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THE TWO QUANTUM EXCITED STATES OF
THE HYDROGEN MOLECULE

BY E. C. KEMBLE AND C. ZENER

ABSTRACT

Theory of two quantum states of H2.—There are sixteen possible wave functions
for a pair of interacting H atoms which dissociate adiabatically into a normal H atom
and a two quantum H atom. These wave functions give rise to eight distinct S states
and four distinct P states (the latter are degenerate in the fixed nuclei problem).
These states may be divided into four groups of three according to the symmetry of
the wave functions with respect to (a) an interchange of electron coordinates, and (b)
reflection in the plane which forms the perpendicular bisector of the internuclear axis.
The principles of selection for transitions between these various types of electronic
state are formulated and compared with the rules of Kronig. A first order perturbation
theory computation of the potential energy curves for the P states shows that two of them
have the form requisite for the formation of stable molecules. These two may be
identified respectively with the C state (upper level for Werner bands) and the 2'P
state reported by Richardson. The agreement between the computed curves and the
empirical data is fair.

Valence theory. —The computations show that in the case of the excited states
of hydrogen the union of valence electrons to form symmetrical pairs is not the
essential feature of molecule formation as London's original valence theory supposed.
The rule that molecular formation is contingent on the removal of degeneracy from
the wave functions of the interacting atoms seems to have a greater range of applica-
bility than London's rule. The latter is no doubt correct for a great variety of cases,
however.

INTRQDUcTIQN

'HE potential energy curves for the two sorts of interaction of normal
hydrogen atoms have been calculated in first approximation according

to the wave mechanics by Heitler and London, ' Sugiura, ' and Wang. ' Heitler
and London, whose work was completed by Sugiura, made a conventional
application of the Schrodinger perturbation method to the problem, using as
unperturbed wave functions those characteristic of the normal hydrogen
atom. In the case of large internuclear distances such a first order calculation
as theirs is sure to give somewhat too large an energy since the polarization
van der Waals forces predominant at large distances are associated with the
second and higher order terms in the perturbation theory. 4 Also in the limit-
ing case where the nuclei are united to form a helium atom the computed
energy is much too great at least for that solution of the problem which leads
to molecular formation. ' This might have been expected since the assumed

' W. Heitler and F. London, Zeits. f. Physik 44, 455 (1927).
2 Y. Sugiura, Zeits. f. Physik 45, 484 (1927).
3 S. C. Wang, Phys. Rev. 31, 579 (1928).
4 S. C. Wang, Phys. Zeits 28, 663 (1927).
I' Sugiura computed the energy in this limiting case and got very good agreement with the

observed energy of normal helium. This agreement was due to an error, however, which was
called to the attention of the authors by Prof. R. S. Mulliken. The computed energy when
corrected is 10 volts too high.
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unperturbed wave function in this limiting case is that for two non-repulsive
electrons each in the field of a sing/y charged nucleus. This wave function is
much more extended'in space than the actual wave function and should give
an excessively large energy value. In the region of nuclear separations near
the normal separation for the molecule, however, the method gives a reason-
able first approximation to the potential energy curve f'or the molecule as
determined from the band spectrum.

Dr. Wang's calculation was carried out by the Ritz method and involves
a well-chosen, but arbitrary assumption regarding the form of the wave
function for the molecule. The polarization forces at large distances are
partially included and the approximate wave function for the limiting case
of the united atom is that used by Kellner, ' so that it is not surprising to
find that the method gives values of the molecular constants in better agree-
ment with experiment than those predicted by Heitler, London, and Sugiura.

The present paper reports on an extension of the method of Heitler,
London, and Sugiura to the case of certain excited states of the H2 molecule
which dissociate adiabatically into a normal H atom and a two quantum ex-
cited H atom. (At the time when the computation was begun we were not
familiar with Wang's method and it seems now doubtful whether his method
could be carried through with equal success if applied to our problem. ) It
is to be expected a priori that the approximation will be somewhat cruder for
these excited states than for the normal molecule, because of the large
polarizability of the two quantum H atom and the correspondingly large
value of the van der Waals forces which must be neglected. The results are of
interest, however, in their qualitative prediction regarding the nature of the
different excited states of the molecule and in their bearing on the valence
theory of London. '

Among the many different electronic levels of H2 discovered by Richard-
son and other spectroscopic workers there are five which have been provi-
sionally identified as "two quantum" levels. Here we use the phrase "two
quantum" to characterize molecular states which would dissociate into a
normal atom and a two quantum atom if the nuclei were adiabatically
separated. At least two of these levels combine freely with the normal state
of the H2 molecule as shown by the absorption measurements of Dieke and
Hopfield. ' We here adopt the notation of Dieke and Hopfield designating
these two states by the symbols 8 and C, of which the former refers to the
upper level of the Lyman bands and the latter to the upper level for the
Werner bands. The normal state is called the A level and the system to which
the Lyman bands belong is referred to as the 8-A system.

The recent analysis of the fine structure of the Werner and Lyman bands
(corrected as regards the latter series by Kemble and Guillemin") makes it

' Kellner, Zeits, f. Physik 44, 91 (1927).
F. London, Zeits f. Physik 46, 455 (1928); So, 24 (1928).

8 R. T. Birge, Proc. Nat. Acad. Sci. 14, 12 (1928).
' G. H. Dieke and J, J. Hopfield, Phys. Rev. 30, 400 (1927)."E. C. Kemble and Victor Guillemin, Jr. , Proc. Nat. Acad. Sci. 14, 782 (1928).
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possible to draw approximate potential energy curves for the three electronic
states A, J3, C. (Cf. Fig. I.l It also permits us to classify the A and 8 levels
as 'S type molecular states (without electronic angular momentum) and the
C state as a V' state. " The computation described below was begun in the
hope of accounting for the striking discrepancy between the potential energy
curves for the 8 and C states. As the 8 state is very difficult to compute, the

0'0

l/

4 5 6
Inter nuclear distance 2 ~

Fig, 1. Experimental and theoretical "potential" energy curves for two quantum states
of H~. Curves 9, 10, 11, 12 are drawn from the computed values of H9, Hqo'~, HIII', H, ;" re-
spectively given in Table I. Curves B and C refer to the B and C states respectively and are
based on empirical formulas of the type (38). Curve D is a fragment of the potential energy
curve for the 2'P state as computed from the empirical data of Richardson.

original project has been temporarily abandoned, however, and the authors
have contented themselves with an approximate determination of the theo-
retical curves for the C state and three other states which, as it turns out,
are closely related to it.

GENERAL THEORY OF CALCUALTION

Fig. 2.

2

It is convenient to measure all dis-
tances in terms of the radius ro of the
Bohr orbit for the normal state of the
hydrogen atom and to measure energies
in terms of the unit e /ro which is twice
the ionization energy of the normal H
atom. On this basis we let aI, bI, a2, b2

denote the distances of electrons num-
ber 1 and number 2 from the nuclei A

"The singlet character of the C state is deduced from the fact that it combines freely with
the normal '5 state whereas singlet triplet combinations should not occur in so light a Iiiolecule.
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and 8 respectively. Let r» be the distance between the electrons and R
the distance between the nuclei. Then neglecting the electron spin the
wave equation for the hydrogen molecule with fixed nuclei takes the form

1 1 1 1 1
V'12&+7'22&+2 ~ — + /=0

r12 ~1 +2 ~1 ~ 2

Following the procedure of Heitler and London we take as our initial set
of approximate solutions of (1) the set obtained by multiplying the wave
function for a free hydrogen atom successively by the diferent wave func-
tions characteristic of a free hydrogen atom in one of the two-quantum
states. Our "zero" approximations are then much better for large inter-
nuclear distances than for small. We denote the wave function for electron 1
on nucleus A in an unperturbed state with quantum numbers (n, l, 4r4) by
P, (n, l, m), that for electron 2 on nucleus 8 by P&'(n, l, I), etc. Here m is
the "magnetic" quantum number giving the orientation in space in the Bohr
theory and associated with the azimuthal angle P. It measures the angular
momentum along the z axis which we identify with the internuclear axis.
As the normal state of the H atom has zero orbital angular momentum, the m
value for the two-quantum state becomes identical with the orbital electronic
angular momentum of the molecule directed along the internuclear axis, i.e.
with 4r4 (Mulliken's notation). Taking all possible combinations of one
electron in the normal one-quantum level and the other in one of the de-
generate two-quantum states we obtain the following sixteen possible ap-
proximate solutions of (1).

tl 4=44 (1)A'(2, 0, 0)

A=kl (1)A'(2) 1,0)

A =44 (1)A'(2, 1, 1)

P4 ——P, '(1)P4'(2, 1, —1)

P4 ——P4 (1)$4'(2,0,0)

$4=$4 (1)tl'4'(2, 1,0)

Pr ——P4'(1)$4 (2, 1, 1)

6=6 (1)44'(2, 1, —1)

Here

P, = ti'4'(1) tl'4'(2, 0, 0)

044=4'4'(l)A (2~1~10)

f 44 =p & '(1)$2'(2, 1, 1)

tl44 ——P4'(1)P, '(2, 1, —1)

f44 ——P4'(1)tl, '(2, 0, 0)

0; =0 '(1)6 (2, 1~o)

4»=A'(1)A (2, 1, 1)

=4 '(1)4 '(2, 1, —1)

1
|l '(1) =—

(~) 1/2

ag
P4'(2, 0, 0) = —1 ——e ' "

(84r) '" 2

1
1i &~(2, ],0) =— a4 cos e&~e '~",

(324r) "'
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Pg'(2, 1, 1) =— —al sin Ol'e'&~
(64gr) '~g

1
a(2 1 1) —

g& sin I) ae fez ——as/2

(64gr) "'

etc. p1 and $2 denote the azimuthal angles of the electrons 1 and 2 respectively
about the z axis which coincides with the interculear axis and has the direc-
tion aa. The angles 01', 02, 01', 02' are dehned by Fig. 1.

It'is convenient to begin a perturbation calculation with approximate
solutions of the differential equation which are mutually orthogonal. This
condition of orthogonality is not satisfied by the functions tp&, ling

' ' ' lplg,

but we may readily form from them by linear combination sixteen other
approximate solutions which have the same approximate energy value and
which are mutually orthogonal. Thus we may take the four functions lf&,

lj/5 ling lplg and build up from them four others whose symmetry properties
insure orthogonality. For example, the combinations

us =$,+Pg =f„.(1)rgg (2, 0, 0)+Pg.(1)P, (2, 0, 0)

u„=11,—f g
=f,a(1)fg (2 ~

0 ) 0) —p g (1)f, (2 1 0 ) 0)

are respectively symmetric and antisymmetric with respect to an interch'~nge
of electronic coordinates, i.e. , with respect to the transformation

I I
&1 gl Zl &2 P2 Z2

I I I
+2 g2 Z2 ~1 $1 Zl

Similarly the combinations

us=Pl+4'g= Wl'(1)A'(2, 0, 0)+1i

l'(1)ling'(2,

0, 0)

u~ =11'l —fg = /la(1) 11'g '(2, 0,0) —pl'(1)pg'(2, 0, 0)

are respectively symmetric and antisymmetric with respect to the trans-
formation

1 ) $1 ) Zl +1) $1)
I I I

) P2 ) Z2 &2) P2) Z

if the origin is taken at the midpoint of the internuclear axis and the z axis
is chosen as stated above. The transformation (X) maybe described either
as a reHection in the median plane or as an interchange of nuclei with the
understanding that the interchange of nuclei does not mean quite the same
thing as it does in the free nuclei problem. We introduce the symbols 5~, A
to indicate wave functions symmetric and antisymmetric with respect to
transformation (E) respectively. Su, An will be used to indicate thecorre-
sponding symmetries with respect to (n). Then clearly the following four
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approximate solutions of (1) have the symmetries indicated and are mutually
orthogonal. "

ul g1(4'1+6 +4 9+0'13)

u2 g 2(lf'1+ 'f75 P9 f 13)

u8 g3(4'1 4'5+09 413)
Zl'4 g 4($1 |1'5 0 9+5l'13)

(SE SN)

(SE AN)

(A E SN)

(AE, AN)

Here g&, g&, g3, g4 are normalizing factors depending only on the parameter
R. Similarly we may build up a set of four mutually orthogonal solutions
from each of the other three types of two quantum hydrogen atom eigen-
functions. The three additional sets are

u5 g5Q 2+if 6+if 1 +04 4)1

u6 g6(ti'2+46 410 014)

ul =g79'2 46+010—4'14)—
u8 g3Q'2 f6 010+014)

U9 g9(48+47+411+015)
U10 g10(43+ tl 7 411 415)

f7 11 g119'8 4'7+Ii 11 f15)
U 12 g 12''3 41'7 4 11+415)

f7 13 g13Q'4+08+4 12+1i 16)

U14 g14(lf 4+if 8 412 416)

U15 g15(44 11'8+1i'12 tl'l6)

F16=g16(44 f8 4 12+ ted'16)

(SE AN)

(SE SN)

(AE, AN)

(AE, SN)

(SE SN)

(SE AN)

(AE, S")
(AE, AN)

(SE SN)

(SE AN)

(AE SN)

(AE, A").

The symmetry properties of these sixteen functions are shared by the
exact solutions of the dilferential Eq. (1)"and hence these functions are par-
ticularly well fitted for use as first approximations. A11 functions of any one
of the four symmetry types are orthogonal to all functions of each of the
other types and all functions involving any given value of o & are orthogonal.
to all involving any other value of O'I, . Thus each of the functions Ue,
V~0, .

, U~6is orthogonal to all fifteen of the other functions, while the
only pairs of functions not mutually orthogonal are (ul, u6), (u2 u5), (u3, u3),
(u4, u7). From each of these pairs one may now form new linear combinations
such as

"The product of any two functions, one of which is symmetric and the other antisym-
metric with respect to a coordinate interchange such as (E) or (A), is antisymmetric with
respect to the interchange and must therefore integrate to zero if the integral is extended over
the region of definition."For example, if f(x;, y;, s;) is a solution of (i) substitution shows that

~&)(.;, ~;, ')=-~(;, ~;, —;)
is also a solution and has the same eigenwert. Hence either p&') = +p or p(') and P form a
degenerate pair of solutions. In the former case P is either of the S+ or A+ type and in the
latter case, which will occur only as a result of accidental degeneracy, we can form functions
of the S+ and A+ type by taking linear combinations of P&') and P.
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Ul = Cl Q1+C6 Q6

U6 = Cl Ql+C6 Q6

which are mutual orthogonal and which have unimpaired symmetry. Thus
one obtains the required set of sixteen completely orthogonal functions from
which to build up the zero approximations to the solution of (1).

VUe now assume that the wave functions for the two quantum molecular
states are of the form

16

P= gc, U+v

where v is a small correction term orthogonal to Ul, , U16 and approaching
zero as the internuclear distance R is indefinitely increased. Writing the
differential equation in the symbolic form

where

and substituting from (3), we obtain

16

gc,H U, = gc,EU, +(E H)v. — (6)

To determine the c's we multiply this equation by U~, the complex con-
jugate of U~, and integrate over the entire six dimensional space in which
the wave functions are spread out. Let d V denote the element of volume and
let II," be the integral or matrix element fUqHU, d V. The resulting equa-
tions then tal~e the form

k=1 2 16.
16

gc,H, "= c(E )t
UgHsdV—

r=l

As v is by hypothesis small, we may neglect the last term in getting a first
approximation to a solution of the Eqs. (7) and thus obtain sixteen simul-
taneous homogeneous equations for the c's. These equations may also be
obtained by a procedure which follows closely the standard perturbation
method of the Schrodinger theory. The desired approximate energy values
are the roots of the secular equation

Bl' —E
B12

Bl'

B2'

B22—E
B'
B32

=0
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Fortunately most of the elements in this determinant vanish. For ex-
ample, all matrix elements H, ~ are zero for which U~ and U, have different
symmetries with respect to either of the transformations (E) or (X), since
HU, has the same symmetry as U, itself. Thus our wave functions are
divided into four equal groups with no matrix components corresponding to
combinations between different groups.

Consider next one of these groups such as UI, U~, U9, Ui3, all members
of which have the same symmetry. Matrix elements involving combinations
of different members of the group are zero also when the functions UI, and
U, have different values of 0 & (i.e. , different values of m for the primary two
quantum wave function). It is sufficient to give the proof for the special
element

Hg"=
Jl U, gHUgdV

U9 is a linear combination of the functions f3, P7, Pn, Pqq. Remembering that
P&'(I), PP(1), P&'(2), , etc. are solutions of the wave equation for a single
H atom we may use the relations

—V'I'fg'(1) = 2Eg+ 2/ag

—VPPg'(I) = 2E,+2/bi
—pi'P, '(2) = 2Eg+ 2/c~

and so on, where EI and B~ are the energies of the normal state and of the
First excited state of the hydrogen atom respectively. The sum of E& and B&

is the "unperturbed" energy of the molecule and will be designated by Eo.
Applying the operator II to U9 we obtain

H Ug =Hg g [fg'(1)p2'(2, 1,1)+pg'(1)pg'(2, 1,1)+pg~(1)pg (2, 1, 1)

1 1 1= EOUB+ —+—U9 —go —+—[4i'(I)A'(2, 1,1)
E 1/2 bi a2

1
+P~ (2, 1,1)$2'(1)J

—g, —+—[Ps'(1)PP(2, 1, 1)
b2 ai

(10b)

Clearly each term of IIU9 like each term in U9 itself contains either e'&'or
e'&* as a factor. Similarly each term in UI3 contains e '& or e '&'. The angles
$~ and P~ enter into the integrand U&~IIU9 only through these factors and
through ri2. Changing the independent variables from Pi and Q2 to
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we observe that r» depends only on X while each term of U13HUg contains
one of the three factors

g
—2iiti1 —e

—2i P

i (y,+y, )

g
—2ip2 g

—2iy y g
—2ip

Hence in evaluating H9" we can factor out the integral f, e 2'&d-P which
vanishes. The argument is easily extended to show that all matrix elements
II,~ vanish if U~ and U, have different values of O. I, .

In consequence of the fact that most of the non-diagonal elements of the
determinant (8) are zero, the determinant may be resolved into the product
of the following factors:

(H9 —E) ' (Hip —E) j (Hii —E) ' (Hi2 —E) ' (Hi3 —E)
H1' —E H6'

(Hi4" E); (H—ig"—E); (Hip" —E);
H6' —E

H22 E H52 H33 —E H83

H2' H5' —E H ' Hs' —E
H4' —E Ey4

H4 Hj E

Each energy level is obtained by setting one factor equal to zero.
As the functions Ug, U10, U11, U12 differ from the corresponding functions

Uj 3 U] 4 U15 U16 respectively only in the sign of the exponent in the factor
e~i&, it is clear that

H '=H
)

10 —H 14 . H 11—H 15 . H 12 —H 16
) 11 15 )

Hence the first eight factors of the set (11)vanish in pairs. The corresponding
energy levels are consequently degenerate and the eigenfunctions are inde-
terminate. Suppose, for example, that

Hg' —E= H13"—E=0.

Then in (7) all the coefficients c, must vanish except c, and cis which are
undetermined except for the normalization condition on

p = cg Ug+c13U13.

These degenerate states are those of the I' type with 01,= + 1. The degener-
acy is removed when the rotation of the nuclei is taken into account and its
removal gives rise to the "sigma-type doubling. "'4

By setting any one of the last four factors in the group (11) equal to zero
we locate two energy levels of the 5 type (with 0.&= 0). Thus there are in all
twelve distinguishable energy levels of which four are degenerate and of the
P type while the other eight are of the 5 type. There are two S states and
one P state for each of the four types of symmetry. (Of course many of

'4 E. L. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1928); R. de L. Kronig, Zeits f.
Physik SO, 347 (1928).
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these "states" represent possible collision types for interacting hydrogen
atoms which involve an almost purely repulsive force and hence could not
yield stable molecules. )

It is well known that in light atoms where the interaction of spin and
orbital motion is very slight transitions between singlet and triplet states
occur with great infrequency. As the two electron symmetries S~ and A~
correspond to singlet and triplet states respectively (Pauli principle) and as
we are dealing with the lightest of molecules, it is clear that jumps between
states of different electron symmetry should be negligible.

The principles of selection for symmetrical diatomic molecules have been
discussed by Hund ' and Kronig" using as a basis for argument the complete
eigenfunctions for the molecule with free rotating nuclei. Rules governing the
transitions between electronic states can be derived even more simply and
directly on the basis of the fixed. nuclei problem. As. the electronic eigen-
function are but little distorted by slow nuclear rotation we may infer that
the principles of selection so derived will hold at least approximately when
applied to actual molecules.

If we treat the nuclei as fixed, place the origin at a point midway between
them and use the internuclear axis as the s axis for a set of spherical coordi-
nates, the expressions for the components of the classical electric moment
become

ger; sin 0; cos P;,

P„= ger; sin 0; sin Q„,

ger; cos 0;.

The formation of matrices from the three functions P„P„,P, leads to the
following selection rules. (a) When Ae I, is zero the matrix elements of P, and
P„always vanish, while those of P, are also zero unless the two electronic
wave functions concerned have opposite symmetry with respect to the
median plane. (b) When De. l, is + 1 the matrix elements of P, always vanish,
while those of P, and P„are zero unless the electronic wave functions have
the same symmetry with respect to the median plane. Thus the permitted
transitions reduce to the following:

gN~~gN AoA, =O;

S-S
j Do-l, = + 1.

"F. Hund, Zeits f. Physik 42, 93 (1927); R. de L. Kronig, Zeits f. Physik 46) 814 (1928).
'6 Kronig proves only approximate symmetry and approximate anti-symmetry with re-

spect to P, but an examination of the diA'erential equation shows that these symmetry properties
are rigorous. . This point was brought to the attention of the writers by Professor Kramers.
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The method of deriving the above principles of selection may be made
rigorous with the aid of the rr and P transformations of Kronig. Successive
rotational levels for any electronic state of a 'free molecule have alternating
symmetry with respect to the n transformation and with respect to the P
transformation. The transformation (X) above is equivalent to the resultant
of the o. and P transformations. Hence if any rotational state is a-symmetric
and also P-symmetric, the associated unperturbed electronic eigenfunction
U, must have the symmetry S~. Conversely if U, has the symmetry S~,
each rotational sublevel will have the same symmetry with respect to the 0,

and P transformations, while if V, has the symmetry A~, each rotational
sublevel will have opposite symmetry with respect to n and P transformations.
Consider next a transition for which Ao p vanishes. Then if the jump is to be
permitted the upper and lower rotational levels must have the same sym-
metry with respect to n and opposite symmetry with respect to P. In order
to satisfy these conditions simultaneously, it is necessary that in one case the
symmetry of the sublevel shall be the same with respect to 0. as with respect
to P, while in the other case the symmetry with respect to o. must be opposite
to that with respect to P. This leads at once to the principle of selection (12).
The rule (13) can be derived in the same way. As every eigenfunction is
rigorously symmetrical or antisymmetrical with respect to n and to P,"it is
clear that our rules are not affected by the distortion of U, due to nuclear
rotation. Kronig does not call specific attention to the fact that in the case
of symmetric molecules the existence of both n and P types of symmetry
leads to these principles of selection for electronic levels.

As the normal state of the hydrogen molecule has the symmetry (Ss, S~)
it follows that of the twelve possible two quantum molecular states there is
just one of the P type which should combine with the normal state to pro-
duce a band system. This state must have the symmetry (Ss, S~) also and
its energy is therefore approximately H9'. This must be the "C" state which
forms the upper energy level for the sterner bands.

On the other hand there are two possible molecular levels of the S type
having the appropriate symmetry (Ss, A~) for the production of jumps to
and from the normal state. Their energies are the roots of the equation

e22 E II5

H5' —E

One of these must be the 8 state which forms the upper level of the A —8
system of Dieke and Hopfield to which the Lyman bands belong.

COMPUTATION OF APPROXIMATE ENERGY OF P TYPE STATES

It remains to evaluate the matrix elements IIp and thus to determine the
theoretical potential energy curves for the various two quantum electronic
states. This we have done for the P type states only. The labor involved in

the calculation was considerable and would have been even greater for the S
states.
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+lith the aid of Eq. (10c) the following expression for IIgg may be derived:

Hgg Jf——UgHUgdV=Eg+R '+ -Jf UgUgr&g 'dV

1 1—+—[Wg'(1)6'(2)+1}g (2)0&'(1)]
a1

1 1 U9+ —+—
l&& (1)}1 '(2) + 1}& (2)A'(1)] dV. (1&)

a2 b1 g9

Denote the first of the two integrals in the right-hand member of (15) by
E and the second by J. The latter may be split into convenient terms if we
write Ug in terms of the primary' functions and multiply out. Terms in-

volving the product of two P's with the same subscript but different quantum
numbers integrate to zero. For example,

1 1 + +

Ji
—+—6'(1)0&'(2)4& (1)6'(2) d V

1 (' 1 1—+—sin &&&4 sin t&g't& f&ge &'~+~~+&'~+'~&»&g'&gi 4»dV . —(16)
Sm' J a1 b2

Here

d V = a1' sin 81da1d01dp1a2' sin 02da2d02d&2

Clearly we can factor out the integral

fl 27} 2'

J

�~
a (y 1

—y 2) dP 1dg2
0 0

which van'ishes.
A number of the other terms are easily seen to be equivalent and the

integral J can be reduced to the form'

where

I=4gg'(I&+ Jg)

1 1 + +
I&= Jf

—+—}}&g(1)1}&g(1)}}g(2)}}g'(2)dV
a1 b2

1 1—+—P '(1)P&~(1)1}g~(2)1}gg(2)dV.
a2 61

(17)

(17a)

Similarly E is reducible to the form

K = 4ggg(K&+ Kg+Kg+ Kg)

where

& 0&g(1)4&g(1)A'(2)A'(2)

~12
(19&4)
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2.= f 41'(1)4 )'(1)4. (2)A5(2)—dV 2

r12

0)'(1)lbl'(2) 65(2)A'(1)
dV;

r12

01'(1)01'(2)4'(2)&2'(1)—dV;
r12

(19b)

(19c)

(19d)

Putting these results together and remembering that Zp is the sum of the
energies of a normal H atom and an H atom in a two-quantum state expressed
in terms of the unit e2/ap, we have

&pp= 5/8+8 '—4gg'[J, +J—2 (K„+E,+—E,+E,) ] (20)

In the same way we deduce

JJ '"= —5/f(+R ' —4glp'[Jl —J2 —(El —E., Kp+IC4—)] d

11— 5/8++ —1 4g 2[J +J2 (El+E2 E3 E4)]
12 — 5/8++ —1 4g122 [Jl J2 (El E2+E3 E4) ] ~

(21)

(22)

(23)

Thus the integrals to be evaluated for H1p, II11, and &12 are the same as
those needed for H9'.

The required integrals may be computed most easily by the use of elliptic
coordinates. Let us begin with the determination of the normalizing factor

g9 ~ It is fixed by the condition

f (( 77 dr=7 ' f (5 5 d. d 5 d.d 5 d-5 5 +Ad +5 5 d-Ad d-d»k

+$3$ 15+$ 154' 3+0' 7$11+$11/7+ )ld 154' 7+$7$15+(f' 1 1)f'15+$154' 7 1)d V .

As $3, $7, p», lb)5 are separately normalized we may reduce the above to the
form

or

where

2gp' 2+ JI (43&1+64)5)d&

2=—
4(1+8)

3 fd d„dY fd 5 dr fd, =„(()5==,'(1)17, fd;(7)d; (2)dr,

Introducing the elliptic coordinates

a+b
X=

E.

c—6
IJ =

E
2(.'3(X2 —352)

d V =— — dMpdp,
8
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we obtain

Similarly

+1 2x

6'(I)4 i'(1)d Ui =—
Sm 0

=e "(1+R+R'/3).

+1

Jt II g'(2) p&'(2) d U2 =—' — e "~"(XQ 1)I&2 ()E2 pi') (I —pg') dye
16X64 —1

A2=.-«2 1+ + +
2 10 120

Finally

P = e 's "(1+R+R'/3) (1+R/2+R'/10+ R'/120) . (25)

The same procedure applied to the other normalizing factor yields

g11 g9 j
1

4(1 F)— (26)

Inspection of (17a) shows that

6'(I)ki'(1) 4 '(2)A (2)J1= dV1+ dV2.
81 b2

Both of these integrals are easily evaluated. We find

f —dUi= — dX P —p)e e'" »dp= ——e
—'e 1+—

+1
—dU =—dX e""(X'—1) e "i'(Xyii)(1 p')die-

s X64 —1

1 6 e ~ 8 24 24
+ 1+ + +

4 E R2

2 6 e-~ 8 24 24 1+ 1+ + + —e 'e 1+—. (27)
4 E E.2

The evaluation of J2 proceeds along lines similar to that of J1 and pre-
sents no features of interest. The result is

R R2 E3 R2 R
Jg ——e '"» (1+R) 1+—+ + + 1+R+— 1+—+— . (28)

2 10 120 3 2 12

E1 gives the mutual potential energy of two static charge distributions of
density Pi (1)g&'(1) and f2'(2)P ~(2) respectively. The first distribution is
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spherical and its potential at a point distant b2 from the nucleus b is easily
seen to be

b, b2e—2b 1 — 1
db+4 be

—»db =——e—2b~ 1+—
JP b2

Multiplying this potential by the density of the second charge distribution
and integrating we obtain

f g22 Sjn2 g2ere

E,= I
— 1 —e " (1+b2) dV2.

647r J b2

Transforming to elliptic coordinates and using the relation

() ' —1)(1—p')
sin' g~=

0+~)'
one obtains

1 6 4 16 112 112
E1 e~ 1+ + +

R3 27 E 382 383

1 9 76 38
+ e

—28 1+ + +
27 g 3+2 3+3

(29)

K3 may be dealt with in a manner similar to that used in connection
with E1.

e
—3/2at+1 sin g1ae—ig &e-3/2b2b2 sin g2betp2

E3= d V1d V2.
64+2

The integral is resolved into real and imaginary parts by means of the relation

e' e '=cos ($2—Qq)+i sin ($2 —Qq)

As the angles @1 and Q2 enter the integrand only through r», which is inde-
pendent of the sign of p2 —$1, and through the exponential e'&&& &1', it is
evident that the imaginary part of the integral must vanish, Expanding
cos (P, —P,) into the snm of cos P~ cos $2 and sin P, sin P~ we break E~ into
the sum of the two integrals

1 e 3bt/'b2 sin g2 cos p2E,'=— [e
—'~~"e~ sin 0~' cos Pq]dV, dV,

64m' ~12

1E3"———
64vr2

~ ~

~ ~
e ""b2 sin g2 sin p2

[e "~"a~ sin 8, sin Q&]dV&dV&.
'r12

Let I' be the potential at the point b1, 01b, p1 due to the distribution of
charge e '/'b2 sin 02 cos @2. Then

1
E I'e '~t/'a1 sin g1 cos &1d,V1

64m 2
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As sin 0~' cos P2 is a spherical harmonic of the erst order, we have"

4x QO

I'=—sin gy cos Qy by e 3'2"b2dbp+ — e ' 2"b2'db2
bI 0

K3' becomes

1
E3 — e "1"a sin 8&' sin 0&~ cos' p~ —b&' —e ' 1~' b~ +-

36m '27 3

E3" is identical with E~' except for the substitution of sin' P~ for cos' P~ in

the integrand. Adding the integrands eliminates P& entirely. introducing
elliptic coordinates, integrating with respect to P~, and making the additional
transformation

S=p

we obtain

where

R' co

& "*"(1—x')
( F(y)~y,

64 0 I—g

64 n p R'
F(y) =—&

' "" —+—+y+y —(' """ (y+py—'+yy'+y')
278 8

2R 16 n
+ (-+(~+» +y )+ —+(+»+ y)——

3 9 y

+ + +7+/

and

u = 2x(x' —1); (9 = 5x' —1; y = 4x

Let P(x) be the function

(t (x) =
t F(y)dy.
1—g

A tedious integration yields

16 4P 3R(1—x) 3R(1—x)
4(x) =———n E; jV.

9 3 2

64 4 16 4(1 —x)+ e
—38 (1—x) /4 ~+ ~+ +

278 3R 9E.' 3R

"Cf. J. H. Jeans, Electricity and Magnetism, p. 224 Camb. Univ. Press, 1923.



E. C. KEMBLZ AND C. ZENER

2 2 32o. 8 N2 16N3 128
~p+—-»+ + + +

3R 3R 9 9 R' 9R' 27R4

402 813 8 2@3 2
+ N1+ + + 1 —X + N2+—+—— 1 —X '

3R 9R' 9R' R 3R'

1 3R
+ N3+— 1—x +——1—s

R 16

(30)

Here Ep(x) is the integral logarithm of x and

2a 16P 64'
Np= + + j

3 9 27

a 2P 16' 64
N1=—+—+—+—;

8 3 9 27

P 2y 16
+2 + +

8 3 9

=7 2
N3= —+—

8 3

E3 is now given by

R3 +1
Kp =—

I e 's"(1—x')g(x)dx.
72

(31)

The last quadrature indicated in the above equation has been carried through
graphically.

In order to evaluate E2 and E4 we have found it necessary to follow
Sugiura' in using Neumann's expansion of 1/r» in harmonics of Pp

This is

00 00
X2

1/r» =—g g D,„P," Q," P,"(p&)P,"(pp) cos v(4p 4])R, p „p X2
(3-')

where P, ' and Q, ' are associated Legendre functions of the first and second
kind respectively and D,„ is given by

2r+ 1 II(r —v)
Dgp= ( 1)E„=

1 Ep= 1 j pg=E'p= ' ' ' =2.
2 II(r+ v)

The upper arguments of P, "(„",') and Q, '(„,') in (32) apply when 4)4 and
the lower arguments when )2()1. Using elliptic coordinates E2 takes the
form

("1&+& &) 2)

lt2 II (4' —1)(1—pp')(4' —pj.')(Xp' —pp')d4 &A (33)
(128)'pr' J rgp
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and as the angles Q& and Q2 enter the integrand only through the expansion
(32) it is clear that integration over these angles will reduce all terms to zero
except that for which v is zero. The corresponding term of (32) is simply

Inserting this term for 1/r, q in (33) and integrating with respect to pi, we
observe that

J
P) Pl Xl —PI ZPI =2 Xy —1 3

= -4/15
if ~=0,
lf 7 =2)

and vanishes for all other values of v. . Hence E2 breaks into two integrals,
one for v= 0, the other for ~= 2. Designating these as E2(" and E~") re-
spectively, we have

R' XI(0)— Pq Qo Po(p. )e—~"»+"»&»
32X64 3 'A2 Xy

(X —1)(1—p )(Ii, —pq )(XP——',)d), &dX2dp2

'Ag 'A2
(2) =—— P Q P (~ )e—O,B+Ais/2)

48 X64 'A2

(4' —1)(1—p 2') (4' —p2') dk gdh2d pg.

Inserting the values of the Legendre functions, "viz. ,

Pp(x) =1;
x+1

Qo(x) = In
x—1

P2(x) = (3x' —1)/2;
3":1 +1

Q2(x) = —3x+——les
2 x—1

and integrating with respect to p2 we obtain

R'/ oo

dh2(li, g' —1)(X2'—,')e "»"—
24X64 3+I

e
—"1~in —) I'——dhj

+1 -) B y2

Another tedious integration yields

1 2R
IC t'~= — ~' Q S C+i —S'8;(—2R—))24

2R,' 31R 356 262
+S e~Z, —R

15 15 27 27R

The definition of Q, underlying the development (32) gives it twice the value now
conventional,
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838 256 46—e""S'Q'Ef( 3R—)+e 's/'S'
45 27 278

where

E2 128 24
Q= + +12+—;

5 5

128 24
Q' ——— +12——;

5 5

S=e //(1+R+R'//3) .

S' = es(1 —R+R'/'3) .

C=,0.577216= Euler's constant.
E:(2) is reducible to the form

E4 1
Jt /2) — (I 2 1) g2 + (31 +R) s

—3x///2

3840 i 7

3X' —1 e-"s/' S'Ei //
—(X+1)R}

2

(33)

The final integration has been performed graphically. E~&') turns out to be
small compared with X2&o).

The last integral to be evaluated is

g
—( b 1++I/&)

E4= Qi sin 0 e (~2+" 02 sin 0 e"&2 &I'dt/
64~'

(36)

Using the expansion (32) again we see that all terms must integrate to zero
in which v differs from unity. We may therefore replace 1/r» by

Integrating with respect to P~ and P2 and introducing elliptic coordinates in

(36) we obtain

R' (2r+1)
E4 s

—(&/ )/ g
—v&)g —(s/ )( g

—vg)(64)', r'(r+ I)'
'Ag

g p (&) Q (&) j& (&)(///)R (&)(~2)
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By means of the relations

P, '"(x) = (1—x') '"—P„(x)
dg

' e, "(*)=(1-")"—a.( )
dg

'

we may eliminate all the radical signs. Let n, (R) and P, (R) be defined by

+I
n, (R) =

I

es*)4(1—x')—P (x)dx
—] cfx

+I
P„(R)= e"*)'x'(1—x')—P, (x)dx.

GS

Then E4 may be thrown into the form

gV 00 co 2'+1
dl() I dX2e 's("~+"~))4(l)('—1)(l)&'—1) g ——(l(Pn,

(64)' J) r'(r + 1)'

The integrand is symmetric with respect to the line X&=)& and hence the
integral is equal to twice the partial integral over the segment between the
lines )&= 1 and X,= ) &. By means of the relation

d r(r+1)
(X' —1)—p, (X) =——[P,+)(X) —P, )(X) ]

dX 2v-+1

we may then express E4 in the form

2R' " " PPn+P ) d
E =—— dl '""() ' —() Z )" (x»)() -Q%)) (&))

(64) ' 7 (r+1) dl). )

where

F,(X), R) = ~ ' " "(4' +nP, ) j~,+1(4) ~ —1(4) jd4.
+1

The functions n, (R), P, (R), F,(X&, R) have been evaluated analytically but
the formulas are somewhat cumbersome and are therefore not reproduced
here. The final step of integrating with respect to X~ has been performed
graphically. Fortunately the series in 7 converges rapidly so two terms only
need be considered.

REsUr. vs

We have computed the numerical values of the integrals J~, J2, E~, E2,
E3 E4

' for four different values of the internuclear distance R. The results
are given in Table I. The energy values H9' etc. are expressed in volts by
means of the reduction factor e'/co= 27.08 volts.

Fig. 1 shows graphically the four computed approximate theoretical
potential energy curves together with approximate curves for the C and 8
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states derived from the experimental band spectrum data. The zero level
for the graph is the energy of the dissociated atom pair which lies 16.925
volts below the zero level of Eqs. (20) to (23).

TABLE

R

1
2
3
4

gg2

0. 136
. 163
. 195
.221

g1O

1.529
.534
.348
.288

0.969
.696
.531
.428

0.926
.4945
.224
.091

K1

0.2365
.220
.199
.178

K2

0.204
. 123
.063
.028

0.016
.012
.008
.006

0.015
.010
.006
.002

Hgg

2.25—1.06—1.08—0.596
gE gN)

lo

(volts above Ep)
25.26
7.42
2.49
0.812

yg AN)

1.16
—1.81—1.68—0.894

(AE, S~)

25.6
7.63
2.65
1.06

(A~, A~)

The energy of dissociation and the moment of inertia serve to determine
ordinate and abscissa Ro of the minimum point on each of the "empirical"
curves while the vibrational frequency and the variation of the moment of
inertia with vibrational quantum number may be used to evaluate the second
and third derivatives of the potential energy with respect to R at the mini-

mum point. " The attractive force between the atoms at large distances
should vary as R—'. Hence the best estimate which we can make regarding
the form of the actual potential energy curve for any given molecular state
is obtained by using a function of the form

V(R) = Qa„/R"
n=6

",The values of the heat of dissociation (indirect calculation) given by»rge' ««he B
and C states are 3.37 volts and 2.27 volts respectively, These are increased by the equivalent
of a half quantum of vibrational energy in passing from the old to the new mechanics U»ng
14.5 volts as the energy for R = ~, we obtain in this way

V(Ro)a =14 5 —3.45 =11,05 volts
V(Ro)~ = 14.5 —2.42 = 12.08 volts

From the vibrational frequencies given by Birge we compute
V"(Rp) g =0.919 V"(Ro)c = 2.98

Finally V'"(Ro) may be determined from the variation of the constant B=hl(8+'IC) with

the vibrational quantum number. The formula

is to be used. It yields
V"(Ro)&= —1.48;

The equilibrium internuclear distances themselves are
(Ro)& =2.45.

the unit as always being ap =0.532)&10 ' cm.

V"(Ro)c =6 95.

(Ro)g = 1.99
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where the a's are determined to fit the known heat of dissociation and to give
the correct values to U and its derivatives at the point R= Ro. Curves C and
B are graphs of such empirical formulas. A comparison of H9'and C~ shows
that the former is in reasonable harmony. with our experimental information.
The discrepancy for small values of R is not surprising since the approxi-
mate wave-functions used must be very inaccurate for the smaller inter-
nuclear distances

In addition to 8 and C there is a 2I' level reported by Richardson" and
classified by him as a triplet state. The location of this level has been deter-
mined by a Rydberg series into which it fits, there being no known direct
combination with the normal state. As the bands associated with this state
have not been completely analyzed, the empirical data are somewhat un-
certain and we have plotted only a fragment of the empirical potential energy
curve (D). Clearly this state is to be correlated with our energy curve for
Hii". The agreement is about the same as for the C state.

On the whole the comparison of the H9' and Hii" values with the corre-
sponding experimental data seems to justify the conclusion that all four of
the theoretical potential energy curves are qualitatively correct and that the
remaining P states (II&,"and Ilu") are both of a type which does not lead
to the formation of a stable molecule.

These results shed some light on London's theory of non-polar valence. '
Two norma/ H atoms can react only in two ways, as Heitler and London have
shown. In first approximation the corresponding wave functions in our
notation are

fS pl f2 +lit'2 41

fA $1 )It 2 Q2 4'1

($EQN)

(AsA")

Here ps is symmetric with respect to both of the transformations (8) and
(X) and p~ is antisymmetric with respect to both. Hybrid symmetries like
that of our function U&o drop out because both electrons have the same quan-
tum number. Only the symmetric mode of interaction leads to molecular
formation and in his first paper on valence theory London infers that sym-
metry in the coordinates of the valence electron is the characteristic feature
of the homopolar bond. This means that when a non-polar molecule is
formed by two atoms each of which has a single valence electron a singlet
state must result, triplet type interactions leading to repulsion. Our com-
putation and the empirical data show that both singlet and triplet states
may lead to the formation of excited molecules, the triplet states being more
stable energeticallythan corresponding singlet stateswith the same symmetry

"O. W. Richardson, Proc. Roy. Soc. A114, 643 (1927). Cf. also Birge (Ref. 8 above) and
Richardson, Nature 121, 320 (1928)." It is well known that in atoms with two valence electrons each triplet level lies below
the corresponding singlet level. If the singlet-triplet difference always has the same sign for
molecules, and if it decreases monatonically as R increases from 0 to infinity, a triplet level
must always be more stable than a singlet level similar to it except for electron symmetry.
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with respect to the nuclei" (i.e. , with respect to the transformation s~,

s&—+ —s&, —su). It therefore appears that in the case of hydrogen symmetry
in the nuclei has a more important effect on molecular formation than sym-
metry in the electrons. The reason for this importance is that antisymmetry
in the nuclei introduces a "node" including all points for which el= s2= 0 and
leading to an increase in the azimuthal quantum number of one of the elec-
trons in the limit when the nuclei are brought together and the wave function
becomes helium-like. This "promotion" and consequent increase in energy
for small values of R must tend to produce repulsion and since the removal of
degeneracy is generally accompanied by the lifting of half of the sublevels
coming from any parent level and a corresponding depression of the remaining
sublevels, it is plausible to suppose that the absence of promotion in the case
of states with the symmetry S~ should produce attraction and molecular
formation. Our conclusion confirms the suggestion made by London in his
second paper on valence theory to account for the triplet levels found by
Ritschl and Villars in the band spectra of Na~ and K~.

The success of London's theory in describing the facts regarding the
normal states of molecules must then be due to the fact that in such states
the symmetry of the wave function with respect to an interchange of the
coordinates of the valence electrons determines the presence or absence of a
node between the nuclei. We have made no detailed examination of this
question, but surmise that the occurrence of such states as U» above which
are antisymmetric in the coordinates of the valence electrons but lack the
node between the nuclei is dependent on the fact that two atoms which make
up the molecule are identical, but dissociate into different states of excitation.

THE 8 STATE

It would be natural to infer from our results that in the case of diatomic
molecules consisting of identical atoms symmetry in the nuclei is always the
crucial element in producing attraction. Such a generalization strikes a
snag immediately, however, in the 8 state of the hydrogen molecule which
must have the symmetry S~A~ to account for its union with the normal state
of the molecule to form a band system. From the discussion above it will be
clear that both types of symmetry tend to produce repulsion. Nevertheless,
the 8 state is actually the most stable energetically of the known two quan-
tum states of H~.

The most probable explanation- of this puzzling situation lies in the fact
that the two quantum molecular 5 states (0 I,

= 0) have in zero approximation
an additional type of degeneracy not present in the case of the I' states
(0'q= +1). There are two two quantum molecular 5 states with the sym-
metry S A~ of the 8 state. The wave functions in zero approximation
are mixtures of U& and U& and the energy difference given by (14) is
[(Hq' —Hz')'+4(HP)'j'". To account for the stability of the 8 state we must
suppose that this energy difference for moderate values of R is quite large
compared with the energy differences due to the symmetry in the electrons
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and in the nuclei. " The companion state to 8 with the same symmetry will
then be strongly repulsive in type.

An alternative suggestion regarding theB state due to Pauling" attributes
this energy level to a union of H+ and H ions. In other words, he supposes
that the 8 state does not dissociate adiabatically into a normal H atom and a
two quantum H atom, but into H+ and H ions. This hypothesis is com-
patible with the fact that the 8 state is of the S type and with its symmetry.
It accounts for the fact that the atoms in the 8 state begin to attract each
other at extraordinarily large interatomic distances. The proposal does not
recommend itself to us, however, since it leads to a value of the dissociation
energy too large for satisfactory agreement with the experimental vibrational
energy data. (This fact was fi'rst called to our attention by Professor R. S.
Mulliken. ) The energy of the H ion is not exactly known and it may be
that the ion does not exist. We can hardly go far wrong, however, if we
assume that the binding energy of the second electron is zero. In that case
the energy of the dissociation products of the 8 state of the molecule must
be three volts higher according to Pauling's hypothesis than according to our
own assumption (borrowed from Dieke and Hopfield)', that the 8 state
dissociates adiabatically into a normal atom and a two quantum excited
atom. The vibrational energy data extrapolated by Birge' yield 3.41 volts
as the energy of dissociation, whereas the value computed on the basis of the
second hypothesis above from the more accurately known vibrational data
for the normal state is 3.37 volts. It is extremely unlikely that this extrapola-
tion can be in error by the three volts required to make it agree with Pauling's
suggestion. Moreover, a consideration of the nodes of the wave function of
any molecular state X dissociating into ions suggests that these nodes must
be numerous (Cf. as a one dimensional analogy, Hund, Zeits. f. Physik 40,
748, Figs. 3 and 4). If so, X should passinto a high quantum state of He
when the nuclei are brought together. Hence the attraction between the
atoms at large distances due to the Coulomb forces would soon be counter-
balanced with decreasing R by the repulsive action due to multiple promotion
of the electrons. It would therefore be difficult to account for such a low
energy at intermediate values of R as that associated with the 8 state.

In view of these facts regarding the 8 state it appears that neither of the
two types of symmetry S~ and S~ is a universal characteristic of the wave
functions of stable diatomic molecules. On the other hand there are as yet
no definite known exceptions to the less stringent rule that molecular forma-
tion always involves the removal of some type of degeneracy characteristic
of the atom pair when completely separated. The authors wish to express

"The choice of the coefficients c~ and c5 in the expression for p

P =c..U2+c5UI; (A)
is readily shown to be that which makes the energy of the resulting state either a maximum or
a minimum. Hence, if the variation in the energy integral due to varying the ratio c2/c& is large,
one of the two states of type (S@A ) will form a stable molecule.

' L. Pauling, Chem. Reviews 5p 204 (1928).
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their great appreciation for the assistance of Dr. V. Guillemin in checking the
computations. *

Xofe added at readhng of Proof Sin.ce writing the above paragraphs on the
8 state we have come to the conclusion that the argument needs modification.
If one tries to build up wave-functions for the neutral H2 molecule from the
wave functions of the molecule-ion, it is at once apparent that a suitable
combination of the functions for the two lowest ionic terms will yield rough
approximations to the lowest energy levels of the polar type of neutral mole-
cule. As one of the molecular ion wave functions to be used has a single node
while the other has none, it will be clear that the approximate terms for the
polar type neutral molecule will not undergo multiple promotion when the
nuclei are brought together.

In order to bring this fact into line with the argument regarding the nodes
given above, it is necessary to recall Hund's discussion of the possible crossing
of terms during the adiabatic variation of a parameter such as the inter-
nuclear distance R. (Zeits. f. Physiit 40, 751—3, 1927). He observes that we

may expect that in many cases an approximate computation will suggest a
crossing of terms where a more rigorous treatment would show that the cros-
sing does not actually occur.

The situation will be made clear by the following analytical treatment.
Let Pi and fs be two approximate wave functions with approximate energy
values Ei(R) and E~(R). Let the terms cross at R=R, and to be specific
we assume that E» lies above E~ when R&R». We shall suppose that
Ei =fgiHgidv while E2 =fgiHg~dv. If there are no other approximate
solutions having energies close to E, and E2 at R =R», we may assume that
in this neighborhood to a close approximation the actual wave functions will

be linear combinations of lfi and $2. Thus we assume

p = C»f1+ C2$2 ~

Then by equation (7) above

ci(Ei—E) + cgH, ' = 0; ciHi'+ c,(E, E) = 0. — (b)

If the energy operator H is real, the conjugate integrals II&» and II»' must be
equal. Then E is a root of the equation

(Ei—E)(E,—E) —(H2')' =0.
The two roots are

Ei+Eg (E2 —Ei)'
E+ =——+ (H2') '+———

2 4

Ei+E2 (E2 —Ei) '
E =——— (H2')'+—

2 4

The article by Hylleruas (Zeits. f. Physik 51, 150, 1928) describing a computation of the
two-quantum S states of H. came to hand after the present paper was finished. Hylleraas
comes to the same conclusion as that reached by us in that he finds that symmetry in the
nuclei is more important than symmetry in the electrons in its influence on molecular binding.
Unfortunately his computation is, in our opinion, incorrect as he neglects the interaction be-
tween the states P(2, 0, 0) and P(2, 1, 0) (our notation) in molecular formation. Unless this
interaction is taken into account, the characteristics of the 8 state are hardly explicable.
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We assume that H~'(R) is small compared with E&(R) and E,(R) in the neigh-

borhood of R = R, . Then equations (c) show that E+ approximates to E& when

R —RI has large positive value, but to E~ when R —RI has large negative value.
Similarly 8 approximates to E2 on the one side of R=RI and to EI on the
other. If II&' does not vanish, there is no crossing and the separation of the
levels at R=R& is 2H&"(R&). If H&' is rigorously zero, we may, if we like, say
that the terms cross. If H~'(Ri) is very small, the energy level curves for
E+ and E—will come very close to one another at R =RI and will bend sharply
near this point, but if II2 is large, the two curves will apparently repel one
another when still far apart and the bend near R=RI will be less abrupt.
Finally, if there is no crossing point but the term values EI and E& merely

approach one another at R =RI, the interaction will cause a depression of the
lower one and an elevation of the upper one is if due to mutual repulsion.

If H, ' does not vanish, the substitution of the value of E+ given in (c)
into either of the equations (b) leads to the relation

c)+/2+c = x —(1+x') 2' (d)

where x=(E2 —K)/2H, '. From equation (d) we see that when x is large
and positive (E+ E2 small—) c&+/c2+ is sensibly equal to zero, while if x has a
large negative value c&+/c, + becomes infinite. More generally, if E+ or E
differs but little from one of the approximate energy values EI and E2 in a
certain range of R values, the actual wave-function will differ but little from
the corresponding approximate function. At the apparent crossing point
R=RI each of the rigorous wave functions is composed of equal parts of

fy and fp.
Although the integral H~'(fP'Hf~dv) always vanishes for two exact

solutions of the wave equation which satisfy the boundary conditions, the
chance that it will vanish rigorously for two approximate solutions is in-

finitesimal unless the symmetry of the solutions is different. Hence we con-

clude that if the approximate term for the polar type of neutral molecule

having the symmetry S A~ of the 8 state crosses the two approximate two
quantum S terms of the same symmetry which dissociate into neutral atoms,
this crossing will not occur when a more rigorous solution of the problem is
worked out, In all probability, therefore, the 8 state would dissociate
adiabatically into two neutral atoms. On the other hand, it is also probable
that the wave function of the 8 has distinctly polar characteristics which are
responsible for the depth of its potential energy minimum. Thus in an im-

portant physical sense we are led to accept Pauling's interpretation of the 8
state as one with ionic binding.

The two quantum P states of the molecule, however, would not be simi-

larly affected by polar characteristics since their symmetry would cause the
interaction integral with the lowest polar states to vanish (cf. p. 520 above).

This supplementary note originated in a discussion of the term-crossing
problem with Professor Slater, to whom we are greatly indebted.
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