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EFFECT OF DIFFRACTION AROUND THE MICROPHONE
IN SOUND MEASUREMENTS

BY STUART BALLANTINE

ABSTRACT

Proposed method of evaluating the pressure correction made necessary by diffrac-
tion.—The diffraction of sound around the diaphragm of the microphone ordinarily
used inthe measurement of the instantaneous pressure ina sound wave causes the indi-
cated pressure to vary from equality with the actual pressure in the undisturbed
wave at low frequencies, to twice this pressure at high frequencies. Because of the
mathematically irregular shape of the conventional microphone and its mounting
the effect cannot be calculated. It is proposed to evaluate the correction for diffrac-
tion by employing a standard spherical mounting of which the diaphragm occupies a
small area about the pole; the increase in pressure for this mounting can be calculated
theoretically, and the correction for other mountings can then be obtained by ex-
perimental comparison. i

Theory of the diffraction of a sound wave by a rigid sphere.—The theory of the
diffraction of a plane wave of the type exp iw(—x/V) by a rigid sphere is outlined in
terms of Hankel’s H?,,; functions, for which tables exist up to the highest orders
required for the computations in practical cases. Numerical computations are carried
out in full, giving the vector pressure ratio at the pole facing the source for spheres
of various diameters and at various frequencies throughout the acoustic range.

N MEASURING or recording instantaneous sound-pressure variations

with a calibrated condenser microphone it is often assumed that the pres-
sure at the diaphragm is the same as that which would exist in the undisturbed
sound wave; also some investigators have assumed that the pressure is
doubled by reflection, therefore that the apparent values are to be divided by
a factor of 2. If the diaphragm were of infinite extent, or part of an infinite
wall, the pressure would clearly be doubled at all frequencies since the re-
flection coefficient at the air-membrane interface is very closely equal to
unity because of the stiffness of the tightly stretched membrane. If, on the
other hand, the dimensions of the microphone were small in comparison with
the wave-length of the sound, we should then have an ordinary problem of
the Laplacian flow of air past an irregular obstacle and in these circumstances
the pressure at the diaphragm would approach that in the undisturbed sound
field. The effect of diffraction around the microphone then is to cause the
apparent pressure (the pressure acting upon the diaphragm) to vary from the
true pressure in the undisturbed wave, to twice this pressure as the frequency
is raised from a low to a high value.

An obvious method of evaluating this effect and rendering useful the
ordinary calibrations of the microphone derived from the application to the
diaphragm of known alternating pressures produced by the thermophone,
piston-phone or by electrostatic means, would consist in the direct comparison
with the Rayleigh disk. The sound field at the point to be occupied by the
microphone is first measured by means of the Rayleigh disk, the microphone
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is then substituted and the overall calibration directly obtained in this way
will include the effect of reflection. In the previous comparisons between the
thermophone calibration of a condenser microphone and the Rayleigh disk
calibration certain discrepencies have been noticed which are probably largely
due to diffraction around the microphone.

The purpose of the present note is to consider the theory of the effect and
to suggest a method for evaluating the appropriate corrections by means of a
spherical mounting which can be calculated.

1. Standard spherical mounting. The geometrical volume occupied by the
condenser transmitter and single-stage amplifier which is usually mounted
with it for the purpose of avoiding long high-capacity leads, is of a mathe-
matically irregular shape and not amenable to calculation To facilitate
mathematical investigation we
may mount the transmitter and
amplifier in a substantially rigid

spherical shell with the dia- %1 %{‘
phragm as nearly in the surface B 2
as possible (Fig. 1). The dif- _'IZ_‘ n .

fraction of sound by a spherical (ongenser
obstacle is a classical problem?! Mirophone
and tables now exist which
greatly facilitate the actual nu-
merical computations.

When the relation between
the pressure-ratio (actual pres-
sure+pressure in the wave in Fig 1. Standard spherical mounting for condenser-
the absence of the obstacle) microphone and amplifier stage.
and frequency has been calcu-
lated for the standard spherical mounting the effect of diffraction with the
more usual mountings may be readily evaluated by experimental comparison.

2. Theory of diffraction of a plane sound wave by a rigid sphere. With
reference to a conventional spherical coordinate system with its polar axis
along x we may imagine a plane sound wave of the form e** propagated from
right to left in the direction of the polar axis; we require the pressure p at the
pole facing the source or more accurately over a small circular area (repre-
senting the diaphragm) surrounding this pole. Since the problem has been
discussed by the late Lord Rayleigh it will be sufficient here to indicate the
form the solution takes when expressed in terms of Bessel functions whose
order is half an odd integer, tables of which have become available since
Rayleigh’s treatment.

On account of the symmetry about the polar axis the wave-equation for
the velocity-potential ¢ reduces to

NN

1 Rayleigh, “Theory of Sound,” Vol. 2, p. 218 et seq. (London 1878): Papers, No. 287,
vol. V, p. 112, 1903; No. 292, vol. V, 149, 1904.
Lamb, “Hydrodynamics,” 5th Ed., p. 496 (Cambridge, 1924).
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where k=w/V =2r Xfrequency/velocity of sound in air. The solutions of
sufficient generality for our purpose are

Jny172(kr)

J—n—l/z(kf) ; (2)

¢= 2 AP, cosb)/r/2 {
n=0
where P, (cos 6) represents the Legendre polynomial of order #, 6 being the
polar angle (colatitude). We require the expression of exp (iwx/V) in the
form (2); this is given by Rayleigh’s expansion :2

]

pr=eikr= > i*(2n+1)P,(cos 0) (w/2kr) V12 iy a(kr). 3)

n=0
The scattering by the sphere can be most simply represented as a diverging
spherical wave in terms of the second Hankelian Bessel functions of order
n-1/, thus

p2= iAnPﬂ(cos 0)(w/2kr) 1 2H2, 1 9(kr) . (4)

n=0

The complete solution is then: ¢ =¢1+¢.=Eq. (3)+Eq. (4). From the
boundary condition at the surface of the sphere that the normal component
of velocity (v= —grad ¢) shall vanish when r=a or d¢/Ir(r=a)=0 we
find

jn+1/2(kd) - 2ka]’,,+1/2(ka)

A,=—1(2n+1) . 5
( H1/2(ka) — 2kaH? nivjo(ka) )
By taking advantage of the Wronskian relation
W nsjzy T ngrs) = — (—)"2/mx, (6)
the solution represented by (3)+ (4) reduces to the simple equivalent forms
2\ = —(2n+1)i*P,(cos 0)
o=() = . , (72)
mwka w0 (=)"(WI —ne12 BT —pzpo) — i(T pyry2— kT nysys)
2 \!/2 = (2n+1)in P, (cos 6)
(=) = . D
wka)  nmo (=) (DT —ayjet kT —pyrjo] = i[(BAH1)T nr1j2— kT nys2)

The effect of diffraction may be most conveniently represented by the
vector ratio of the pressure as calculated from (7) to that which would exist
in the incident plane wave alone. Now the pressure p =pd¢/0t =1wp¢, where
p is the air density, so that the ratio in question p/ps=eq. (7) +e?#a.

2 Rayleigh, Proc. London Math. Soc. 4, 253 (1873); H. M. MacDonald, “Electrical and
Optical Wave Motion,” p. 47 (Cambridge, 1900).
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Since the diaphragm covers a finite (circular) area about the pole the
variation of the pressure-ratio with @ should strictly be taken into considera-
tion. Calculation indicates that for large values of ka the variation of the
vector ratio is chiefly one of angle, the absolute value remaining substantially
constant over a range of 15 degrees; for small ka the variation is chiefly in the
amplitude. At ka =0.3 the variation of p/p, from 8 =0 to § =15° is only about
1 percent. Moreover the pressure variation with § must be “weighted,” as
the effectiveness of a pressure upon any annular element of the membrane
falls off rapidly as the radius of the annulus approaches that of the membrane.
It seems therefore that no serious error would be committed with a mounting
of perhaps 6 in. diameter and a diaphragm of 1.5 in. diameter by regarding
the polar pressure (#=0) as proportionate to the effective average pressure
over the diaphragm at all frequencies.

3. Computations and curves. The pressure-ratio is a function only of the
ratio of the size of the sphere to the wave-length of the sound. For computa-
tions from (7) tables are available? of J,1/2 for # up to 18, and of J_,_/ for
n up to 6; additional values of J_,_i/s for larger » may be computed from the
tables of the related C, functions given in the British Association Reports for
1914 (pp. 88-102) and 1916 (pp. 97-107). Computations made with the aid
of these modern tables are given in Table I.

TaBLE I.  Values of the vector ratio (| p/pole¥) of pressure at pole of rigid sphere to pressure in

incident plane wave at same point for various values of ka = 2w X frequency Xradius of sphere
=+velocity of sound in air.

b
4 £ Angle ¢

ka Equation (7) bo (radians)
0.1 1.0005

0.2 1.0027

0.3 0.909-+0.458i 1.019 0.168
0.5 1.043+4-0.299i *1.085 0.279
0.7 0.597+41.0401 1.198 0.345
0.85 0.4684-0.374i 1.325 0.359
1.0 0.310+1.370i 1.406 0.340
2.0 1.593+0.468i *1.660 0.286
3.0 —1.762—0.165i 1.772 0.235
4.0 —0.910—1.595i1 1.835 0.194
6.0 1.895-0.292i 1.913 0.128
10.0 1.54041.207i *1.958 0.665 (?)

* Values calculated by the late Lord Rayleigh.?

The angle ¢ of the vector ratio is given as well as the absolute value. This
is of interest in estimating the dispersion which must be corrected by means
of phase-equalizers in the electric circuits when an exact recording of the wave
forms of the sound is desired. For many purposes, however, the absolute
value alone will be sufficient.

Fig. 2 contains a set of curves based upon these computations which
represent the effect of diffraction for spherical mountings of various sizes over
the audio range of frequencies. The form of the correction curves for other

3 G. N. Watson, “Bessel Functions,” pp. 740-743 (Cambridge, 1922).
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practical mountings may now be obtained experimentally by comparison
with the standard mounting This experimental program is under way and
will be reported in a subsequent paper. It is necessary to investigate the
functional relation for a single size of each shape; the position of the curve for
any other size may be determined by the principle of similitude.

In the case where the condenser transmitter is mounted integrally with
the apparatus comprising the first amplifier stage and occupies a volume of
reasonable (say cubical) shape it is often sufficient to estimate an “equivalent
sphere” on the basis of equal volume to represent the irregular actual volume.
The accuracy of this seemingly crude assumption is somewhat surprising.
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Fig. 2. Effect of diffraction of plane wave with spherical mountings: absolute value |p/po|
and angle ¢ of ratio of pressure at pole of sphere to pressure in undisturbed wave.

Although the condenser microphone has been mentioned particularly in
this discussion, it is obvious that it applies equally well to other pick-up in-
struments of the exposed diaphragm type, such as for example, the double
carbon button microphone used extensively in radio broadcasting and public
address systems. When the microphone is used for technical purposes and
sound-wave recording it is convenient to compensate the diffraction effect
either in the design of the microphone (which is feasible with air-damped
types) or by equalization in the electrical circuits.

In conclusion it may be noted that by the reciprocity theorem equation (7)
is equally appropriate for the representation of the pressure at a large distance
in the sound radiated by a small piston located in the surface of a sphere.
This throws some light on the action of baffles for loud-speakers.

Rabpio FREQUENCY LABORATORIES, INC.,

Boonrton, N. J.
September 20, 1928.



