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QUANTUM —MECHANICALLY CORRECT FORM OF HAMIL-
TONIAN FUNCTION FOR CONSERVATIVE SYSTEMS

BY BQRIs PQDoLsKY*

ABSTRACT

Dirac showed that, if in the Hamiltonian H momenta q„conjugate to the co-
ordinates &„are replaced by (0/2mi)8/8(„ the Schrodinger equation appropriate
to the coordinate system („ is (H—E)&~=0. Applied to coordinate systems other
than cartesian this usually leads to incorrect results. The difficulty is here traced
partially to the way in which P~ is normalized and partly to the choice of H. In H
expressions such as gpss 'p and p' are not equivalent, and the simplified form is
generally incorrect. A formula satisfying all the requirements of quantum mechanics
for a Hamiltonian of a conservative system, in an arbitrary coordinate system, is
therefore developed

This formula is applied to a case of plane polar coordinates and leads to correct results.

S CHRODINGER, ' and Eckart' have shown that the correct diA'erential
equation for the Schrodinger P function can be obtained if in the Hamil-

tonian function H we replace momenta p„p„, and p, by the differential
operators (k/2si)B/Bx, (k/2m )B/By', and (h/27')B/Bs respectively and write

(H E)$=0, —

where E is the total energy of the system. Later the method was extended
by Epstein' to non-conservative systems. Still later Dirac' has shown that,
if f~ be regarded as the transformation function for transforming matrices
from a scheme in which a set of coordinates $„(r=1, 2, n, where n is
the number of degrees of freedom) is represented by diagonal matrices to a
scheme in which energy is a diagonal matrix, Eq. (1) will hold provided that
in H we replace each momentum g„conjugate to $„, by the differential opera-
tor (h/27rr')B/BP, Dirac's met.hod of proof has an advantage in that it is
valid even if $„are not cartesian, but are any set of coordinates in which
B/Bg„has a meaning.

However, the application of this method to any but the cartesian co-
ordinates leads almost invariably to erroneous results. To illustrate the
diSculties, let us consider the case of the hydrogen atom in space polar
coordinates.
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FORM OF HAMILTONIAN FUNCTION

If we write the Schrodinger equation in cartesian coordinates

8m-2p e2
V'P. (x, y, z) + E+—P,. (z, y, s) = 0

r
(2)

and transform this to polar coordinates, we obtain

1 O'P (r 8 g) 8s'p e'
+ ' ' '—+ F-+—4,(r, 8, 4) =0 (3)r' sin2 0 0~II

2 h2 r

We have used the symbol P, to indicate that, while in (2) P is regarded as
a function of x, y, s, and in (3) as a function of r, 9, p, it is the same function
of position, so that

4*(z y, s)=4*(r e, i)
for the corresponding values of the coordinates. Eq. (3) is the equation used

by Schrodinger in his treatment of the hydrogen atom.
If, however, we start with the Hamiltonian function in polar coordin-

nates

1 1 e2

p2+ p2+ p 2

2p r' r' sin'0 r
(4)

and put p, = (h/27ri)8/Br, pe = (h/27ri)8/88, pq = (h/2si)8/8&, Eq. (1) leads to

V,(, , e) V (, , 4) V,(, , 4)
Qr2 y2 $02 y2 sjn2 0 A/2

+ E+—P„r,e, p =0,

which obviously differs from (3).
2. Part of the difficulty is due to the difference in the ways in which P,

and lt„are normalized. For P, we have

JfJJ4,4ddyd =
),I'()fan, 4.' ' i 6ddgd4=1

while for P„, according to Dirac, '

Jl )tel P, y„*d.dods =1

integration being extended over the whole space. The relation between
rP, and g,. must therefore be

P, = (r' sin 0) '~'P, .
& P. A. M. Dirac, Proc. Roy. Soc. A113, 629 (1927).

(8)
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If we substitute it, from (8) into (3) we obtain a correct equation for
f„, which however is still inconsistent with (5).

We are thus led to the conclusion that (4) is not a quantum-mechani-
cally correct Hamiltonian function. It is easy to see that one can put (4)
into many classically equivalent forms which will differ greatly quantum-
mechanically. Thus, a term such as p„'may be written r 'p„rp„, r 'p„r2P„r ',
rp„r 'p„r', etc. , which are not equivalent if p„does not commute with r. We
shall now develop a method of obtaining the quantum-mechanically correct
form of the Hamiltonian function in an arbitrary coordinate system. In the
present paper we shall restrict ourselves to non-relativistic conservative
systems.

3. In a conservative system of X particles, if the kinetic energy of one,
say kth, particle expressed as a function of coordinates glk, g2k, . q„k and
momenta pkk, pkk, p k, is written for short Tk(qk, pk), the Hamiltonian
for the entire system may be written

k=N

g+k(gkr Pk)+ I ('glkrgklr ' ' '
r gnlr glkr ' ' '

r gnN) . (9)

The potential energy U is not a function of momenta and will therefore
be identical with its classical form. Thus, extension to systems with more
than one particle involves merely a simple summation. Therefore, for the
sake of simplicity, we limit ourselves to the case of a single moving particle,
extension to the general case being obvious from (9).

4. The Schrodinger equation in cartesian coordinates of n dimensions,
n being the number of degrees of freedom, is

Q2P g2f 82/, 8~2IM

+—+ + + (&—U)4 *=o
BX1 l9$2 8x~ h

where f, is supposed normalized so that

(10)

An arbitrary coordinate system ul, u2, u„may be characterized by
the coefficients, g„say, in the expression for the square of an element of
length in terms of the u's, thus

glldul +2g12dul~u2 1 ' ' ' +g22du2 +2g23d u2d u3+ ' ' +gnndun

grs&&r&kks r grs = gsr ~

As is usual, we will denote by g the determinant

gll gl2 g13 ' ' gin

g21 g22 g23 ' ' ' g2n
(13)

gnl gn2 gn3 ' ' gnn



FOEllf OF HA3fILTONIAN FUNCTION

We shall also need the notation

g"'= (minor of g„ in g)/g

We now wish to transform Eqs. (10) and (11) to the coordinate system u.
In doing this, we regard P,P, , on account of its physical significance, as
invariant function of position. Thus, in the expression for f, we imagine
x&, x2, replaced by their values in terms of n's, so that

P,(x~, xn, , x„)=P,(u~, u2, .
, u„).

We retain the subscript x to distinguish this function of position from
lf„which would be obtained by the use of (1) in the coordinate system u
directly.

The formulae of transformation for expressions such as (10) and (11)
are known. ' We obtain

and

n s=n 8$, Sm'pg g
—1/2 gl/2grs + (g U )P —0

r 1 e 1 ~lr Bu, h'
(10')

r

J J' f p,*g'/'du, dun . du„= l.

The corresponding normalizing equation for f„is

f lf Jf P„g„*du~dun du„= 1

so that combining (11') and (15) we obtain

r

Jf J Jff,rg~*g'/'du&dum /fu~ Jf Jf =Jfg~f~*du~du~ du„(16)

Consideration of the way in which matrices are constructed, by the use
of p, and l„trespecti vely, shows that Eq. (16)must hold even if the integrands
are both multiplied by an arbitrary function of u's. We must therefore have

(17)

Substituting P, from (17) into (10 ) and multiplying the resulting equa-
tion by —7/'g'/'/87r'/M we obtain

r=n s=n h 8
Z Zg '" — — g"'g"——g '"/')+U/ z/' =0-

2p, r~j. a=1 27rZ Ogr 2m' OQ,

This is in the form (1) and is therefore the desired differential equation
for lt „. Replacing the differential operators (f//2'/)8/Bu by the corresponding

II F. D. Murnaghan, Vector Analysis and the Theory of Relativity, 46—48.
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momenta, we obtain the expression for II in the quantum-mechanically
correct form

2'= 1S S=2S

g 1/4p gl/2gl'lip g 1/4+ U
2P r I s j.

(19)

In the classical case, when the order of factors is immaterial, this reduces
to the usual form

2'= r/ s= r4

&=—Z Z g"'p p.+U
2P r=l s=1

(20)

5. Let us apply these results to plane polar coordinates. Here u&=r,
242 8 gll —1 g22 —r gl2 —g21 0, n = 2; therefore g = r', g"= 1, g"= 1jr2,
g"=g"=0. Using Eq. (19)

jI=—r / (plrplr 1/ +p21 r p2r 1/2)+ zr
2p

This can be considerably simplified. Operating on 1P

1 h ' 8 8 8
HP= ——r '~' —r—r ~'+—r '—r '~2 P+Uf

2p 271'b Br Br 80 80

p 2+r—2 p02 p+ Up

(21)

So that

H= —p„'+r ' pg2 —--- - + U, (22)

which is just the Hamiltonian used by Dirac' in agreement with Pauli, but
it is here obtained without any special assumptions.
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