac transformation theory it is possible to obtain the
momentum distribution for a wave mechanical atom model given the space
distribution (eigenfunction) for the same model. If p), p„p, are the cartesian
coordinates in the momentum space and x~, x~, x3 the cartesian coordinates
in ordinary space then the probability of encountering a momentum (p„p„
p))) is given by the square of the absolute value of

4(Pi, P2) P3) = JI J|JI e- "' "' »*+»"+»"')P(xi,x»x, )dx, dx,dx, . (3)

The eigenfunctions used are those given by L. Pauling. ' An effective
atomic number Z; corrected for screening is computed for each class of
electrons i and applied in the eigenfunction for that class. The author
realizes that this is only a rough approximation which neglects mutual
perturbations. An exact solution (if possible) would be very laborious and
quite unwarranted for the purposes of this paper.

Equation (3) in polar coordinates becomes, if )p is independent of 0' and
P' and depends on r alone

((P) = f0 " "' ((") "*"9d'd9 c'h*'''
0 0 0

(4)

Q(p) is generally a complex quantity. The square of its absolute value

~(t)(p) ~' gives the density in momentum or the probability of encountering
an electron with momentum in the range between p„p„, p, and p +dp„
p„+dp„, p, +dp. . The function C'(p) which represents the probability of
encountering an electron with momentum between jp ~

and ~p ~+ ~dp
~

is
obtained by multiplying ~p(p) ~' by 4s p'.

The resulting functions C)(p) can be easily expressed as functions of p
or l by the relations

' L. Pauling, Proc. Royal Soc. A114, 184 (1927).
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p = rros =mac = rrocl/2)o*.

The function 4(l) thus determined is substituted in the formula (2) for the
line structure curve. We tabulate below the electron class, the corresponding
eigenfunction, and the resulting line structure curve function. Inessential
multiplicative constants have been dropped since the line structure functions
are. to be subsequently normalized.

(E) 1 0 1itr1 p(r) =e '1 o"

(I) 2, 0 Po, o(r) =e 'o.o'[ —2+2oo or]

(M) 3, 0 f , (or)o=e o.o" [6—12ao or+4oo ooro]

oro, l +o, l/rOSo o

y1, o = (1+A1,02l2)

y2, o =2 5(1+A2, 02l2) 3—7.5(1+A2,02l2) 4

+6(1+Ay p'l') 5

y3 p=4.701(1+A3 p l')-'
—37.612(1+A3 02l2) 4

+110.328(1+A3 p'l') '
—133.731(1+A3 p'l') '
+57.313(i+A3,p'l') '

, o
= (2«oN/&o) /(2,

)omah/mc)

X =e) +Ih/ rr=oc732 10 "cm, a =5 10 'cm, h/rroc=24 10 "cm

The effective atomic numbers applied to these functions are as follows:
beryllium, Zy, p=3.81, Z2, p=2.

LINE STRUCTURE CURVE DUE TO SOMMERI ELD CONDUCTION ELECTRONS

By the application of the Fermi-Pauli statistics Sommerfeld has recently
shown that the conduction electrons in metallic crystal lattices will have
the following velocity distribution:

where V is given by

when

when

V = h/rro(3n/4rrG) '~o

(3)

(0)

(7)

n being the number of metallic electrons per cc in the crystal lattice and
G=2.

Expressing this in terms of l and substituting iri the formula (2) for the
line structure we 'obtain omitting a constant coef6cient and using the in-
definite integral

dl
y= — t P +C for

i li —&2)oev/C

since y =0 when

l = + 2)j.*v/C, C =
2 (2K*V/c) o

or
y=2(2K*V/c)' ——l' for

~

l
~

&2h*v/c

y=o for
i

l
i

)2)o*v/c
(9)

(1o)
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Fig. 5.

This is seen to be a line structure
in the form of ten inverted parabola
of base width 4K*V/c. Sommer-
feld's electrons have much higher
velocities than those required by
classical statistics and the result
is a much broader line structure.
See Fig. 5.

LINE STRUCTURE CURVE DUE TO

MAXWELL-BOLTZMANN DISTRIBU-
TION OF CONDUCTION ELECTRON

VELOCITIES

This is obtained by the same method as the previous curves. In this case

@(&)—&2&
—1/2mv /kr —(cf/2g4)2& —m/2(c//2x ) /kr

Substituting in the Eq. (2) and integrating

y
—e

—rr//2/cT (c/2)N, )

This is a simple Gaussian error curve which for the temperature of the
experiment has a width of only 0.4 X.U. at 1/e of maximum value.

LINE STRUCTURE CURVES FOR KEPLER ORBITAL VELOCITY

DISTRIBUTIONS

For the case of circular orbits since P is constant the distribution is
evidently a simple rectangle as has been show by G. E. M. Jauncey. Here
C(s) degenerates into a simple vertical ordinate at the proper value of s.

For the case of elliptical orbits the function C (s) is of rather complicated
form. For this reason the graphical method with finite speed intervals was
resorted to. Fig. 3C shows a typical curve representing 4(v) for a 2&orbit.
The tota1 speed range between maximum and minimum speed was divided
into ten equal steps and the corresponding rectangles were plotted to obtain
the component curves whose sum gave the structure curves shown in Fig. 2 V'.

Attention is called to the general similarity existing between the structures
due to wave mechanics and those due to the older Bohr-Sommerfeld Kepler
orbits (see Fig. 2 V and II). The difference as would be expected is that the
wave mechanics rounds off the sharp corners of the Kepler curves. The wave

meckanics also permits some slight intensity at very large line breadths. ' This is
doubtless the explanation for the existence of an unshifted line in cases where
Jauncey's theory based on Kepler orbits called for no unshifted line.

CONCLUSIONS

It is evident from a comparison of the observed and computed line struc-
tures that the assumption of a class of electrons with velocities in agreement
with the Maxwell-Boltzmann equipartition of thermal energy is untenable.

'I The Bohr-Sommerfeld atom would also give a better fit if the azimuthal quantum number
k were placed equal to (l(3+1))'/' however.
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The two extremely tall and narrow peaks to be expected on this assumption
are due to the Xn~ and Eo;& lines of the primary radiation and should be
completely resolved as shown. We have in Curve (IV) Fig. 2 assumed the
existence of two electrons per atom with such velocities. Even though this
state were but one tenth or one twentieth as populous it would be easily
detectable because of the narrowness of the curves called for by electrons with
such slow velocities. Such narrow curves or peaks when normalized to give a
total area equal to only a s'mall fraction of the area under the observed curve
would still have very appreciable ordinates.

The line structure to be expected from an atom with point electrons
executing Kepler orbital motions with its resulting angularities and dis-
continuities is also seen to be discordant with the experimentally observed
structure (compare Fig. 2 V and I).

Of the two remaining theoretical Curve III Fig. 2 corresponds to the
assumption that the electron momentum is distributed as it would be in a
free atom of beryllium and hence neglects the perturbing effect of the close
proximity of the atoms in the crystal lattice. Curve II corresponds to the
assumption that on account of the proximity of atoms two electrons per atom
are not closely associated to any particular atom but constitute a degenerate
electron gas while the remainder of the electrons are distributed in momen-
turn as they would be in a free atom of beryllium neglecting the perturbing
effect of neighboring atoms. This arbitrary division of electrons into two
distinct classes is doubtless only a very rough approximation to the truth.
It is highly probable that no sharp boundary divides the electron gas from the
bound electrons there being an intermediate state in which electrons execute
motions very different from those to be expected in a single free unperturbed
atom but motions which nevertheless are to a large extent conditioned by
the fields of one or more atoms. Such a class of electrons is neither completely
free nor completely bound. It is difficult to take account of this intermediate
class of electrons quantitatively' but it is easy to see qualitatively the effect
on the computed form of the line structure. Attention is called in Curve III
Fig. 2 to the sharp breaks at the two points where the parabolic structure
due to the electrons of the degenerate gas state meets the broad bell shaped
structure due to the bound electrons. These breaks would certainly be absent
if it were possible to take account of the continuous nature of the transition
between the bound electrons and those in the degenerate gas state.

We now call attention to those parts of Curves II and III near the
maximum. It is at once evident that Curve III is blunter and broader than
Curve II and that in this respect Curve III is in better accord with the ob-
served line structure. It is precisely in this portion of the curve that we
should expect the degenerate gas approximation to give a good representation
of the facts.

We may therefore conclude that the experimental curve supports the
Sommerfeld theory of metallic electrons as a degenerate gas in just those
regions for which this theory is designed to apply.

~ Blo|:h. Zeits. f. Physik, Jan. 1929.



JESSE TV. M. DU MOND

It is notable also that Curve III has a maximum ordinate slightly higher
than that experimentally observed. Were Curve I I I to be corrected in
order to take account of the continuous nature of the transition between
the bound electrons and those in the degenerate gas state it would be neces-
sary to louver the maximum ordinate in order to maintain a constant area
without changing the shape of the peak. This would doubtless improve the
agreement of the observed and computed maximum ordinates.

To sum up our conclusions then we may say:
The Maxwell-Boltzmann statistics applied to conduction electrons give

results discordant with the observed structure of the Compton line for
scattering from beryllium.

The electron velocity distribution of the older Bohr-Sommerfeld atom
model gives results discordant with the observed structure of the Compton
line.

Velocity distributions based on the wave mechanics of a beryllium atom
on the one hand and on the Sommerfeld theory of degenerate electron gas
on the other give line structures in accord with the experimentally observed
curves in the regions to which these theories are in each case designed to be
applicable.

It is interesting to note that the conclusions drawn from this work
constitute confirmatory evidence for the Sommerfeld theory of gas de-
generation as applied to conduction electrons in a fietd of pkenomena quite
remote from that for wkick tke tkeory was devetoped

A simple computation shows that the recoil momentum taken by any
electron in the case here discussed is sufficient to throw that electron com-
pletely out of the range of velocities forbidden by the presence of other
electrons according to the Pauli "Verbot. "

Work is now under way at this laboratory in an attempt to obtain ex-
perimental distribution curves with greater precision. A study of line
structure scattered by nonconductors should prove interesting and is now

being started. Work is being continued by the double crystal method of
Bergen Davis and also by means of a multiple crystal spectrograph recently
constructed here which permits the use of converging x-ray beams.

My sincere thanks are due to Professor W. V. Houston for his kindness
in acquainting me with the results of the electron theory of metals in the
Fermi statistics, and to Professor L. C. Pauling and Mr. Edwin McMillan
for the help they have given me in the development and computation of the
functions C'(P) for wave mechanical atom models. I am much indebted to
Professor Gregor Wentzel for his discussions and criticism in conversations
in Paris and in subsequent letters. I am most grateful, also, to Professor
R. A. Millikan for his faith and encouragement in this study which for a
Iong time gave but meager promise of interesting results.

APPENDIX

The explanation of Compton line breadth as a Doppler effect of the motion of bound and
conduction electrons is an approximation. It has the advantage of offering a familiar pictorial
explanation of the facts but the disadvantage of limited applicability. To treat the problem
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rigorously one must set up a wave function for the crystal lattice and then compute the
modified radiation by a method similar to that of G. Wentzel. This no one yet has succeeded
in doing satisfactorily,

The present approximate theory is applicable to low electron velocities, long primary wave
lengths and relatively free electrons or expressed precisely

v«c, h/mc«x, Eg/Eg«1 (12)

Ep is the binding energy of the electron, Ez the energyreceived bythe electron in the scattering
process:—

E& =h~ —h~' =e~(X' —X)/u, '

For any particular level the ratio Ez/Eg is evidently a function of l the abscissa we have used
in describing the line structure. It increases in the direction of shorter wave lengths but over
the region X &730 X.U. does not exceed 0.2 for any level. For most levels it is very small indeed.
The region X&730 X.U. includes all of the interesting portion of the modified line structure.

For any particular level the modified spectral distribution becomes discontinuous to the
left of the point where the ratio E~/Ez =1. In this region the Smekal lines recently observed
by Bergen Davis' appear. The unshifted line may be considered as a special case of these.
In the cases here discussed this region is too close to the unshifted line to be resolved.

The following assumptions which are all that are necessary for the derivations of formulas
used in this paper seem justified for the region of approximation defined by the three inequal-
ities (12).

(1). All electrons are assumed to have the same a-priori probability of scattering inde-
pendent of their velocity or quantum state,

For the region defined above the classical scattering formula giving the total scattered
intensity proportional to the total number of electrons for a wide variety of atoms is known to
hold. "

(2), Conservation of momentum and energy is assumed in the interaction of light quanta
and electrons taking into account only the momentum and energy of the electron in the atom
or in the crystal lattice just before scattering and similar quantities for the scattered quantum
and the recoil electron. The modifying effect on the shifted radiation of any momentum or
energy transferred or otherwise given to the rest of the atom in the scattering process is neg-
lected.

We first investigate the general case of
an initially moving electron which scatters
a quantum at an angle of scattering 0. Re-
ferring to Fig. 6 let vi =initial frequency of pe&4

quantum propagated in the direction of &n.A c
positive x-axis the interaction occurring at the fiie, Y~-@

origin, Let Pic be the speed of the electron
before interaction ai, bi, c~, the direction
cosines of its velocity and ai =cos 0i so that

f'I0 e
Oi is the angle between the electron's initial pe~'~

velocity and x-axis. Let the scattered quan-
tum have a frequency r& and a direction of
propagation defined by the direction cosines
p, q, r making angle @ with the initial velocity Fig. 6.
of the electron and an angle 0 with OX. Then

cos @= (aiP+blg+~1~)

P =cos 0

' G, Wentzel, Zeits. f. Physik 43, 1—8 (1927); 43, 779—787 (1927).
"Bergen Davis, Phys. Rev, 32, 33 (1928)."Bergen Davis, Phys. Rev. 25, 737—739 (1925).



656 JESSE 8". M. DU MOND

Let the recoil electron have a final speed p2c in the direction defined by the cosines a2, b2, c2.
(Cf., de Broglie "Ondes et Mouvements" Fasicule 1 pp. 94—95.) Assumption (1) gives us the
four equations.

/gvi+~pg /(1 —Pi ) il2 =gv2+ygpg2/(1 —P22) i&2

kv1/c+

(hippic/(1

—pi') '~'gx = (hv2/c) p+ (m pp2c/(1 —p2 } }a2

(mpPxc/(1 —P,2) i&2) b, = (hv2/c) ~+ (mpP2c/(1 P2 ) )b2

(mpPiC/(1 —Px ) ~ )Cx = (hv2/C)r+(mpP2C/(1 —P2 ) ~ )p2

Eliminating a2, b2, c2 and p2 letting a = hv i/mpc' we have

1 —pi cos 8i

1 —pi cos @+2m(1—pi ) t sin, 8/2

Substituting v =c/) and neglecting p' in comparison to unity we have for the shift

pi(cos 8i —cos qb) 2a) i sin2 8/2
X2 —Xi = -—'Ai+-

1 —pi cos 8i 1—pi cos 8i

(13)
(14)
(15)
(16)

(17)

in which the second term accounts for the simple "Compton Shift" and the first term repre-
sents the deviation from this shifted position caused by the electron's initial velocity. If now we

substitute

l =X2—Xi —20.4 sin' 8/2

so that the new wave length coordinate l has for its origin the "center" of the shifted line

{position for scattering by free stationary electrons) we obtain for the shift away from that
new reference point

8
Pi cos 8i Xi + 2ahi sill ——cos @Xi

2

1 —pi cos 8i

This can be considerably simplified by introducing a notation based on the special case of
scattering by an initially stationary electron (Compton case).

Let the shifted wave-length for the Compton case be

X, =Xi+20.Xi sin' 8/2

then

pi cos 8iXc pi cos /Xil= 4

1 —pi cos 8i
(20a)

or

Fig. 7.

In Fig. 7 let OA be the direction of the in-

cident quantum, OB the direction of the scattered
quantum, OC the direction of the electron's
initial velocity. We make the vector OA equal
in length to X„ the vector OB equal in length
to )i and the vector OC equal in length to pi.
We define a new wave-length

2) *={),+)~' —2X,) i cos 8) ' ~

represented in length by the vector AB.
We now note that the numerator in Eq.

(20a) can be represented in terms of the vectors
of Fig. 7 {designated by their terminii) as the
difference of two scalar products

C A —C.B
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Now the vector whose length is 2X* is precisely

(A —B) .
Hence if P is the angle between OC and AB we have the identity

Pl cos 81~c Pl cos @~1=2Py cos fX

so that we can write

l= 2py cos l/r

1—Pj cos 8y
(2o)

The direction AB is that of the vector difference between the momentum of the incident
quantum and the momentum of the quantum scattered in the special Compton case of an
initially stationary electron. It is evident that AB is the appropriate reference axis for the
general case of an initially moving electron. The shift l is seen to be nearly proportional to the
projection of the electron's initial velocity on this axis AB, It is important to note that this
axis is fixed in space and that ) * is a constant for any given angle of scattering 8 and initial
wave-length XI.

In particular when the angle of scattering 8=180' or nearly so we have (the case of this
experiment)

cos i/i =cos 8g = —cos @

2Py cos 8g
l

1 —Pi cos 8i
(21)

where X*= (X+8/mc)
Holding P& the initial speed of the electron constant and varying the directions of the

electron's initial velocity defined by cos 8& it is evident from Eq. (21) that
—2P~X* & l & 2P~X* &when P~ (&1 (22)

or —2P~X*+2P&9*&l&2PP *+2P~9* when p& is not small compared to 1 but pP((1. l can
therefore vary over the wave-length range given by:—

(23)

for electrons of constant initial speed P~ and varying directions 8~.

LINE STRUCTURE ELEMENT FOR AN ENSEMBLE OF ELECTRONS ALL
HAVING SPEED P AND RANDOM VELOCITY;ORIENTATIONS

An ensemble of electrons of the type mentioned is represented in velocity space by vectors
radiating from the origin and having their terminii distributed with uniform density over the
surface of a sphere of radius P with the origin as center.

The probability of an'encounter between a quantum and an electron such that the angle
between the two trajectories is 8j (per unit small angular range d8&) is

P8~=-', sin 8~. (24)

The probability P& of a given shift, l is obtained from equations (21), (24) and the deriva-
tive of (21) by eliminating 8~ and dl/d8& as

P~=(4PX*) '(1+l/2X*) '.
The error introduced by nglecting l/2X* in comparison to unity is 3 per cent for

i=25 XU, X*=738 XU and much less for the more important parts of the line structure.
Hence

Pi = 1/4'*
and Pg is thus seen to be independent of l. Hence all shifts in the range permitted by inequal-
ities (22) have the same probability, i.e. the distribution is rectangular. (See Fig. 3 A).

"This statement is strictly true if the ordinates of the distribution function or line struc-
ture curve are understood to represent the number of quanta; If the distribution curve repre-
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As indicated by inequalities (22) this rectangle is not quite symmetrically centered about
the origin of wave-length abscissa l for very large values of P but this slight correction has been
neglected in the present paper.

CALIFORNIA INSTITUTE OF TECHNOLOGY)

NORMAN BRIDGE LABORATORY OF PHYSICS)

February i0, 1929.

Note added in proof, April h'. The author has just received a manuscript from S. Chan-
drasekhar of India giving an independent theoretical derivation of the parabolic line struc-
ture due to the Fermi-Sommer6eld electron gas. His results are in accord with those here
given.

sents the energy however a slight correction for the variation in the energy per quantum over the
breadth of the line is necessary. The computed curves of this paper represent the distribution
of number of quanta as a function of wave-length and not the energy. The microphotometer
curves on the other hand represent energy rather than number of quanta. No correction was
made for this, however, as the discrepancy thereby introduced is much smaller than the experi-
mental uncertainties and in no way affects the conclusions.


