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HIGH FREQUENCY SOUND RADIATION FROM A DIAPHRAGM

BY R. B. LINDsAY

ABSTRACT

Calculation of the intensity of the high frequency sound radiation from a circular
oscillator. —By a hydrodynamical-acoustical method a calculation is made of the
intensity of the high frequency sound radiation from a circular piston-like oscillator
at a distance from the oscillator greater than 2a, where e is the radius. It is shown
that there is no parallel "beam" of sound of cross-sectional area equal to the area of
the oscillator, but that nevertheless most of the sound energy is contained in a cone
of solid angle ~(0.4Q/a) ster-radians where ) is the wave-length of the radiation.
Solution of the problem for points at great relative distance from the source then
yields a result analogous to that obtained for the Fraunhefer diffraction of light
through a circular aperture. The corresponding formula is m (0.61K/a)', Comparison
is made between the two methods and they are shown to be essentially the same, the
difference in the formulae being due to difference in interpretation solely.

INTRODUCTION

'HE increasing use of high frequency sound radiation for subaqueous
signalling has rendered important the calculation of the intensity of

such radiation at a distance from the source, usually a piezo-electric quartz
oscillator. Crandall' has given an approximate treatment, and in the French
engineering literature' there is reference to the fact that the high frequency
radiation from a piston-like source is confined to a beam of solid angle
ir(0.61'A)'/u', where' is the wave-length of radiation and a is the effective
radius of the circular source, and X &a. This would mean that the lateral
spreading of the sound is confined to a plane angle 2 arc tan(0. 61K/a).
The calculation of these latter quantities is presumably based on the analo-
gous optical problem of the Fraunhofer diffraction of light by a circular
aperture in an infinite screen. The present writer believes that it is worth
while to give a more complete treatment of the problem from the standpoint
of hydrodynamics and sound.

CALCULATION OF INTENSITY OF SOUND RADIATION FROM A CIRCULAR

OSCILLATOR

Ke shall assume that the source or oscillator can be considered as replaced
by an equivalent circular piston of radius a, of such a character that the
normal maximum displacement velocity at each point of the piston surface
is the same and equal to &0

e'"' where (0 is thus constant and co is 2xv, where
v is the frequency of the vibration. The problem is to calculate the intensity
due to this source at a point in a plane parallel to the piston surface and

' Crandall, Theory of Vibrating Systems and Sound, 1926, p. 137, ff.
' See, for example, F. Collin, Le Genie Civil, Vol, 86, 1925, pp. 38—40.
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distant z from 0, the center of the piston.
Let such a point be P (see Fig. 1) and let its
coordinates with respect to 0' as origin be
xo, yo, and its distance from 0' then is
r = (xo2+yo')' '. The first step is to find the

a lei h'velocity potential at P. Lord Ray eig
proved the general theorem that if a
bounded surface radiates sound into the
region on one side of it the velocity poten-
tial at a distant point P is given by

&&&&8/dn is the normal component of the disp, acem
'

y1 ment velocity at thewherein n is e
o the oint P and thef u is the distance from the surface element dS to e p

'

~ ~ f ce. In the resent case's taken over the whole radiating surface. pintegration is a en
s x s referred toif we take the surface element at point Q with coordmates x, y, s

0' the integral becomes

Now from the figure, we have
1/2I= [z'+(x—xp)'+(y —yo) j

Transforming from rectangular to polar coordinates x —x'0 —p cos

y —yo
——p sin 0 yields

2+g2) 1/2

——pdpd0
2&r», „,(»& (p'+s' '

where the limits for p and 0 will depend on the relative magnitudes of r and a.
or h that the resulting integration becomes

d We shall therefore confine ourselves to the case w ereextremely complicate . e s a
r=a. We then have p&(8) =0, p~(8) =2a cos 8; while 8&= —&r, 2 an 2= x

b k d 0 we finally have for the velocity potentialTransforming back to I an, we

(5)

h s') 2a. Then to a first approximation theLet us make the assumption t at s' a.
evaluation of (5) depends on the calculation of the integrals

~/2

f cos k [s+(2a'/s) cos' 8]d8 and sin k [s+(2a'/s) cos' 8]d8
00

' Rayleigh, Theory of Sound, Vol.. II ,278 ,302.
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which in turn depend on the calculation of

Making use of the identity cos' 0 =-', (1+cos 28), we have

" cos a2k a2k—-+—cos 20 d0
p Sin g Z

Sln S p

cos a2k /' a2k —sin a2 k "/' a2 k
cos —cos 20 d0 — sin —cos 20 d0 7

+ COS S p 8

The substitution lk=pr/2 —28 yields

1 cos a2$ +m/2 a2k $ sin a2$ +~/2

cos ——sing df —— ——, sin —sin II| dP
2 sin

~

~

~

~ ~

2 cos 3 ~/2

of which the second term is zero since the sine is an odd function, while the
first is simply

(7a)

where Jp denotes the Bessel's function of zero order.
Now for the excess pressure at P, we have from acoustical theory4

P = —pp4~ = — d&d0

(10)

where pp is the density of the medium (in this case water). Using the value
given in (7) and (7a) we have for the real part of p

pR„l ———pppckpI cos a)t [Jp(a'k/s) cos k(s+a'/s) —cos ks]

+sin ept [Jp(a'k/s)sin k(s+a'/s) —sin ks] I (9)

In nearly all acoustical problems the most useful expression for the intensity,
that is the rate of flow of sound energy per sec. per unit area, is'

I P Real/PPC

where c is the velocity of sound in the medium under consideration and the
bar indicates the time average. Introducing (9) there results for the intensity
of the radiation at the point P where r =a

Iz (ppckp'/8) [1—2Jp(a'k/s) ——cos (a'k/s)+(Jp(a'k/s))'] (11)

Inspection of (11) shows at once that the only value of a'k/s for which I= 0,
is itself equal to zero, corresponding to an infinite z. This means that there

' See, for example, Crandall, loc. cit. , p. 115.
' See, for example, Crandall, loc. cit. , p. 92.
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is no parallel beam of sound of cross sectional area equal to the area of the
oscillator. Nevertheless most of the sound is confined to a relatively narrow
conical region extending outward with its apex at the oscillator. We can see
this as follows. The velocity potential at the point 0 on the axis (i.e. for
r=0) may be obtained by carrying out the integration indicated in equation
(5) using as u limits s and (s'+n')'~' and as 8 limits 0 and 2s. The result is

(2/jk)josi&ut [s
—fk(z +a ) s k(z]— (12)

whence using the same reasoning as above we arrive at the expression for
the intensity at 0'

Io = 2pocko' sin' (ka'/4s)

We now seek the value of kc'/s such that

I„/I,.= 1/10

(13)

(13)

and find by the use of tables that this is true for ka, '/s = 2.82 to two decimal
places. Hence in the diagram (Fig. 2) we have

P = 2 are tan (a/s) = 2 arc tan (0.45K/a) (15)

Fig. 2

recalling that k =co/c=27r/P where X is the wave-length of the sound. This
gives the lateral "spread" of the outgoing radiation. The corresponding

solid angle at 0 is thus s.(0.45K)'/a' ster-
radians. It is clear that for practical pur-

Q
poses most of the radiation is confined to
this cone, which has a somewhat smaller

z vertical solid angle than that given by the
expression x(0.61M/a'.

As an illustration, consider an oscilla-
tor with a = 10 cm emitting waves of
frequency 50,000 cycles, apparently the
practical upper limit for signalling pur-

poses because of the increase of the viscosity damping with frequency. This
corresponds to a wave-length of 2.92 cm. We then have 6=15' approxi-
mately. According to the formula of the introduction we get 6=20' nearly.
The difference, of course, is due to difference in interpretation of the problem.
!tmay be worth while to carry through the calculation leading to that for-
mula to see wherein the difference lies.

Returning to Eq. (3), we can write it if s is large and if r)a so that
x'+y' can be neglected compared with xo'+yo' and the product terms,

&0 +yo —2&ox —2yoy
Q=Z 1+

232
(16)

The velocity potential then becomes (see (2))
g'baal $ +a +(a —s )

~
—i k (z+t /2z)

0
P g2 k (spx+ gp g) /zd zdy

27rs —a —(a2—x2)
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involving evaluation of the integrals

+ ~ +(~ ")' ' cos —(xpx+ypy)dydx
(~z ~2) Sill S

Let kxp/z=l and kyp/z=m. Now introducing the rotation of axes

lx' nsy'
x=

(12+2222)1/2 (12+2222)1/2

we have for an arbitrary function F

mx' ly'
y —— +

(l2+ 2222) 1/2 (12+2222) 1/2

+ ( 2 2)1/2 ( ~2 ~r 2)1/2

F(ix+2//y)dydx= ~l
Ii(lp+rnp)'/2x')dy'dx'

(,2 —a L —(a2—x'2)

If F is an odd function the result is zero. If F is an even function, we have
or the integral

+a
F((12+2/22) 1/2x&) (a2 x&2)1/2dxl

Now letting x = a cos lk, we have'

+a
(a' —x')"' cos ((1'+2/2')"'x)dx

= a' sin' 1l/ cos (kar cos 1k/z)de
0

J1(kar/z)=7la-
kar/z

(19)

Making use of (19) in the evaluation of (17) and computing Ip as before we
And

ppcjppkpa' J/(kar/z)I ——
2z' kar/z

(20)

Now Ir ——0 for that value of r for which J1(kar/z) = 0. According to Stokes the
first root of J1(x) =0 is x=1.222r. To this corresponds, then r/z=0. 61K/a,
whence the statement made in the introduction follows. The larger factor
0.61 results then from the fact that the intensity is made to go to zero for
the value of r sought. This then corresponds to the radius of the inner bright
spot produced on a distant screen by the diffraction of light through a circu-
lar aperture. Here as before, however, by far the most of the sound is con-
centrated in a cone the base of which at distance s is a circle of radius
r' such that I„ /I„p=1/10. Indeed if we calculate r' from (20) to satisfy
this condition we obtain

r'/z =0.435K/a or /1 = 2 arc tan 0.435K/a (21)

in good agreement with the value in (15) obtained by our somewhat simpler
previous method.
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' See, for example, Weber, Partiellen Dif. Gleichungen der Math. Phys. , Vol. 1, $68 or
Gray, Mathews, and MacRobert, Bessell Functions, 1922, p. 46.


