THE IONIZATION PROCESSES IN METHANE INTERPRETED BY THE MASS SPECTROGRAPH

By T. R. Hogness and H. M. Kvalnes

Abstract

The ionization processes occurring when CH₄ molecules are ionized by controlled electron impact have been determined with the aid of the mass spectrograph. CH₄⁺ and CH₃⁺ are the only ions formed, and by a study of their relative intensities under different conditions of pressure and voltage, it was found that both these ions are formed directly by the electron impact. The ionization processes are: CH₄=CH₄⁺+E⁻ (14.5 volts); CH₄=CH₃⁺+H+E⁻ (15.5 volts).

Isotopes of neon.—It has been definitely determined that besides the two isotopes of neon, Ne_{20} and Ne_{22} , there exists a third isotope with a mass of 21.

THE work here described was undertaken with the hope of obtaining the bonding energy between the CH_3 radical and the hydrogen atom in methane. The dissociation or bonding energy of diatomic molecules can be obtained from the data of positive ray analysis¹ and by applying the same methods to polyatomic molecules, it should be possible to determine the bonding energies of these molecules as well. If H⁺ were produced directly from CH_4 by electron impact and if the minimum potential applied to the impact electron to produce H⁺ from methane were known, the bonding energy could be determined by simply subtracting the ionization potential of the hydrogen atom (13.5 volts) from this minimum potential.

Unfortunately the H^+ ion is not produced by electron impact with CH_4 and, because of this, the principal object of the work has not been attained, but the processes that do occur when methane is ionized by impact electrons have been successfully interpreted.

The apparatus, with the exception of a few changes in minor details, and the method of analysis were the same as those employed by Hogness and Lunn.²

In the first experiments, tungsten filaments were used and under these conditions the ions CH_{4^+} , CH_{3^+} , CH_{2^+} , CH^+ , C^+ , H_{2^+} , and H^+ were found to be present. The intensity of the ions CH_{2^+} , CH^+ , C^+ , H_{2^+} and H^+ were, under all conditions, very small and it was suspected that these ions were produced by ionization of the products of thermal dissociation of the methane by the filament. The tungsten filament was then replaced by a nickel-platinum oxide-coated filament which, at a much lower temperature, gave the same electron emission as that of the tungsten filament. With this new filament, only the ions CH_{4^+} and CH_{3^+} were obtained. Under no conditions was it now possible to get any evidence whatsoever of the H⁺ ion.

To determine whether the CH_3^+ resulted from spontaneous dissociation accompanying the ionization of the CH_4 molecule or whether a collision of

¹ For references, see Hogness and Harkness, Phys. Rev. 32, 784 (1928).

² Hogness and Lunn, Phys. Rev. 26, 44 (1925).

the CH₄⁺ ion with a neutral CH₄ molecule was necessary for the production of the CH₃⁺ ion, the usual method of studying the relative intensities of these two ions as a function of the pressure in the ionization chamber was employed. In twenty-three determinations with the pressure varying all the way from 3×10^{-5} to 380×10^{-5} mm, the ratio of CH₃⁺ to CH₄⁺ was 1 ± 0.1 and since no variation of this ratio with pressure was found, it must be concluded that the CH₃⁺ ion is produced directly upon ionization of the CH₄ molecule by electron impact. The two processes which occur may be represented by the following equations:

$$CH_4 = CH_4^+ + E^- \tag{1}$$

$$CH_4 = CH_3^+ + H + E^- \tag{2}$$

When an electron of sufficient energy ionizes a CH_4 molecule, it may do so in one of two ways; it may produce the stable CH_4^+ ion, or an unstable CH_4^+ ion which dissociates spontaneously into a stable CH_3^+ ion and a neutral

for neon used for calibration.

hydrogen atom, but any CH_4^+ ion produced by electron impact cannot dissociate into a CH_3 radical and an H⁺ ion. Furthermore, the probabilities for the occurrence of processes (1) and (2) are about equal. This constant ratio between the CH_4^+ and CH_3^+ ions was also maintained in mixtures of neon and methane. If any of the CH_4^+ or CH_3^+ ions were produced by impact of the CH₄ molecule with the Ne⁺ ion, the probabilities of the formation of either of these ions was also the same under these conditions. The accompanying figure shows this fact graphically and also shows the resolution which was obtained with the instrument. In this figure, the ordinates represent electrometer deflections and the abscissas the analyzing voltage applied to the positive ions. The m/e values from which the various ions were identified were calculated from $e/m = 2 V_3/H^2 r^2$ where H is the magnetic field strength and r the radius of curvature (5 cm), of the path of the positive ions in the magnetic field.

The ionization potentials of each of the two processes was determined by the usual method of lowering the voltage applied to the impact electrons until the peak of the particular ion just disappeared. To correct for initial velocities, contact potentials and instrument sensitivity neon was used as the calibrating gas. The ionization potential of neon was taken to be 21.5 volts³ and referred to this the ionization potentials obtained in four different determinations are given in Table I. The value, 14.5 volts, of the second column represents the energy change in process (1) and that of the third column, 15.5 volts, that of process (2).

Expt. No.	CH_4^+	CH ₃ ⁺
1 2 3 4	14.45 volts 14.50 14.50 14.50 14.50	15.50 volts 15.50 15.50 15.83
Average	14.5	15.5

TABLE I. Ionization potentials for CH_4^+ and CH_3^+ .

Mayer⁴ obtained a value of 13.5 volts for the ionization potential of methane, Hughes and Dixon⁵ 9.4 to 9.6 volts, and Hughes and Klein⁶ 13.9 volts, Glockler⁷ was unable to obtain a sharp break in the current potential curves obtained with methane and believed that but one process was taking place which had an ionization potential between 14.4 and 15.2 volts. Pietsch and Wilcke⁸ obtained two distinct values of the ionization potential of methane, one at 14.58 ± 0.05 volts and one at 15.40 ± 0.05 volts. The first of these they interpreted correctly to be that of our process (1). The second value, however, they ascribed to the complete dissociation of CH₄ into gaseous atoms without ionization. The correct interpretation of this second value is that of process (2).

³ Hertz and Kloppers, Zeits. f. Physik 31, 463 (1925).

- ⁴ Franz Mayer, Ann. d. Physik 45, 1 (1914).
- ⁵ Hughes and Dixon, Phys. Rev. 10, 495 (1917).
- ⁶ Hughes and Klein, Phys. Rev. 23, 455 (1924).
- ⁷ Glockler, J. Am. Chem. Soc. **48**, 2021 (1926).
- ⁸ Pietsch and Wilcke, Zeits. f. Physik 43, 342 (1927).

No negative ions, doubly charged positive ions or positive ion clusters were found.

ISOTOPES OF NEON

The calibrating gas, neon, gave the positive ions, Ne_{20}^+ and Ne_{22}^+ in the ratio of ten to one as found by Aston⁹ and by Barton and Bartlett.¹⁰ There was, in addition to these ions, a small peak for Ne₂₁+, which was always found when neon was in the apparatus (see Fig. 1) but was never obtained in the absence of neon. When pure neon was run at such conditions as to give greatest intensity of the Ne_{20}^+ ion, it was found that the intensity of the Ne₂₁⁺ ion corresponded to about 2 percent of the sum of the intensities of the three ions of neon. In early work by Aston,¹¹ reference was made to finding a line in neon corresponding to Ne_{21}^+ , and from its intensity he estimated its concentration in neon as being less than one percent by volume. In a later work by Aston,⁹ no line for Ne₂₁⁺ was found, but since poor results are claimed for Ne_{22}^+ , it may be that the increased resolution of the apparatus which was used cut down the sensitivity for Ne_{21} ⁺ to such an extent that it could not be detected. Such effects are very pronounced in the apparatus used in the present work. The fact that Aston only finds H_2O^+ during the first few days after pumping out the apparatus likewise indicates that the absence of Ne_{21} + is a matter of intensity since H_2O^+ is always present in the type of apparatus used here.

The plot of the curve for the ions of neon published by Barton and Bartlett shows that the peak for Ne_{22}^+ starts at 20.7 so that any Ne_{21}^+ present would not be resolved.

If the peak for mass twenty-one were due to a hydride of Ne_{20} , then there should be a peak for mass twenty-three corresponding to the hydride of Ne_{22} . The calculated intensity for this peak is 1.6 scale divisions under the conditions referred to before, which is detectable when a specific search is made for such an intensity. No such peak was found, however. There are then three isotopes of neon of masses, twenty, twenty-one and twenty-two, respectively.

We wish to take this opportunity to express our indebtedness to Dr. M. J. Kelly of the Bell Telephone Laboratories for supplying us with the oxide coated filament, without which this work would have been much more difficult.

Chemical Laboratories, University of California, August 13, 1928.

⁹ F. W. Aston, Proc. Royal Soc., 115A, 487 (1927).

¹⁰ Barton and Bartlett, Phys. Rev. **31**, 822 (1928).

¹¹ F. W. Aston, Phil. Mag. 39, 449 (1920).