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ON THE QUANTUM THEORY OF ELECTRONIC IMPACTS!

By J. R. OPPENHEIMER*

ABSTRACT

It is shown that the previous treatment of electronic collisions has been in-
complete; the error consists in the neglect of terms in the solution which correspond
to an interchange of the colliding electron with one of those in the atom. The cor-
rected first order cross section for elastic collisions is evaluated by Dirac’s method
for atomic hydrogen and helium. The complete solution for hydrogen is set up by
Born’s method for hydrogen; it is shown that the elastic cross section becomes
infinite, for low velocities, with the reciprocal of the velocity; it is further shown
that the first order cross section reduces to that already obtained. For hydrogen
this is a monotonically increasing function; for atoms with completely paired: elec-
trons the monotonic increase is broken by a minimum at velocities corresponding to
about a volt; the higher the azimuthal quantum number of the paired valence elec-
trons, the more marked the minimum, and the lower the voltage at which it occurs.

HERE are at present two methods of treating the collision of an electron
with an atom. In the one calculation? one solves the transformation equa-
tion from the time to a set of constants of integration specifying the state
of the atom and the components of momentum of the electron; and by choos-
ing a solution which represents the atom initially in its normal state,and a free
electron wave of unit intensity per unit time per unit area, one may obtain
transition probabilities which give directly the cross section for an encounter
of any specified type. In the second method? one obtains a solution of the
stationary Schroedinger equation for the coupled system of atom and
electron, combines the solutions to represent an incident wave ot unit in-
tensity per unit area impinging upon the unexcited atom, and interprets the
scattered wave by means of a flux vector. In the former method one thus
computes the rate of increase of the probability that the system is in the
final state in question; in the second one finds the rate at which electrons
leave the atom in this state; and since it follows from the normalization of
the wave functions for this state that these two rates are equal,* the two meth-
ods are equivalent. The former method is more convenient for the estimation
of first order cross sections; the latter for low velocity encounters, where the
properties of the exact solution are important.
The first order problem has been solved explicitly for the collision of an
electron with a hydrogen atom.® The cross section for elastic collision so
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362 ' J. R. OPPENHEIMER

obtained is a monotonic function of the electronic velocity, and increases
uniformly to a finite limit—the gas kinetic cross section—as the velocity is
diminished. This calculation would indicate that for hydrogen there should
be no Ramsauer effect, and no secondary maxima in the angular distribution
of the scattered electrons. ,

Before the development of the quantum mechanics, Elsasser suggested®
that these effects might be interpreted as the diffraction by the atom of the
long de Broglie waves of the electron, and predicted that the elastic cross
section should vanish with the fourth power of the electronic velocity. This
argument is, however, incorrect. In the first place, as we shall show, the atom
does not behave, even for slow collisions, as a rigid body: all the atomic
characteristics are excited. In the second place Mensing showed’ that, even
for an especially favorable atomic model, the cross section does not vanish
in the limit; this is because the refractive index within the atom is not, as
in the optical case, nearly a constant, but varies instead with the reciprocal
of the velocity. In the course of this work we shall see that the cross section
does not become infinite faster than the reciprocal of the velocity; it is not
possible to prove that it remains finite nor that it vanishes.

All of the work on collisions has, however, been incomplete. Analytically,
this incompleteness is the result of neglecting, in the former method of
treating the problem, transitions to states in which atomic and impacting
electrons are interchanged; and, in the latter method, the excitation of the
continuous spectrum. If one does not neglect these effects, he finds that,
for a given atom, there is not one, but a series of elastic cross sections, cor-
responding to wave functions of differing symmetry in the orbital coordinates
of the electrons in the atom and the colliding electron. Thus for hydrogen
there are two cross sections, one for symmetric waves, one for waves anti-
symmetric in the coordinates of the two electrons. In general all cross sec-
tions approach, for high velocity encounters, those computed with neglect
of the resonance terms; for low velocities there are characteristic deviations,
which make the angular distribution of the scattered electrons irregular,
and the total elastic cross section pass, in certain cases, through a minimum,
instead of increasing monotonically with decreasing velocity.

In this paper we shall first compute by the former of the two methods
the first order cross section for encounters with a hydrogen atom. We shall
then set up the general equations for the collision by the second method, and
show how the solutions are to be interpreted physically. We shall investi-
gate the behavior of the elastic cross section for extremely low velocities;
and we shall also show that the equations lead to a first order cross section
identical with that found by the former method. We shall apply this to
obtain the first order cross sections for hydrogen and helium, although these
are of no quantitative significance; for the calculation itself shows the first
approximation to be inadequate for low velocity encounters, and the full

6 W, Elsasser, Naturwiss, 13, 711, 1925.
7 L. Mensing, Zeits. {. Physik, 45, 603, 1927.
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calculations appear impossible. We shall indicate, however, the physical
predictions to be made on the basis of the theory, and obtain a few qualitative
results for more complex atoms.

2. If we neglect the interaction of the atom and electron, we may de-
scribe the system by giving numerical values to six first integrals: the
quantum numbers of the atom #, k, m, and the three electronic constants,
v, 8, ¢, which are defined in terms of the cartesian components of the elec-
tronic momentum by the relations:

v=_2Mh)1 [P:cz'l”‘.?u;'i’ﬁz?} 5 0=tan_l(1712+?u2)”2/.?z > ¢=ta~n_l?y/17a:y (1

where M is the reduced electronic mass. To each set of values of these six
integrals we shall be able to assign two linearly independent wave functions;
in particular these may be chosen respectively symmetric and antisymmetric
in the coordinates of the two electrons. If they are so chosen, then a wave
function initially symmetric will give rise, during the collision, only to sym-
metric waves; one initially antisymmetric will produce only antisymmetric
waves: for the interaction energy is of course symmetric. If now one solves
the transformation equation from this set of integrals to the time, he finds,
for the first order cross sections®

ankm(V,;0y¢)=(47rz/h2) I Vi(n7k;m)1'l:0’¢) 12 (2)

where »" and # are connected with the initial value of », » say, by the relation
v—y'—R+Rn?=0 where R is Rydberg’s constant 2mw2Me*/h3. Here V.
(n, k, m,v', 0, ¢) and V_(n, k, m, v', 8, ¢) are the matrix components of the
interaction energy for a transition from the initial wave function, which has

n=1, k=0, m=0, v=v, §=0

to a wave function with #, k, m, v, 8, ¢; and the wave functions are in the
two cases respectively symmetric and antisymmetric.

These matrix components may readily be written down, although one can-
not give explicitly the corresponding operator in coordinate space. If r; and
r, are the vectors from the atomic center of gravity to the two electrons, and
Ynim the normalized hydrogen wave functions, and x,ss the normalized
functions for the free electron, then the wave functions normalized to dv
are for the two cases respectively

\I/:Ltkmvﬂd: =212 { \Pnkm(rl)x:,m(?z) F¥nim(£2) X000(21) } 3

Furthermore, the initial wave, properly normalized to represent a stream of
unit intensity per unit area, is

2-12{100(2 1)1 (22) £ ¥r00(x2) m(21) } (4

8 Here as in the following, the upper sign refers to the orbitally symmetric, the lower to
the orbitally antisymmetric, solution.
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with
77v=(27r/7)'XV00=<h/Mv)XVOO (5>
where v is the initial electronic velocity.
With

V(r,2)=—eY/r+e¥/ | r|—1

the matrix components then become

2172 fdrlfer\I,f:mv’sz[V(tl;r2)¢100(r2)77v(1'1)

+ V(I’z,l‘1)§1/100(1'1)71v(1‘2)]=fig (6)
with

f(VI;0:¢) = fdl‘l fdl‘z ‘//:km(1'1)¢100(1'1)V(1'2,rl)Xﬁw(fz)m(r‘z)
and

g(v’,9,¢)= fdhfdrz¢:km(fz)¢1oo(fl)V(1'2,1‘1)Xﬁo¢(1‘1)77y(1‘2)

so that we get for the elastic cross section
o(v',0,0) =4z W) | f(v',0,8) +g(v',0,9) | ? (7

An obvious difficulty may perhaps be mentioned here. The functions
¢ are all orthogonal to each other, and so are the functions x; but the ¢¥'s
are orthogonal to the x’s only in the sense of continuous spectra:

lim dr fdvxrw(l‘) Ynkm(£)—0
A

A—0

This is because ¥ and x satisfy different wave equations. The non-
orthogonality is negligible for high velocities, but for slow encounters it may
introduce a serious ambiguity. One may overcome this in principle by using
in place of the x’s, the corresponding wave functions for the hyperbolic
orbits of the hydrogen atom; and for high velocities this would give the same
result as (7). But again for low velocities it would introduce a serious error
into the first order cross section; for the two terms in the interaction energy
which do in fact nearly neutralize each other would here be treated unsym-
metrically; and the resulting cross section would turn out too large. We shall
meet the same difficulty in a somewhat different form in 3.

By considering the secondary waves whose amplitude does not increase
steadily with the time, one may solve the transformation equations correctly
to a higher order; and the difficulty in the choice of proper orthogonal initial
wave functions would then disappear. But this method is in practice less
suited to the exact solution of the problem than that of Born.
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3. The Schroedinger equation
[(hz/87r2M)(A1—l—A2)+h(v—R)+e2/rl+ez/rz-—ef"/[ rl—tgl J¥=0 (8)
has solutions of the form?

Z { unkm(rl)\[/nkm(r2) i unkm(rZ)\&nkm(rI)

nkm

—|—f @' 3 k()W km(22) £ k(22D im(21) § )
km

0

where the ¥, ;»'s are the hyperbolic wave functions for the hydrogen atom,
with energy k', and normalized to dv’, and where the #'s satisfy

[(h%/ 872 M)A+ h(v— R+ Rn~2) Jthnom(2) + Kom () =0 (10a)
and
(/852 M) A+ (v — R—=") —=5')+ ¢/ttt (£) + Korim(£) =0 (10b)
Here :
Kopm(r) = %: , Vakmnt bt m¥nr e me (£) + fow av' kz V oo 12 mr (2) iyt ot e (1)

Koon(®) = 5 Vs pmnrsoms (2t () + f B AV o () (11)
0 k'm’

v'k'm'

+ (62/r)8mm’6kk'5(1’,"“ V”) } Uyt ' m? (r)

and
*
V5 () = f A () V (2,20 ()

If one considers a linear combination, ¢ say, of the solutions (9), he sees
that this involves some terms quadratically nonintegrable in 71, some quad-
ratically nonintegrable in 7,, and, for sufficiently large E, some quadratically
integrable in neither 7, nor 5. Now for each pair of terms in ¢ and ¢* quad-
ratically nonintegrable in 71, there will correspond two waves in 7;-space,
one approaching, the other receding, from the atom. One may then combine
the solutions (9) with different #’s in such a way that there is no ingoing
wave in ri-space to correspond to an excited or quadratically nonintegrable
wave in re-space, and that the ingoing wave in r;-space corresponding to
the wave function of the unexcited atom in 7,-space represents a stream of
electrons moving parallel to z, of % electron per unit time per unit area. The
incident wave will then have asymptotically the same form as that of

(20)~1/2 { €21 Y100(ra) + €77 Yyg0(ry) } (12)

? Here as in the following, =.zn indicates that the terms are to be summed over m from
—k to k, over k from 0 to n—1, over # from 1 to infinity. For = the term n= 1 is omitted.
Zem indicates summation over m as before, over k from 0 to infinity.
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The corresponding solution (9) will then have, as we shall show, the asymp-
totic form

(20)~1/2 { €721 yoo(r2) + €722 Yy00(ry) } +Pt(1‘,0, é) { (e r1)¢100(r2)
+ (e—i172/¢2)¢100(11) } + Z’Di(n, k,m,v',0,¢) { (=Y 1) Ynim(rs)

nkm

F e 1y Yurm(r1) |+ f dv" 33 F (v kym,v' ,0,0)/rire: {e i mby ')
0 km
+eia
with
Yn = [v2— (8r* MR/ h)(1—n%) ]!/

v =2x(2Mv'/ k)12
v'=27w(2M>""/ h)1/2

. =V—R(1-1’L—2)} 13)

v+r""+R—v=0

The constants D vanish for » <3R/4; the constants F vanish for y<R.
The evaluation of the flux vector then gives for the cross section for elastic
collision:

0o(v,0,6)=2v| T+(v,0,0) | 2 (14)
for the cross section for excitation!? to the state =, k, m:
(h'y,,/wM)!Di(n,k,m,v’,G,qS)] 2 (15)

and for the cross section for ionization, in which the two electrons have the
energies i’ and hv'’

10 In a recent paper (Proc. Nat. Acad. Sci. 13, 800, 1927) the collision problem was con-
sidered, to obtain an estimate of the.cross section for excitation when the electronic voltage
approaches the resonance potential, in order to prove that in this limit the polarization of the
excited light tends to vanish. In this treatment the continuous spectrum of the atom was neg-
lected; and the treatment is therefore as it stands invalid. If one considers the continuous
spectrum, one may in fact show that the polarization will tend to fall far below its value given
by the momentum rules; it does not appear possible to show in general that it vanishes. Per-
haps we may state the physical grounds for the failure of the momentum rule in an elementary
way: when, as in the derivation of the momentum rules, the effect of the atom on the motion of
the electron after the collision is neglected, only those electrons with vanishing angular momen-
tum will have, in the limit, an appreciable chance of being near the atom; conversely, in this
limit, the electron will have no appreciable chance of carrying away angular momentum; and
this, since the electron initially had no angular momentum about the direction of the electron
beam, at once gives, by the conservation theorem, the momentum rules. But when the
influence of the atom on the final wave function for the electron is taken into account—and
it is of capital importance in the limit when the electronic voltage approaches the resonance
potential, the situation is changed; for now an electron with finite angular momentum can be
near the atom; conversely the electron can now take up, and in general will take up, momentum
from the atom; and thus excitations forbidden by the momentum rule will occur. It may
be added that this modification does not affect at all the second part of the paper quoted,
which is concerned with the anomalous polarization of the intercombination lines.
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(v'y" b/ 2m2M?) | Fs(v' by, ,0,¢) | 2 (16)

In each case there is a cross section corresponding to waves initially sym-
metric, and one corresponding to waves initially antisymmetric, in the orbital
coordinates of the electrons. We shall consider this solution in detail for the
case ¥ <2R.

For this case the wave

Zunkm(IZ)\ﬁnkm(rl) + dV’ Euv'lcm(rZ)‘)&v’km(tl) (17)
0 km

nkm

will involve only one set of waves quadratically nonintegrable in r.. For
both K, im(r:) and K, xm(rs) vanish as r,— 0 ,sincethe V’s fall off atleastwith
1/r, and the #'s are bounded uniformly in ». Thus the equations for the #'s
take the asymptotic form

[A4N, Jtnim=0 o= (872M/ h)(v— R+ Rn2)

(10¢)
[A4+N /7|ty km=0 N, = (872 M/ h)(v— R~»")

And for all the #’s except u;00 the parameter N is negative; the corresponding
solutions will therefore be uniformly quadratically integrable; only #;09 will
involve waves which extend to infinity.

Similarly, there will be only one set of waves quadratically nonintegrable
in 7;. For in the first place all the functions for the discrete states, Y¥nim,
fall off exponentially. And although the functions ¥, 1 are quadratically
nonintegrable, the coefficients #,: 1, are uniformly bounded in » and 7.
except in the immediate neighborhood of " =v. To see this we may examine
more closely the equations (10) for the #’s. If we take the second term in the
expression for K, 1, we see that it is an improper integral; for in the nucleus
for »'" =", the term

f dt' | Yim(r') |22/ | 2—1' |

does not exist. We may, however, modify the work to get rid of this difficulty.
The physical reason for the modification will be made evident when we con-
sider the interpretation of the waves. Let us expand the solution ¢ in terms
of the ¥.&n's, as before, but replace the ¢, 1»'s by the solutions ¢, of the
differential equation

[(B/8m2 M)A+ Iy’ + (e2/7)e "B |¢pyrim(r) =0 (18)
where B is a large positive constant. Then

lim ¢vkm_> Kbvkm

B—o

lim | dr nim(®)drim(r)— 0

B
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so that by going to the limit B—o in the final expressions for the cross
sections, we shall obtain the solutions (9). For finite B the solutions will
now have the ¢, in place of the ¥, 1 in (9), the #’s will be given by (10),
and for the K's we shall have the proper integral

0
f dV” Z Uv’Icmu"k’m’(r)uu“k’m’(r) with Uv’kmv”k’m’(t)
0

k'm’

(19)
= f dr'yriom () buin(®) { =0/ | =1/ | +(1—e"B)et/r'}
Now the inhomogeneous terms K will be bounded. And unless
y—R—y'=—R/e? (20)

where [ is integral, the inhomogeneous equations will have bounded solutions.
But since

v—R—y'<—R/4
only for /=1 will the homogeneous equation be soluble, and only for this

value of »’ will the amplitude of the solution of the inhomogeneous equation
become infinite. The integral in (17) thus has the form

. v+e
f av' Z Ly im(r2) by km(rs) + f v’ Zh‘l(V‘V’)‘1¢v'km(rl)‘/’100(”)
0 km v—e km
‘ (21)
f YootV Ky on(2)

where L is a function bounded in »’ and 7,. Now the first term of (21) gives
a wave in 7; which is quadratically integrable, since it is expansible in terms
of the ¢’s with uniformly bounded coefficients. The second term gives at
once

'—'K,,]cm(i)ykm(f'x—'ﬂ’i/Z’Y,o,¢)¢100(l‘2> (22)
with
Kyhm =2wh™ fdt/ 31/’:00(1/) Kypm(2") (23)

Now the ¢’s may be given asymptotically by
e (2) = o (7,0,8)~(2/0)12Y 1 (0,0) sin [yr+a(v,2)] (24)

where 6 and ¢ are the polar angles of the vector r, the ¥, are the normalized
spherical harmonics of order p and degree s, and the a's are real constants
depending upon B. Similarly

100(F)~ D Vin(0,6)/7 { Byrme? Tontyr) £ By eitr=tm=rn) } (25)
km
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with the B’s and 7’s real. As we shall show, the B_y» and 7_j, may be
determined in terms of the Biim and 7.r» by the wave equation (10a).
(See (36) and (37)). Further the «'s are determined in these terms by (19)
and (23). Finally the remaining #’s are determined; for the corresponding
homogeneous equations have no solution, and the inhomogeneous terms
depend only on the B’s and 7's and «’s. For the case v<3R/4, then,
the solution is completely given in terms of the two sets of constants By jn
and 7..»; and these must be chosen to make the incident wave of the
solutions (9) one of unit intensity per unit area:

B pmeimrin Fu—l2,, 680008 = (2p)~12y=15, (k4 1/2)e(kH1/2mi (26)
The scattered wave then becomes

> Akm { €Y r 1 Y100(22) Vim(01, 1) e/ 79 Y100(r 1) Y im (02, d2) } (27)
km

with
Nim = B neirin— B e mrin= (DT Tyl eia@h) (28)

This yields at once the elastic cross section. Of this we have to show (a)
that in the limit »—0 it grows in general with ™; and (b) that in first order
it reduces to (7).

The physical interpretation of the waves (9), (13), is immediate. In
spite of the fact that the atom cannot be excited or ionized by the collision
without violation of the energy theorem, the wave functions for such excita-
tion do not in general vanish identically; instead they fall off rapidly as the
nonatomic electron recedes from the atom, so that the chance of finding
the atom excited or ionized is only then considerable when another electron
is in its immediate vicinity. The excitation is thus not permanent; during
the collision the atom will make quantum jumps; but when the collision is
over the atom will have returned to its normal state. The electron which
is left in the normal state is not necessarily the same as was originally there;
but since one has no way of distinguishing which was originally in the atom,
it is physically meaningless to ask which has escaped.

The necessity for replacing they’s by the ¢’s in order to make the integral
for the K’s exist may be interpreted in this way: the hyperbolic wave func-
tions ¥, ;= are not a possible zero order approximation to the motion of the
ejected electron; for this ejection only takes place when the atom is left
neutral, and not ionized ; and the hyperbolic wave functions do not approach,
for infinite distance, a linear combination of the waves which represent the
motion of an electron with the same energy in the field of a neutral atom.
In the final results the limit B—o should exist.

Write '

#100(2) = 2 Vim (M) YV im(0,9) (29)

km
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Then the equations for the y’s are, with £ =17,
(d/@5) (Eyin’ (8) + [ k(k+1) | yen(®) +7 S am(r) =0 (30)

where

Skm(r) = fd¢ fdo Sin eykm*(aqu)KlOO(rso,‘b)
and

; 7
K100="V 100100 %#100— Z KykmV 1000km Y100+ Z V 100nkm Unkm

k nkm

. (31)
+ f av' Z Vieokm Lotim
0 km
The solutions of (30) which remain finite for £=0 then satisfy
Yim= Cam341(E) - Ctm¥—(8) & Lin(E) (32)
with
V+1(E) =EV 2 hpy2(8) 5y-1(8) =E12 T gyya(8) (33)
§
Lon(®) =72 f 0 G, 8)S ()
and
o=~ Tim [T1n(®)-y 0] (34)
and
: -1
Gilx,8) = yu(%)  yia(€) . y—:—k(x) y,—k(x) (35)
y-i(x) y-1(8) ¥ 4(2) ¥ ()

We shall see (45), (47) that I exists and vanishes for £—c. The solution
(29) then behaves asymptotically like (25) with

Byan=(2m) 2y | com [+ [ 6com 42| cppm 6t | eCFr1DTIERS
sin [arg coam—arg com] 12 (36)
and
Sin 71m= 20y Birm)"V2{ | cram | sin [arg cyim
£ (k+1)7/2]+ | c_sm| -sin [arg c_pnF kn/2]} (37)

The incident wave will thus represent a stream of unit intensity if |cyim|
and arg c.r» are chosen so that (26) is satisfied. This shows that,!! as v—0

U Here, as in the following, 4 is a fixed positive constant independent of 7, v, &, m.
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| exim| 2+ | cim | 2 <o (38)
We shall now show that ‘
| coim | <Aot2 (39)

for the case that Vo= Vigo 100 <47 2 ¢i.e., that the atom has no dipole moment
in its normal state. For in the first place

l V100nlcmi <A/r (40)
Further, by (10) and (38)
[ tniom | <12Q(2) 5| Lotm | <712 Q(r) (41)

where the Q’s are bounded uniformly in », and are, as we have shown,
quadratically integrable in ». Further, as we shall show (57)

| korm | <7124 5 Vioosrm <A/7 (42)
Finally
| Vouroo| <vt/24r2-¢ (43)
Thus by (31)
| Stm| <Av=1/2%~1 for 9<r, (44)
| Sm | <Av=1/2—2=¢ for r>r, (45)

But on the other hand it follows from the non-vanishing of the Wronskian
and the expansions for the J's that

lim [Ga(w,§(ra(@)1] S4° 1O T boooae
£-0 <Ax**(Inx)hr for x<wg
Hence
. 0
b= f Tim(2)dac 7
with
‘ Tkm' <Av-32x1+k(Inx) %y, for < xo }
<Avltex—1—e for x> x,
From this we find, uniformly in v
| c_tm | <Avt/2+r(Ing)die (48)

as announced.
To estimate the «'s we may note first that the ¢’s remain- uniformly
bounded as v—0, and approach

ArTanir[(2we/B)(2M7) V2]V (8, ¢)
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Thus the matrix components U, x/m,km €xist,and remain uniformly bounded
as 9—0, satisfying

| U| <4/r (49)
Further, from (41)
| thnim | <AV 5| Lygw | <Av=1/2 (50)
Thus
Kotm | <A1/ (51)

as used in (43).
Hence from (27) we find, uniformly in % and m, that if the |cyrm| and
the arg ¢, are chosen to satisfy (26)

| Agm | <4t (52)
Thus
| T(,0,9) | <dov! (53)
and (14) gives for the cross section
oo(v,0,¢) <Av! (54)

If we had neglected the continuous spectrum, we should have found
instead that oo approached in the limit a finite constant independent of 6
and ¢, so that scattering became uniform over all angles. But this result is
of no physical significance; and since we have used the properties of the wave
functions to obtain the lowest upper limit for o that they in general permit,
we must conclude that in general the cross section grows in accordance with
(54).

When we evaluate o, in first order, we may introduce several simpli-
fications. In the first place we may neglect the influence of the scattered
wave on the incoming wave, as this would give a term of second order.
We may thus satisfy (26) by setting

Cotm=(T/0) V20 o BH1)eH1/D)wi (55)

Further we may replace the ¢’s by the p’s, defined by

prom(z) = f o f $in 040 1 (8, 8) x000(2) (56)

(This amounts to setting B=0), since the validity of the first order calcula-
tion depends upon neglecting the distinction between the y’s and the x’s,
and, as pointed out in 2, it is best to use the same functions for both electrons.
(See further 4.) Finally we may evaluate Ko and K,i» by giving the u’s
their initial values

Unkm = Untm =0 (57)
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except
U100 = (2«0)—1/261'72 = 2—1/2,7”

Then (23) gives
K,,k,n='21/21r}l_l fdt‘ fdl"lﬁwo*(l‘/)llﬁou(t)ny(t’)pykm*(l') V(l",l‘) (58)
and with (28), (23), (25), and (30) we get

A= — 2w i=1(20) 112 f i f dr’ | Yroo() [ () puien (&) V(& 1)
(59)
T 2wl (2)-10e f ir f A Y100* (WD) () prn* () V (2, )

Thus with (56) ,
Ti(v,0,6) =20k~ (20) 712 [~f(+,0,0) F4(»,0,9)] (60)
which, with (14), gives
oo(v,0,¢) = (4n/h?) | f—g| (61)

in agreement with (7).

4. The quantitative estimation of these cross sections has no very pre-
cise significance. For the p’s are a very bad approximation to the wave func-
tions for the aperiodic motion of the electrons; they are not orthogonal to the
¥,.'s; and they give a cross section which remains finite for v =0, whereas the
true cross section presumably becomes infinite with 1. This may be shown
to depend upon the fact that the p’s approach zero for v =0, whereas the
¢’s and presumably the true functions, do not. Nor can one overcome this
difficulty by using the ¢’s or the ¢’s for the p’s; in the former case the flux
vector does not exist, and in the second case it depends essentially, in the
first order calculation, upon B, and does not approach a limit when B—o0.
These difficulties would disappear in a complete solution, but at present they
appear analytically inevitable.

The qualitative characteristics of o are easy to obtain. The first term f is

f(v,0,8)=f(v,0)=— (e2/8xR) { [1+4/R-sin%/2]~1+ [1+(3/R) sin?6/2]-2} (62)

and is just the term that gives Born’s cross section. The second term cannot
be written in closed form. For large v it is smaller than f, since

g<Avs : (63)

whereas f falls off only with the inverse square of ». For v=0 we have directly

g20=g(0,0,¢) = fdr fdr’;lqoo*(r’){ —e/r +e?/ | r~r’l Y100(r)

= —3¢/2xR=16/(0,0) (64)
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For fixed angle of deflection 8 both f and g decrease monotonically with in-
creasing v. Thus for each value of 6 there is a value of v for which the two
terms become equal. These values of v lie within a small range for which v
corresponds to a few volts.

The symmetric cross section is always larger than Born’s value. For large
v it is nearly equal to this latter; for small v it is 49 times as great. It in-
creases monotonically with decreasing v. The angular distribution of scat-
tered electrons varies slowly with v, and there are no secondary maxima.

The antisymmetric cross section is much larger than Born’s for v=0, and
nearly equal to it for large ». But in the range in which the functions
flv, 8) —g(», 8) have their zeros, it will be smaller than Born’s value; and be-
cause these values of v lie in a small range, the total cross section

f ddzfsin 0dboo(v,0)

has a minimum in this region. In this region also there are secondary maxima
in the angular distribution of the electrons.

Had we taken for the normal state of the atom, a P or D, instead of an
S, term, with wave function, say, respectively

Y210=const e"/2% cos 0
Y320 = const e~"/3%r2(3 cos? §—1)
we should obtain analogous results. But since in this case
g<Av7

65
g<Av™? (65)

for the two functions respectively, the second term will fall off more rapidly
than for the S state, and the zeros of f-g will thus occur for lower values of ».
And since they will also occur within a smaller range, the minimum in the
total cross section will be more marked. Quite generally, the lower the posi-
tion of the minimum, the sharper it will be. For 6 enters the cross section
only in the form v(c.os 6

sin 6

dependence of f and g upon 6, and the smaller the range of velocities in which
f=g

5. If there were no electronic spin, we should have to take, to satisfy
the exclusion principle, the orbitally antisymmetric solution for the collision
of an electron with a hydrogen atom; and this would lead to a cross section
which had a minimum as a function of v. But because of the electron spin
the symmetric solution will occur with a third the weight of the antisym-
metric one; so that the total first order cross section for atomic hydrogen is

(4n*/%) - (f*+8°—fg) (66)

> so that, the lower the velocity, the slighter the

Now

f2+g —fg=3fY4 ; gt —fe=3(f*+g?) (67)
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The total cross section can thus never fall much under Born’s value, and for
low velocities it will be larger. Thus the theory leads to the prediction that
atomic hydrogen, and probably the similar alkali atoms, should show no
Ramsauer effect.

For other atoms we obtain different results. Thus for helium the orbital
wave must be symmetric in two electrons—to correspond to the normal
state of the atom—and cannot, by the exclusion principle, be symmetric
in all three. The two non-combining wave functions corresponding to (3) turn
out to be

(@)  ¥(r1,r2) Xong(rs) +ep(ri, 1) Xopg(re) + e (r2, rs) Xopp(r1)
(0)  Y(r1,r2) Xosp(rs) +eip(r1,r3) Xong(r2) +ef(re, 15) Xou(r1)

with e=3(i—3-112)

(68)

where ¢(r,r’) =y¢(r’, r) is the wave function for the normal state of the atom.!?
2 The functions (68) may be used to compute the excitation probabilities for singlet and
triplet atomic states; the final wave functions are for the two cases, e.g. in the system (a)
Va1, 1) X009 (r3) + (11, 13)x009(11) + X4 (13, 11) X000 (r2)
with
Ya(x, ¥) = £y (v, x)
The cross section for the singlets becomes

e?

o =rt/i)| [ f [ararazy s y)x‘;w(z)iw(x. ,)y,(z)[‘_:_

x|
+1—‘z”‘e_‘_i—yl**‘%~2:| —y(, z)nu(x)[’l‘;?;"r'*‘“—ii—‘“—zf] %

X"—Zl X

2

That for the triplets is

f f fdxdydzlﬁ—_*(x, YW, 2)xvop(2)ny(x) [T;%""ﬁ%*_zg]

Neither of these vanishes identically. One may obtain a rough idea of the behavior of the cross
sections by neglecting the coupling of the atomic electrons, and setting ¥ (x, ¥) =¢100(x) Y100(%),

Yi(x, ¥) = (1/21/2) {\0100(")\//nkm(}’) +¥100)¥nkm(x) }

o_=(1272/h?)

Then
oo=(8r2/h) | LM —3N|2  o_=(6x%/h?)| M—N|2

with L= [ [ dxdy t (e WanolxrsrIm ) [I—%;T]

M= f f f dxdy dz i in(x) l Y100(¥) 1”¢1oo(2)x:o¢(2)7lv(X) [ [ x—ejy\ } < 2 ]

‘ l X—z l x
v= f f fdxdydz"":""‘(")‘h‘“’(”)‘P:‘OD(")%OO(Z)xvs¢(z)nv(Y) [Txe—zy l ]

Here L corresponds to transitions in which one atomic electron is excited; M to those in which
one atomic electron is ionized, and the impacting electron is bound in.the excited state; N to
those in which one atomic electron is freed, and the other excited, and the impacting electron
is caught in the normal state. Further ’

L<Av, M<Avs; N<Av8

so that with increasing electronic velocity singlet excitation should predominate.
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The first order cross section then is
@/ 1) | fi—g1 2 (69)
with

fy= f dr f ar’ fd ¥(2,2) |xn (2 "y (2 [— 2641
+e/ ]r”—r’ ]+ez/ r''—r| ]
(70)

1= f i f o’ f dr"(r, e W (x, 1) xoas* (2 Ini(2") [— 2¢/ 7"
+e/ | —1'| +e¥/ |t —r| ]

Here again f gives the classical cross section. And since (69) depends upon
v and 6 much as (7) does, the theory does give, for helium, a break in the
monotonic rise of the cross section with decreasing ». In general we can say
that the ratio of the true cross section to its “classical” value will pass through
a minimum. Whether the cross section itself passes through a minimum,
or merely shows a flattening, will depend upon the distribution of zeros of
f, ) —g(», 8). And this effect should occur for all atoms with paired elec-
trons, and should not occur for an atom with an unpaired electron. Thus
cadmium should show the break, and sodium should not. But these results
are based upon the approximately hydrogenic character of the atomic wave
functions, and are thus not directly applicable to molecules.

Since the minimum is more marked for P than for S, for D than for P
terms, we should expect the effect to be more marked the higher the azi-
muthal quantum number of the paired valence electrons. And we should
expect the minimum to occur for a lower voltage the higher the azimuthal
quantum number

In conclusion it should be recailed that an adequate quantitative treat-
ment of the collision problem involves a more complete solution of the equa-
tions (10) than can as yet, even in the simplest case of atomic hydrogen, be
given.

NorMAN BRIDGE LABORATORY OF PHYSICS,
PASADENA, CALIFORNIA,
May, 1928.



