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NUCLEAR MOTIONS ASSOCIATED WITH ELECTRON TRANSI-
TIONS IN DIATOMIC MOLECULES

BY EDWARD U. CONDoN

ABSTRACT

The question of nuclear motions associated with electron transitions is dis-
cussed from the standpoint of quantum mechanics. It appears that Heisenberg' s
indetermination principle gives the clue to the inexactness of the earlier method
based on Franck's postulate since its strict application calls for a violation of the
principle. The existence of an entirely new type of band spectrum due to the wave na-
ture of matter is predicted and the interpretation of Rayleigh's mercury band at 2476-
2482 A.U. as of this type is suggested. Finally it is shown that while Franck s postu-
late is also true for electron jumps in atoms, it is of but trivial interest because its
inexactness is much greater for the electrons than for heavy nuclei.

'WO years have elapsed since Franck proposed a mechanism for the direct
dissociation of molecules by light absorption' and since the extension of

that mechanism to a theory of intensity'distribution in band systems was
made. ' In the meantime the theory has been applied with gratifying success
to the discussion of a number of band systems which have been recently
analyzed. It has also been possible to derive the postulate underlying
Franck's idea from the new quantum mechanics and thus to bring it into
closer relation with the basic principles of quantum physics.

The first publication of this connection with quantum mechanics was very
brief. Since the connection provides one of the more easily visualised appli-
cations of quantum mechanics and because of the rather wide applicability
of the method in molecular problems it is therefore proposed here to give a
fuller account of the connection. Besides providing a

justification

of Franck's
assumption, the quantum mechanical method provides a distinct advance
since it gives, in principle at least, an exact method for calculating intensities.
This is illustrated particularly neatly in cases where absorption of light re-
sults in direct dissociation of the absorbing molecule (Cl~, Br2, ICI). It appears
that the reason Franck's postulate gives only the most probable transitions
and not the range of allowed transitions near the most probable is intimately
connected with the so-called uncertainty principle of Heisenberg and Bohr.
The quantum mechanical treatment also points to the possible existence of a
new type of molecular band structure which is a direct manifestation of the
de Broglie wave-length in the spectrum of a molecule.

fl1. FRANCK S POSTULATE

According to the theory of band spectra the molecule exists in different
electronic energy levels. Associated with each of these is an effective law of

Franck, Trans. Faraday Society 21, part 3 (1925).' Condon, Phys. Rev. , 28, 1182 (1926).
' Condon, Proc. Nat. Acad. Sci. 13, 462 (1927).
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force which governs the motion of the two nuclei relative to each other and
which is most conveniently described by drawing the curve which gives the
energy of the molecule in the non-rotating non-vibrating state as a function
of the distance of the two nuclei. In Fig. 1 we have such a pair of curves
drawn for the two electronic states involved in the emission of the Swan bands
of carbon. ' The curves are inferred from the energy levels of the band spec-
trum. Thus the moment of inertia in a given state gives the abscissa of the
minimum and the frequency o7 vibration gives the first coeScient in the
Taylor's series for the curve around the minimum, etc.

Franck postulated that in an elec-
l I

tron transition from a state in which
the molecule is not vibrating the heavy
nuclei will not be a&ected "momen-
tarily. " Immediately after the transi-
tion the nuclei will have the same 'E 4oooo-

separation as before. But this will not
be, in general, the equilibrium position
of the law of force for the new electronic
state and therefore the molecule will
start to vibrate. In other words the
most probable transition from the mini-
mum of the curve for the initial state is
to that point on the curve for the final —e
state which has the same nuclear sep- :b I

ration. This rule was then extended to
make it applicable to transitions in

Fig. j.. Potential energy curves for the
which th m lecule is vibrating initially ic states of c involved in the swan
as well as in the final state. One postu- band system.
lates that the electron transition aff'ects
neither the position nor the monsen1nnz directly. Then if the transition occurs
while the nuclei are moving relatively, the most probable final state is that in
which the position and momentum just after the transition is the same as
that just before. This may be supplemented by supposing that the electron
transition may occur with equal probability independently of the phase of
the vibratory motion. This rule gives a definite probability for each of the
possible Final energies which can be communicated to the molecule.

It has now to be noted that it may happen that the curves lie as in Fig. 2

(which is approximately to scale for chlorine' ). In this case absorption of
light by the non-vibrating molecule would have as the transition determined
by this rule that to energy level A which corresponds to dissociation plus a
pe«ectly definite amount of translational energy in excess of the' dissociation

4 Based on the analysis of Shea, Phys. Rev. 30, 825 (1927).
~ The frequencies of vibration and heats of dissociation are from Kuhn, Zeits. f, Physik

&9) &7 (j926). The relative position of the two curves is not known since the rotation structure
of the bands has not been analyzed; their relative position as drawn here was inferred roughly
from the known intensity distribution by the theory of this paper.
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work, D. Franck first applied the method to a case of this sort—that of
iodine, I2—to explain the experiments of Dymond. Experiment shows, how-
ever, that while the moat favored transition is to energy level A, the actual
absorption consists of a fairly broad continuous band. This indicates a lack
of sharpness about the principle which requires explanation. Similarly in a
case like Fig. 1 where the rule Ieiads to non-dissociating transitions, its strict
application leads us to predict transitions to energies in the final state which
are not quantum levels. As we know that th'ese cannot occur we are again
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Approximate potential energy curves involved in the visible absorption spectrum of
C12. Ordinates and abscissas as in Fig. 1.

forced to recognize a certain lack of sharpness in the rule and to suppose that
the probability of transition to non-allowed levels must perhaps be assigned
to the credit of the nearest allowed level.

Making such adjustments, however, the principle has proven quite useful
in giving an easily visualized rule for predicting the nuclear motions set up
by electron transitions. The adjustments toward looseness which have to be
made in the picture are the result of a too strict application of classical ideas
to the problem in hand. For a rational treatment of the problem we turn
therefore to the new quantum mechanics.

$2. THE PEINCIPLE IN WAVE MECHANICS

Following Schrodinger's method the behavior of a molecule is described
in terms of the solution of his wave equation which involves (Bn+6) inde-
pendent variables if e is the number of electrons in the molecule. Not much
headway can be made with the equation without the application of perturba-
tion theory. Born and Oppenheimer have shown how the problem can be
handled by successive approximations amounting to an expansion in powers
of (m/M)'t4 where m is the electronic mass and M is of the order of a nuclear
mass. ' It is because of the great mass of the nuclei that one can regard their
motion as determined approximately by the wave-mechanical analogue of the
time-mean of the forces of a11 the swiftly moving electrons on the nuclei.

~ Dymond, Zeits. f. Physik 34, 553 (1925).
~ Born and Oppenheimer, Ann. d. Physik 84, 457 (1927).
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Their work justifies the postulate that the coordinates of the nucleus remain
approximately separable from those of the electrons in Schrodinger's theory.

We can ignore the rotation motion of the molecule. Let r be the nuclear
separation and x stand for the ensemble of all the electronic coordinates. A
definite state of the molecule will be characterized by e, which is the ensemble
of all the electronic quantum numbers, and by n,, the vibrational quantum
number. The fact of approximate separability means that to a good approxi-
mation the energy of the state R(e, n) is the sum of an electronic part and a
vibrational part,

E(e, n) =E,+R„

and that the wave function for such a state p, „(x, r) is the product of a
function of the electronic coordinates and one of the nuclear separation,

P,„(x,r) =X.(x) R,„(r).

Moreover the work of Born and Oppenheimer shows that the energies E and
the function R (r) are given by solving the one-dimensional wave equation in
the variable r got by using an effective potential energy curve U(r) repre-
senting the mean action of all the electrons in the state characterized by
X,(x). Recently Heitler and London have obtained important results for
the quantum theory of molecules concerning the curves U(r) by approxi-
mations concerning X,(x). We may take empirically the U(r) curve associ-
ated with each state as that one which is consistent with the quantum theory
of the empirical energy levels of the band system in question,

Such empirical U(r) curves in turn lead directly to solutions for E„and
R„(r) from a simple one-dimensional wave equation. The intensities of any
given transition (e', n') ~(e", n") have now to be considered. These are
given unambiguously by the quantum mechanics in terms of the function
lf,„(x, r). The electric moment of the molecule is given classically as the
vector sum of the charges multiplied by their distances from a fixed point.
Let M(x, r) be this function. If the x are rectangular coordinates M is linear
in all of the x and r. The electric moment which functions as a measure of the
probability of the foregoing transition is

M(e', e", '& n) n= t I M(x, r)f, „(x,r) P, „(x,r)dxdr.

One can carry out (in principle) the integration over the electronic coordi-
nates and obtain an intermediate sort of electric moment function which is
characteristic of the electron transition e'~e" and which depends only on r,

M(e', e",n', n") = )t M(e'e", r) R. „(r)R, „(r)dr.

Although the range of integration is —~ to +~ the only parts which make
appreciable contributions are in the range of coordinates in which both
R(e', n', r) and R. (e", n", r) have values not too near zero. In such a range it
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is probably always sufficient to take M(e', e", r) as a linear form A+Br
where it is supposed that the origin of r has been shifted to the center of the
important part of the range of integration. In what follows a little brevity is
gained by neglecting all but the constant part 2 since the reader mill have no
difficulty in seeing that the argument is not much affected by omitting the
linear Br term. Although M(e', e", r) is unambiguously defined, almost
nothing is known about it in the present state of our ignorance of the f func-
tions for molecules.

We turn now to the consideration of the relative intensity of the different
n'~n" transitions, associated mith a definite e'~e" transition. It is a con-
sequence of Schrodinger's theory that R„(r) will approach zero very rapidly
outside of the region of the classical vibratory motion of the same energy.
Inside this region it will be an oscillatory function.

From these properties of the functions R(e, e, r) we read the quantum
mechanical justification of the Franck postulate; together mith a definite esti-
mate of the uncertainty involved in its application. For example the
n' = O~n" = 0 band by the Franck rule is most probable for zero change in
moment of inertia. For large change it is an improbable transition. This
follows because now the wave functions R(e', 0, r) and R(e", 0, r) are both
Gauss error curves, each one located symmetrically about the minimum of its
own potential energy curve. The over-preciseness of the rule arises from the
neglect of the fact that in the zero vibration state the particle is not precisely
at the minimum of the curve but has a probability of being a short distance on
either side of the minimum.

One sees then that when non-oscillatory wave functions come in question
the integral has the largest value when the functions overlap most. This
corresponds to Franck's rule, but extended to take into account the distribu-
tion of positions characteristic of quantum mechanics. We consider next a
transition from n' = 0 to some large value of n" for a case in which the change
in moment of inertia accompanying the electron jump is small. The wave
function for the large value of n" will now be a rapidly oscillating function of
r., and for this reason the integral of the product of two wave functions will be
small. This corresponds to the part of the rule of (1 which says that large
changes in nuclear momentum at the instant of electron transition are im-
probable. This comes about because the oscillatory character of the wave
function is the wave-mechanical analogue of the fact that the particle has
considerable momentum at that part of its orbit. (The spacing of the zeros
is given approximately by de Broglie's rule, Xp = &).

The wave functions of the higher states sink rapidly to zero outside the
range of the classical motion. In the neighborhood of one of the turning points
they have a broad maximum —broad because here the momentum is small so
the quasi-wave-length is long, and maximum because here the particle spends
a larger fraction of the time than places where it moves fast. As one goes from
either of the classical turning points toward the minimum of the potential
energy curve, the function oscillates more rapidly and has decreasing ampli-
tude —both things corresponding to the greater speed of the particles at this
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part of the motion. We consider next a transition from the n'=0 state
accompanied by a large change in moment of inertia. Then the vibration level
which is given as most probabie by the rule of )1 wiil be one whose wave
function s broad maximum lies in a favorable position with respect to the
n'=0 wave function and is therefore one which is favored by the wave
mechanics formula. The wave functions for smaller values of n" will not,
overlap the n' =0 wave function, while those for larger values of n", though
they overlap, oscillate rapidly and for this reason the integral measuring the
intensity is small.

Thus we see how t'he quantum mechanical formula agrees with the rule of
$1 when that is regarded as approximate. The method of this section goes
beyond that of (1 in providing exact intensity predictions and gives appre-
ciable values to transitions in the neighborhood of those given by Franck's
rule. This is an evidence of the workings of the basic uncertainty relation of
Heisenberg. ' According to this we cannot reason closely about the simul-
taneous values of position and momentum. One must admit uncertainties
in each quantity such that their product is of the order of h. We were violating
this in (1, for exampie where we spoke of the nuclei as having zero reiative
momentum when at the extremity of their classical vibratory motions. The
conclusion from such a statement must, on the quantum theory, be errone-
ously over-precise as we have already seen is the case.

$3. THE CONTINUOUS SPECTRUM ACCOMPANYING DISSOCIATION

One can easily see that the quantum-mechanical formula gives the right
order of magnitude for the breadth of the continuous band accompanying
dissociation of a molecule. There are several good examples at present of
molecules which, on absorbing light from their lowest state, dissociate into
two atoms which rush apart from each other with translational energy. We
will consider the examples of the halogens for which the data are available.

In Fig. 3 the curves are drawn to scale for I2.' By Franck's rule the most
probable transition on absorption from the non-vibrating state is the absorp-
tion of light of frequency 19000 cm '. What is found experimentally is a
broad band of absorption which runs from 'A4300 to ) 5800. The part from
~4300 to )4995 is continuous while from X4995 to 'A5800 it is banded. This
observed range of absorption is indicated near the frequency scale in Fig. 3,

o Heisenberg, Zeits. f. Physik 43, 172 (1927) and Bohr, Nature 121, 580 (1928).
o Some readers may recall that the outstanding blemish in the original paper' was the lack

of agreement between theory and experiment for the absorption bands of I2. This was due to
a bad blinder on my part in using the moment of inertia for the 26th vibrational level of the
excited state thinking it was the moment of inertia for the non-vibrating molecule. For calling
attention to the mistake in private communications I am deeply indebted to Professors R. T.
Birge and F. W. Loomis. The curves as drawn are based on the following data:

r'o=3 010 r "o=2 663
a)o' = 127.5 o)o"=213.67
P 'o =0.02911 Po"=0.03730
n' =0.00017 a"=0.00011

x'co' =0.85 x "cv"=0.592
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What does the quantum-mechanical method predict for the breadth of
this bandP The wave function of the non-vibrating initial state is a Gauss
error curve. The order of magnitude of the width of the band, as in f2, is
given by the breadth of the frequency interval over which the integral for
the electric moment has an appreciable value. An exact calculation would
require knowledge of the form of the wave functions for the excited state.
The order of magnitude involved one readily sees is about equal to the in-
terval on the frequency scale given by "reHecting" the initial state wave func-
tion in the potential energy curve of the final state the result being curve (a)
Fig. 3. Such a rough estimate of the quantum mechanical intensity integral
has still to be multipled by v' to give intensities. Curve (b) shows the result
of doing this. It is seen that the theory predicts the extent as well as the posi-
tion in the spectrum of the absorption quite nicely.
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Fig. 3. Potential energy curves involved in the visible band system of I 2, together with the

P function for zero vibration in the final state. {a) is the reHection of this P function in the
upper state energy curve. {b) is {a) mUltiplied by v. The two-headed arrow indicates the
approximate extent of the observed absorption from the zero vibration level.

For Br~, C12, and ICl we do not at present know the moments of inertia
so that we are not able to predict theoretically the exact locatian of the con-
tinuous bands accompanying dissociation. But if we put the potential energy
curve for the excited state at the position which makes theory and experiment
agree as to the location of the maximum then the slope comes out so in each
case as to predict the observed width of the continuous band, at least in order
of magnitude.

In Fig. 4 we have the data on the continuous absorption of C12, Br2, and
ICl as a function of frequency and a line showing the theoretical width of the
continuous band, as estimated in this rough way.

For Cl~ the measurements of Halban and Siedentopf were used, for Brm

those of Kuhn" for ICl those of Gibson and Ramsberger" while for I~ we have
only Mecke's statement" that the continuous begins around X4300. The
approximate theoretical values were got by regarding the potential energy

'~ Mecke, Ann. d. Physik Vl, 104 (1923}.
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curve of the excited state as parabolic, the constant being determined by the
known frequency of vibration. It was then assumed that this curve is truly
so located relatively to that of the ground state as to give the empirical value
of the maximum of the continuous correctly by the ruie of )f. This deter-
mines the slope of the energy curve for the excited state at the equilibrium
separation of the unexcited state. One can say that the true slope is certainly
greater than the value estimated this way: This slope is then multiplied by
the parameter, a, in the wave function of the harmonic oscillator for the
normal state to give an estimate of the half-value width of the continuous
spectrum on either side of the maximum, as indicated in Fig. 4 by the lines
drawn just inside the absorption curves. Naturally such an approximation is
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Fig. 4. The relative absorbing powers from the zero vibration state into the continuous spec-
trum beyond dissociation for C12, Br2, and lCI and its approximate extent for I2 given by the
lower line. The shading indicates the location of the n"=0 progression of bands and their
high frequency convergence limits. The horizontal lines under each curve show the quantum
mechanical estimate of the width of the continuous absorption. The ordinates are relative
values, for each substance, so comparisons between substances are meaningless.

quite crude, but it is fair to claim that it agrees well enough with the obser-
vations to serve as support of the theory.

While this paper was in preparation Winans and Stueckelberg" recognized
the application of these ideas to the explanation of the molecular part of the
continuous spectrum of hydrogen, making use of Heitler and London's"
quantum-mechanical potential energy curve for the i'S state of the molecule.
Their paper serves at the same time to give not only a satisfactory account of
this spectrum but also an important application of the methods of this section,

"Winans and Stueckelberg, Proc. Nat. head. Sci. 14, (in press) (1928).
~ Heitler and London, Zeits. f. Physik 44, 455 (1927).
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and the first empirical evidence of the physical reality of the theoretical 1'5
state of the molecule.

f4. DIFFRACTION BANDS IN THE CONTINUOUS SPECTRUM

The argument of the preceding section from the properties of the wave
functions can be translated into a justi6cation for Franck's postulate, as we
have seen. Moreover it gave a quantitative understanding of the over pre-
ciseness of the conclusions drawn from the postulate by showing how the
strict use of it violates Heisenberg's uncertainty principle.

The analogy with optics is a helpful one. As is mell-known, geometrical
optics is the analogue of classical mechanics. In the transition to wave
mechanics one can regard Heisenberg's uncertainty principle as being a semi-
quantitative rule which gives the order of magnitude of diffraction deviations
from geometrical optics and classical mechanics respectively. The last stage
of refinement is reached in optics where the wave theory is used to predict
details of diffraction patterns, and in wave mechanics where Schrodinger's
equation gives the exact details of the diffraction phenomena of the de Broglie
waves. In this section we shall see that cases may arise in which the quantum
mechanical formulas give a rippling fiuctuation in intensity in the continuous
spectrum accompanying dissociation.

Suppose the potential energy curves lie as
in Fig. 5 where the essential point is that one

I
curve has a very gentle slope at the abscissa
values near the minimum of the other. Then
by the arguments of preceding sections the
most probable jump from zero vibration in
electron state I to electron state II is in the

II continuous spectrum. By the uncertainty
principle one can estimate roughly the extent
of this continuous spectrum. Looking at the

Fig. 5. Illustrating a possible re- matter more in detail, we see that because oflation of the two potential energy
curveswhich would giverlsetothe the gentleness of sloPe of curve II the%'func
diffraction bands. tions associated with nuclear motion in this

electronic state will have a rather long wave-
length, so the distance between zeros might be about equal to the breadth
of the Gauss error curve which is the P function of zero vibration in state I.
Ke consider now the relation of the P» functions for state II but diferent
nuclear energies, W, to this error curve $1 function of state I. For values of
W such that the oscillatory part of P lies at the same abscissa values as the
maximum of the P& function, the value of the integral of the product, 4rgli will
depend very much on whether a node or a loop of the P» function is coincident
with the maximum of the P» function. If a node is there, the integral will
have a small value, if a loop it mill be large.

We have next to consider how /II depends on the nuclear energy W for
this state. As W increases through its continuous spectrum, the /II function
will change in such a way that its wave-length gradually shortens about as
8""while the positions of the zeros shift continuously past any 6xed abscissa
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value. This has for a consequence that the intensity of transition into the
continuous spectrum will undergo a rippling variation being large for those
values of lV which put a loop of Prr over the center of Pr and small for those
which put a node there. All of this effect is, of course, contained within the
extent of the allowed continuous spectrum as given roughly by the Heisenberg
principle; just as in optics the diffraction maxima inside the geometrical
shadow of a straight edge are inside the region of diffracted light given by the
uncertainty principle. Finally for large values of W the wave-length of Prr
will be so small compared to the breadth of Pr that these maxima become less
and less clearly resolved while the whole intensity sinks to zero.

With the greatest reserve I will now suggest that the peculiar band re-
cently described by Rayleigh" in mercury vapor may be such an intramolecu-
lar manifestation of the wave nature of matter. At least this will serve as an
illustration on which to make the preceding ideas more precise. The band in
question extends from X2476 to 'A2482 and is found only in emission. It has a
sort of head at ) 2476 and is accompanied by a weaker band with a head at
X2469 but this one does not show the banded structure. To discuss these as
nuclear diffraction bands we will suppose that the head at 2476 corresponds
to the transition from the zero vibration state of curve I (Fig. 5) to zero
nuclear energy on curve II which will for simplicity be supposed to be ab-
solutely horizontal under the minimum of curve I. On this view curve II is
probably that of the ground state of the Hg2 molecule and curve I one for
which the molecule separates into one Hg atom in its normal state and one in
the 'P2 state, which is upper state for the forbidden atomic line X2270—but
these points are not essential to the present discussion.

The band whose head is at X2469 may be supposed to represent transitions
into the continuous range above II from the first vibrational level of curve I.
This fixes the vibration frequency in curve I at 106.2 cm ' and therefore the
constant, a, giving the breadth of the wave function,

a =8.2/(&up) '"=0.08

where a is in Angstrom units, co = 106.2 and p is half the atomic weight of Hg.
This formula is a convenient way of writing the general formulas

s'= h/2 ( pz)'x" and v (x/p)'"=/2», (C.G.S. units),

from the wave mechanics of the harmonic oscillator.
On the horizontal part of II the function err will have the form

Pn =X sin 2z (z/X+ 8)

in which & is the de Broglie wave-length, h/p, given by the convenient
formula,

X(A. fI.) =25.7/(yv)""

where s is the energy of the state in cm —' reckoned up from the horizontal
part of II. The factor ), in front, comes from the normalization of the wave

"Rayleigh, Proc. Roy. Soc. A119, 349 (1928), especially p, 353.
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functions for the continuous. As explained before 5, as we11 as), depends on v.
Assuming complete non-polarity for simplicity, the intensity of transition
from state I to a level v cm ' up from the horizontal part of II is therefore
proportional to the square of,

Io(v) = t e * i" ) sin 2x(x/ h+b')dx

=(2x)'1'eg sin 2xg e '~'~'i"'

The factor with the exponential function represents the effect of the un-
certainty principle, the sine factor gives the banded diffraction structure.
Inserting the numerical value of a and the relation of ) to v the exponential
factor becomes e "'"', so that the intensity for v= j.00 cm ' will be about
e 4=2 percent of the value for v=0. The Rayleigh band is about 90 cm —'
in extent so that the order of magnitude agreement is a good one. But it does
not appear to show such an exponential intensity decay.

Next we have to consider roughly the spacing of the diffraction maxima
in the spectrum. A rough approximation is to suppose that curve II is simply
L-shaped, that is, it extends horizontally a distance d to the left of the mini-
mum of I and then turns up abruptly to infinity. For a range of v of only
0 —100 cm ' this is not as bad an approximation as it might at first seem. At
any rate for such a curve P~g has a node at the place of infinite slope and so 5

is simply given by

g =d/). =dv't ~/2. 57

and the maxima come at 5(v) = (n+ ,) with-n an integer. This simple argu-
ment would then put the nth maximum at

2.57(=a+ —)/d

This would make the maxima close together at the short-wave side and be
more widely spaced toward the long-wave side. Not only is this true but
Dv'" is fairly constant for Rayleigh's band as Table I based on his data shows.

TABLE I. Values of d v'I' for tke IIg& bands observed by Rayleigk.

Wave-number

40372, 3
354.0
350.6
346.8
342.6
337.9
332.4
326.1
320.3
313.5
306.7
298.7
291.7
284.4

0.0
18.3
21.7
25.5
29.7
34,4
39.9
46.2
52.0
58 ' 8
65.6
73.6
80.6
87.9

0
4, 28
4.66
5.06
5.45
5.87
6.32
6.80
7.22
7.67
8.10
8.58
8.98
9.38

av

0 ~ 38
0.40
0.39
0.42
0.45
0.48
0.42
0.45
0.43
0.48
0.40
0.40
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From the experimental value of Dv"' one infers that d is about 6.4A which
is a rather large value. But this may well be a consequence of the over simpli-
fication of the curve II.

Another assumption for II is that it is given by a straight-line of small
slope, its equation in the neighborhood of the minimum of I being

For this one finds for the characteristic functions

z+W/k
f/r(W, z) = (z+ W/k) "'J'g/8

b

in which J'$/3(s) is the ordinary Bessel function of order 1/3 and

b =3.345/(N, ,//) "'
Here N& is written for k when the unit of energy is cm ' and of length 10 cm,
and the unit of y is 1/16 the mass of an oxygen atom Th. e values of s for
which

~
J~/3(s)

~
is a maximum are roughly (by inspection from the tables in

Watson's Bessel Functions):

1
0.92

2
4.36
3.44

3
7.54
3.18

4
10.70
3.16

5
13.84
3.14

For larger values of m, the ordinal number of the maximum, the interval
approaches m. . For larger m it is therefore sufficient to look for maxima at

(v/uqb) 3 = (n/s 1.89)—

which gives the law Av'"=u~~b. This assumption therefore does not fit
Rayleigh's data.

The structureless band at X2469.7 has already been supposed to be due to
the transition from the first vibration level of state I on to the continuum of
II. It may be apparently structureless since the f/ function for one vibration
unit has a wider range than has lf/ for zero vibration which tends to blur the
diffraction effect. But it is hard to convince oneself that one unit of vibration
energy can make so much difference.

The fact that these bands were found only in emission is consistent with
the view here presented although this of course, is easily explained on more
usual views by saying that their final state is an excited state of the molecule.

In conclusion it should be said that the existence of such diffraction bands
either in emission or absorption (if I is a lower state than II) but not in both
is a rigorous conclusion from quantum mechanics. It is not unreasonable to
suppose that Rayleigh's band is a case of this but the interpretation must as
yet be provisional and subject to confirmation, perhaps by the empirical de-
termination of curves Iand II through sharp bands coming from their discrete
vibration levels.
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)5. ADDITIONAL APPLICATIONS TO BAND SYSTEMS

Since the extension of Franck's postulate to band systems was first made
the necessary data for its application to several more band systems has
accumulated. This section is devoted to remarks on its application to some
new band systems.

As already mentioned' the outstanding discrepancy between theory and
experiment in the case of the visible bands of iodine has been removed by
correction of a blunder in the use of the experimental data.

The iodine spectrum presents an interesting feature which was not amen-
able to treatment in the original Franck method, namely the somewhat
irregular Huctuation of intensity in Wood's long series of resonance doublets.
Such fluctuations probably are to be interpreted as arising from diffraction
effects akin to those which are the subject of )4, except that we are now
dealing with transitions of which both initial and final states are in the region
of discrete energy levels. The main resonance doublet series, it is now known",
arises from transitions from the n' = 26 state of the excited molecule to various
vibration states of the molecule in the normal electronic state from n"=0
to n" = 27. Along this series of 28 doublets there are great intensity varia-
tions, some of the doublets being quite missing. Lenz" showed how this
behavior is possible from correspondence principle considerations. From the
criterion of the overlapping of the wave functions it is easily seen from Fig. 3
that from n' = 26 to n" = 0 to 27 are allowed transitions. The exact intensity
of any particular one, however, will depend on the integral of the product of
the waYe functions of the initial and final states as in )2. And as in f4 this
will depend very much on the exact phase relation of the nodes and loops of
the two wave functions in question. These finer diffraction effects probably
give rise to the intensity fluctuations in the resonance doublet series.

VVhile the principle of their explanation is therefore precisely fomulated,
the exact prediction unfortunately calls for a very accurate knowledge of the
wave functions. This is lacking sir"ce for these large vibration quantum num-
bers it is quite inacceptable to treat the molecule as a harmonic oscillator or
any other model for which P functions are at present exactly known.

The band systems which have been recently analyzed and on which the
theory has been tested include especially the P bands of nitric oxide, "and the
blue-green bands of diatomic sodium. " The vibrational analysis only for
several more band systems has been recently published. In all of these cases
the types of intensity distribution are those which this theory explains but
lacking analysis of rotational analysis one is unable to use them for detailed
verification of the theory. In this class at present may be mentioned the many
band systems of the copper halides studied by Ritschl, " the absorption and

'4 Chapter VI of National Research Council Report on Molecular Spectra in Gases.
Lenz, Zeits. f. Physik 25, 299 (1924).

'6 Barton, Jenkins and Mulliken, Phys. Rev. 30, 175 (1927)."Loomis and Wood, Phys. Rev. 32, 223 (1928).
'8 Ritschl, Zeits. f. Physik 42, 172 (1927).
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fluorescence spectra of S~, Se2, T12, studied by Rosen, "the absorption spectrum
of iodine monochloride observed by Gibson and Ramsberger, "that of chlorine
and bromine studied by Kuhn, "the ultra-violet system of iodine analyzed by
Pringsheim and Rosen, " and others.

In a recent article Herzberg" has obtained nice measurements on the
intensity distribution in the second positive group of nitrogen under dif'ferent

conditions of excitation, one of the systems discussed in the original paper.
His criticisms of the paper' are already covered by the explicit statement made
on p. 1183 that the theory treats only of relative transition probabilities and
not of distribution of the molecules in the different excited states. The latter
naturally depends on the conditions of excitation and cannot come out of any
theory which makes no mention of these.

f6. ELECTRON JUMPS AND THE FRANCE POSTULATE

It is natural to ask why the Franck postulate does not apply to electron
transitions in atoms, that is, to questions of relative intensity of lines in

atomic spectra. The classical mechanical basis for the postulate consisted
in saying that the absorbed quanta and the electronic motions involved much
smaller amounts of momentum than were necessary to excite the nuclear
vibrations. Therefore the principle, which may be said to be one favoring as
little discontinuity in the orbits as possible, should also apply to the electron
orbits. This is true since one recalls that the momentum of a quantum of
visible light is very small compared with the orbital momentum of electrons
in the initial and final orbits concerned in the emission or absorption of such
light. (Nowadays one remembers this best by recalling that the relation

p =8/X holds equally for light and for electrons, together with the fact that
X for visible light is 10' times the size of an atom. )

The answer is that the postulate is valid to a certain extent for relative
probability of electron transitions. For example, the reason why the transi-
tion 502~1~ (Bohr notation) is so much less probable than a transition
22—+1& in atomic hydrogen is simply because the wave functions do not over-

lap as much in the former case as in the latter. For atomic spectra the prin-
ciple does not have so much interest as in molecular spectra, on the other
hand, because here the wave-length of the electron is enough greater that the
range of the Heisenberg uncertainty principle is so broad that in turn the
predictions of Franck postulates become so blurred as to be of almost trivial
interest. In principle, however, it is just as true for electrons as for nuclear
motions.

Finally it may be said that it is in this direction that the connection of the
Franck postuIate with the correspondence principle is to be found, although

"Rosen, Zeits. f. Physik 43, 69 (1927)."Gibson and Ramsberger, Phys. Rev. 30, 598 (1927).
~' Kuhn, Zeits. f. Physik 39, 77 (1926);

Halban and Siedentopf, Zeits. f. Physik. Chem. 103, 71 (1922).
"Pringsheim and Rosen, Zeits. f. Physik 50, 1 (1928).
~' Herzberg, Zeits. f. Physik 49, 761 (1928).
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this point today has only historical interest. The transition probabilities are
related to the Franck postulate in the way here outlined and also are known
to have the appropriate asymptotic connection with the Fourier coeScients
of the classical motion which is demanded for the Bohr theory. "

In conclusion I should like to say that this paper is an outgrowth of work'
done while abroad on a National Research fellowship and that it is a pleasure
here to express my profound indebtedness to the fellowship board for its
generous support of my studies.

PALMER PHYSICAL LABORATORY)

PRINCETON UNIVERSITY.

September 10, 1928.

"This fact is built into the very structure of wave mechanics and has been clearly worked
out in the special case of the hydrogen atom by Eckart, Zeits. f. Physik 48, 285 (1928).


