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THE NORMAL STATE OF HELIUM

BY J. C. SLATHR

ABSTRACT

An approximate wave function for normal helium is calculated, by using theo-
retically determined functions for the limiting cases of large and small r's and
interpolating between them. The charge density computed from this wave function
is in good agreement with that found independently by Hartree. The diamagnetism
of normal helium is calculated, and agrees with observation within the experimental
error. The repulsive forces between two helium atoms are calculated by the method
of Heitler and London, and the attractive Van der Waals forces are roughly estimated
from Wang's results with hydrogen. The potential curve so found gives a "molecular
diameter" in agreement with experiment, and the minimum of the curve leads to
approximately correct density and boiling point for the liquid.

'HE present paper describes an attempt to find a fairly accurate wave
~ - function for the normal state of the helium atom, and to apply this to

the computation of several properties of atomic helium, in particular to its
diamagnetic susceptibility, and to the forces of repulsion between two normal
helium atoms. The method adopted is practically that described in a pre-
vious paper when one electron is at a considerable distance, the other close
up, the variables are assumed to be separable, the wave function being a
product of an ionic function of the inner electron, and a hydrogen-like func-
tion of the outer one, the energy constant for the latter being taken from the
experimental term value. When both electrons are close up, the function
is taken to be a simple form, described in the previous paper, which the
actual wave function approaches in the limit as the electrons both approach
the nucleus. Between these two limits, simple interpolations are used. It
is plain that the method is not one for calculating the energy of the normal
state; we easily convince ourselves, however, that the experimental energy
is the true characteristic number of the wave problem, by observing that
the functions described above, for large and small r's, join much more
smoothly than they would if a different energy value were assumed. The
calculations were made before the writer saw Hartree's' paper, in which he
obtains a charge density distribution for helium in quite a different way.
The wave function found in the present paper is more complicated than
Hartree s in the matter of the way in which it takes the interaction energy
between electrons into account. But the charge density can be computed
equally well from either method, and this permits a comparison of the
present results with Hartree's. The discrepancies between the two are
nowhere greater than one or two percent. This is highly satisfactory,
both in that it verifies the present method and Hartree's, and also that

' J. C. Slater, Phys, Rev. , 31, 333 (1928).
' D. R. Hartree, Proc. Camb. Phil. Soc., 24, p. 89, 1928.
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it justifies us in believing this density distribution to be correct within
a narrow' limit of error. The otner numerical results are also gratifying: the
diamagnetic susceptibility agrees with the experimental value within a per-
cent and a half, and the results for collisions of two atoms agree with experi-
ment within the rather wide limit caused by uncertainties in the kinetic
theory treatment of the imperfect gas problem.

1. THEi WAVE& FUNCT1ON

We assume that, for r~ small, r& large, the wave function approaches
e '"& pa function of ri, the latter being that solution of the hydrogen problem
which corresponds to the term value of normal helium (1.805 Rh), and re-
mains finite at infinity. This function is easily found in a series expansion
as the conHuent hypergeometric function of Sugiura' and others. We seek
a solution of Schrodinger's equation for the hydrogen problem in descending
powers of r; the solution is

I—s r/nay(ne )) (1+——ai/y+a2/y2. . . )

where
a„=—(yi*/2e) ((yi* I) (yi* —e—+1) —k (k+ 1))a„)

n*=1/( —Z)'", E=term value (in terms of Rh), k =azimuthal quantum
number, and r's are expressed as multiples of the radius of the first Bohr
orbit.

Putting in, for normal helium, E = —1.805 (the experimental value), k = 0,
we have n*=.745, ai =.0707, a~ ———.0042j. , a3=.00149, etc. Thus our
assumption for the wave function with r& large, r2 small, is

s "me ' 4 '"&y ' (1+.0707/y, . 004—21/y '+ 00149/y, ~ ) (1)

For the case when rj is small, r2 large, we may interchange the arguments,
since the function must be symmetrical in the coordinates of the two elec-
trons.

When both r's are small, we take as the wave function

e
—2 (r1+r2)+1/2r12

This is the function introduced in the previous paper, and can be obtained
as follows: we try to satisfy the wave equation as closely as possible at
small r s by a function which is e raised to a linear combination of rb r2,

and y» By choosin. g the coefficients as in (2), we satisfy the wave equation
as far as terms of the zero order in the r's, while with any other choice of
coefficients, the errors are of the order of 1/y.

We now introduce a small correction term in (2), to make it join on

smoothly to (1) along the line in configuration space given by y2=0. Along
this line, y»=y), so that (2) becomes e ""'. The correction term which we
now apply is a quadratic term in the exponent; we use the function e—""1+ "1'.

The method of finding the value of o. is shown in Fig. 1, where the quantities

' Y. Sugiura,
'
PhH, Mag. , Ser. 7, &, p. 498, 1927.
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d log u/dri are plotted for both functions (1) and (2). The correction to (2)
changes the curve from a horizontal straight line at 1.5 to a straight line
with a slight slope. We naturally choose this line so that it is tangent to the
curve (1), for then u" as well as u' will join smoothly together. One sees
graphically that this demands a tangent to curve (1) at about the point
r =3. When one substitutes numerical values, this gives n=.0107. By
comparing with the curves of the function (1) for 2 =1.70 and 1.90, we see
how much more easily the curve with the correct ionization potential,
1.805, joins on than any other would.

t.7

~+I.5

0

.805

-E - 1.70

Flg. 1

Hav'ing equalized the slopes of the functions (1) and (2) at r =3, we must
multiply one of them by a constant, so that the functions themselves will
join smoothly. We find at once that we must multiply (1) by .8916. Then
we have the following results: for r2=0,

u=e ""'+"""' for rg(3
=.8916e "~~ri "'(1+ 0707/ri. 0042—1/.r '+.00149/ri3 ) for ri)3
and the whole wave function can be written

&-2(r&+r2)+.Sr12+.0107 (r& +rp') for yl r2 szgall1)

=.8916e "'e ' ' "'ri ' ~(1+.0707/r, —.00421/rP+. 00149/ri' )

for r~)3, r2 small.

This function is not determined in detail everywhere; for we have not speci-
fied the way in which the two parts of it join, except along the lines r&=0
and r2=0. But this difhculty is not a serious one in most work demanding
the function.

Having found a wave function, our next task is to normalize it. To do
this, we require the integral of u' over the configuration space. The erst step



is to integrate u' over the volume element of the coordinates of one electron.
The result will be the charge density in the sense of Hartree; it is a function
of one electron, by which we multiply any function of the coordinates of
that electron, and integrate, to get the average of the corresponding function.
It is therefore what is generally needed in applying the wave function to
specific problems. In two limiting cases, it can be calculated directly;
these are the cases where r& =0, and where r& is very large. In the first case,
we must square the function of r2 which we obtain by setting r~ =0 in u
(that is, e ""'+""""for small rz, and the other function for large rz)
and integrate over dv2. This can be carried out without great diAiculty, by
expanding in series when necessary, and the result is 4zr (.07630). The second
case, when r& is very large, is simpler: there u depends on r& only through
the term e '"', so that the integration over dv2 can be immediately carried
out, yielding fzz'dzz, =(4zr/32)zzz(r„r, =0). Thus in this limit, the integral
is proportional to the square of the wave function for r2=0; and it is natural
to write in all cases fu'ds zf(r )uz'(r zrz=0). The function f will then
approach the value 4zr/32 for large r„on the other hand, it equals 4zr (.07630)
for r~=0, a value roughly twice as great. Our problem can be formulated
as that of finding f(rz) for intermediate rz's

To a certain degree of accuracy, we can approximate to f(rz) by as-
suming zz to have the value (2), and actually carrying out the integration
over the coordinates of the second electron. This can be done by using ellip-
tic coordinates, and one finds

f(r, ) = 2 zr [(4/15) '(1 —1/4e-'"') +(4/15) '(1 —e-'"')/r, ]

This function approzrches 4zr (2/27) =4zr (.07407) rather than 4zr (.07360)
as the correct function does; this is because, in the integration, the term
e."""in u was neglected. But more serious than this, it approaches quite
a wrong value at infinity, 2zr ((4/15)'+(4/15)') =4zr (.0355) rather than
4zr (.03215), This is because the function (2) fails decidedly at large distances
in the matter of the interaction energy of the electrons. Thus the function

f found above can do no more than serve as a general guide in forming a
function to approach the proper values at the limits of small and large r~.

It possesses one feature, however, which seems to be of importance: if
we expand it about rz ——0, the expansion commences with the terms 4zr(2/27)
(1—rz

' ' ' ). That is, the slope at the origin is numerically equal to the
function; f (rz) starts off, in other words, as e ". Since zz'(rz, rz = 0) starts as
e '"' the integral, or fu'dzzz acts as e '"', which is the behavior of the solution
of a central-field problem with a nuclear charge of 2 units. This of course
is what Hartree's function does; it is of great interest that our solution does
the same, and it seems as if this property were one to be retained in the
final function f

We wish, then, an interpolation formula for f(rz), reducing to 4zr (.07630)
for r&=0, having a negative slope numerically equal to this at the origin,
decreasing asymptotically to 4zr (.03125), and having the general form of
the function f found above. A function which satisfies all these demands is
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the simple exponential interpolation formula f=4s. (.03125+.04504 e """'),
where there are just enough conditions to determine the constants. Examina-
tion of the function shows that it reaches substantially its asymptotic
value soon after r1 passes outside the range of the second electron, a condition
which the function should satisfy. Since it seems satisfactory in every way,
we are justified in using it.

Taking the value of f just found, we may multiply it by u'(r&, r2 ——0)
and obtain an approximation for fu'dv2. Then it is a simple matter to
integrate over r„and the result is vr' (.05233) =fu'dv, dv~ To. normalize
our wave function, we must then divide by the square root of this, and the
result is

392'—2(r&+r2)+. 5r12+.0107 (r j. +r& ) fOr y1 y2 g3
u=1.241e '"'e ' '""'rq '"(1+.0707/r~ ) for rq)3, r2 small

u=1. 241e "'e '."'"'rs "'(1+.0707/r2 ) for rs)3, r& small

(3)

These represent our estimate of the normalized wave function of normal
helium. Similarly we have

J
j~2ds& —7604(l + 1 440' —1.692 rl) r, sr1+.0214rg —for r&(3

(4)= .6048(1+1.440e "')e "'rq (1+.1414/rr .0034/r—P )

fpr y1&3

The function fn'ds2, given in (4), should be the density distribution of
charge, in Hartree's sense; multiplied by 2 (on account of the two electrons
of helium), it should give just his dZ/dr In Tab. le 1 we show a comparison
of the values given by both methods; the resemblance is striking. The only
difference is a slight tendency of the present function to emphasize the
smaller r's at the expense of the larger. It is hard to say which function is
to be preferred.

TABLE I.

0
.1
.2
.3

.6

.8
1.0
1.2
1.4

dZ/dr
present theory

.000

.314

.851
1.307
1.605
1.745
1.544
1.231

.924

.664

dZ/dr
Hartree

.00

.30

.83
1.28
1.57
1.73
1.55
1.25
.94
.68

1.6
1.8
2.0
2, 2
2.4
2.6
2.8
3.0

dZ/dr
present method

.468

.319

.216

.145

.095

.063

.041

.026

dZ/dr
Hartree

.48

.33

.22

.15

.10

.06

.04

.026

2. DIAMAGNETIC SUSCEPTIBILITY

Van Vleck' has shown the d'iamagnetic susceptibility of a monatomic gas
to be given by 7t= —(e'I/6mc') Zr' where the summation is the sum of all

' J. H. Van Vleck, Proc. Nat. Acad. Sci., 12, 662 (1926); Phys. Rev. 31, 598 (1928).
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the f"s of the various electrons, averaged over the orbit. We have
rzz= fzzzrzzdvz dvz fdv——zrPfzzzdvz Th. is shows that we are to use the function
(4) in computing such an average. Carrying out the integration, we find
rzz = 1.1569 (in terms of zzoz). Since this also equals rzz, we have Zrz =2.3138.
Then y=1.853&(10 '. The experimental value of Wills and Hector' is
1.88X10 '. The discrepancy is but 1-,' percent. Whether it is on account of
experimental error, or from inaccuracy in the calculations, one cannot see.
The uncertainty in the wave function indicated by the difference between
the two functions of Table I would account for an error of about this mag-
nitude. For comparison, we note that Wang's' calculation of x, using Kell-
ner's wave function, is 1.53&(10 ', with an error of 20%%u~. The great advan-
tage of the present function, in point of accuracy, is obvious.

3. FORCES BETWEEN ATOMS

Heitler and London' have discussed the repulsive forces between atoms,
indicating that the electronic wave functions for two atoms near to each
other must be taken as linear combinations of the wave functions of the
individual atoms, and showing that the average of II over this combined wave
function (giving the first order perturbation energy) results in a repulsive
energy increasing rapidly as the atoms approach, in case each atom contains
electrons only in closed shells. This is an interference effect of the waves
of the two, becoming appreciable only to the extent to which the wave func-
tions actually overlap, so that it decreases exponentially with the distance.
In addition, Wang has treated the second order perturbation energy
between. two hydrogen atoms, showing that it contains an inverse sixth
power attractive energy. (The writer is indebted to Dr. H. A. Kramers for
the information that this e8ect was discussed some time ago in lectures
by Dr. Pauli). This terin is, in a certain way, a Debye attraction of
the variable electric moment of one atom (the variable terms are not zero,
even in the normal state, although the diagonal term is) for the dipole
which it induces in the other atom. The first of these terms gives the
repulsion of atoms at close distances, resulting in their impenetrability;
the second results in the Van der Waals attraction at large distances. The
former can be calculated from the knowledge of the normal state alone;
and this calculation is given in the present paper. It is unsatisfactory in
some details, on account of the mathematical difficulty, but is probably a
fairly accurate deduction from the assumed wave function. The other term,
being a second order one, demands a knowledge of the other wave functions
as well, so that no exact calculation is possible. We content ourselves with a
rough estimate from Wang's value for hydrogen, taking account of the differ-
ing size and polarisibility (as determined experimentally) of helium. The
results are in rough agreement with the values found from kinetic theory;

' Kills and Hector, Phys. Rev. , 23, 209 (1924); 24, 418 (1924).
' S. C. Wang, Proc. Nat. Acad. Sci., 13, 798 (1927).
' Heitler and London, Zeits. f. Physik, 44, 455 (1927).
SS. C. Wang, Phys. Zeits. , 28, 663 (1927).
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from the equilibrium position of two atoms under the attractive and repulsive
forces, we can estimate the density and boiling point of the liquid; and from
the distance to which atoms with the average temperature energy would
approach, we compute a molecular diameter. These results are in as close
agreement with experiment as would be expected, when we consider the
various errors in the calculations.

We shall now consider the first order term in the interaction energy.
The first step is to set up the correct unperturbed wave function. Let us
suppose that the wave function for the atom e by itself, with the electrons
1 and 2 in it, is u. (1, 2). This is to be taken, say, as the function of r, and
rz described in (3), where r, is the distance of the 1st electron from the nucleus
a, etc. It is symmetric in the coordinates 1 and 2, so that zz, (1, 2) =u, (2, 1).
Similarly for an atom b with electrons 3 and 4, the wave function is u&(3, 4).
A conceivable unperturbed wave function for the problem of four electrons
would be u, (1, 2)uq(3, 4). But this is not the proper wave function. We
have instead, if we assume the function in which the electrons 1 and 3 have
their spin in one direction, 2 and 4 in the opposite direction, the combination
which is anti-symmetric in the electron coordinates 1 and 3, and also in 2

and 4:

u, (1,2) u g(3, 4) —u, (1,4)u z(2, 3) —u.(2, 3)u g(1, 4) +u ~(3,4)u b(1, 2)

Now when we square the wave function, to use either for normalization or
for integrating II, terms of three kinds arise: diagonal terms, as u, (1, 2)
uz'(3, 4); terms corresponding to the interchange of two electrons, one in
each atom, as u, (1, 2)uz(3, 4)u, (1, 4)uz(2, 3); and terms corresponding to
the interchange of all four electrons, as u, (1, 2)u~(3, 4)u, (3, 4)u~(1, 2).
There are four terms of the first type, eight of the second (each with negative
sign), and four of the third (with positive sign). The second type of term
is large only in that part of configuration space in which an electron of each
atom (here the 2d and 4th) have both considerable probability of being
found; the third is large only where all four electrons are likely to be found
at once. Thus, for a moderate separation of the nuclei, the second term
varies, so to speak, directly as the amount of penetration of one atom by
the other; the third as the square of this. For this reason, the latter is small,
and we may neglect it in our approximate calculations. We thus have, if

I& —— I ' i,j Nb' k, l de=1 by normalization o& separate I' s

I2= N, i j Nb k, l u, i, l Nb kj dv

that the normalization integral is 4 I& —8 I&. Similarly if IX is the pertur-
bation energy, and
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II& —— Itu, i j u& k, t u„ i l u& k j dvj

the integral of II is 4 III —SII2. Thus the first order perturbation energy is
(H1 —2H2)/(I1 —2I2).

We first evaluate I2. In carrying this out, we meet certain approxi-
mations which we must make in each such integral. The integrand is large
only at points corresponding to arrangements of electrons in which two
electrons, the jth and lth, have considerable probability of belonging to
either atom. Since the atoms are assumed to be some little distance apart,
this means that these two electrons must be in the region between the two
nuclei, at a considerable distance from either nucleus. For the integrand
to be large, then, the other two electrons, the ith and kth, must be fairly
close to the ath and bth nucleus respectively. Thus in the essential region,
u, (i, j) or u, (i, l) correspond to the case where electron i is close, electron
j or l far away, with a corresponding situation- for the ub's. Then we can
approximately use the forms, from (3),

u, (i,j) =1.241e '""e ' "'"»ra; "'(1+.0707/r„)
u. (3, l) =1.241e '".'e ' "'""r —"'(1+ 0707/r. 1 ).

and similarly for the other u's. We can immediately integrate over dv,
(and similarly over dvb), obtaining

fu, (i,j)u,(i, l)ub(k, j)ub(k, l)dv, dvb

( 6Q48) 2e—1.344rai'r —.225(1+ Q707/r + . . )e—1.344ra(r .255—
(1+.0707/r, 1 )e ' '»rb; (1+ . 0707/rb; )

344rb(r" 255(1+ Q707/r . )

Thus we have

d, (OO43 f « .-'('"-=i'""((.+;~O)-O')"/ . )((+....O)O)/. „)d']
2

u uq for abbreviation

We make a further approximation, by neglecting all except the constant
term, in the summations at the end. The remaining integral can be evaluated
by using elliptical coordinates. If R=r, b, X=(r„+r»)/R, p=(r„rb;)/R, —
p=1.344 R, we have, since dv=x/4 R (X 3u22)dkdp in these coordinates,

= .6765R' " e &~ ) ' —p' "d) dp,
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where ) goes from 1. to ~, y, from —1 to +1. 'I he integration cannot be
carried out directly. We therefore adopt an approximate method. We may
write the integrand e '"(X'—u')~with k =.745. Now the integration can be
carried out exactly for integral values of k, and the resu'lt is a uniformly vary-
ing function of p and k. We find this for a number of values of k, and inter-
polate for k =.745. We have

uCq=. 6765 R' "2e '/p[1] for k=0

= .6765R' "2e '/p [2/3+2/p+2/p ] for k = 1

= . 6765R . 2e '/p[8/15+8/3p+32/3p'+24/p~+24/p ] for k = 2, etc.

By plotting the coefficients of the powers of 1/p against k, we can inter-
polate for the coe%cients for k =.745, and the result is

From this result, I& can be immediately found.
Next it is convenient to find II~, since it involves the same sort of integrals

as I2. For this, we have, where II is the perturbation energy,

Hu, (f,j)uq(k, I) = [8/r, q 4/rq; 4—/rb; 4—/r, q 4—/r, ~—
+2/r;&+2/r;&+2/r, &+2/r;&]u, (i,j) u(vkl).

We multiply by u, (v', I)ut, (k, j) and integrate over the v'th and kth electrons.
In this integration, the term 4/r&; (or 4/r, ~), multiplied by e '" * (or e '"»)
represents the potential of the spherical charge distribution e '".v at the
point b. Now we may reasonably say that b is entirely outside this distribu-
tion; for the distribution e 4" decreases so much faster than that of the
other electron, e """,that although the latter distributions overlap ap-
preciably in the region between nuclei, the former will not appreciably
extend to the other nucleus. Thus in these terms, by the fundamental
properties of the potential of spherical distributions, we may replace 4/rb;
(or /r4, &) by 4/r, &. Similarly in the term 2/r;&, one electron is definitely
attached to the one nucleus, the other to the other, without overlapping,
so that we may replace this by 2/r, v. In the terms 2/r„g, 2/r;q, one electron
(the v'th or kth) is definitely attached to one nucleus, the other wanders with
greater freedom. By the same arguments used above, we may replace
them to a good approximation by 2/r, ~, 2/r» Then we have approx. imately

II,= N. i, l lb k,j II+. i,j ub k, l dv

u, (v', I)uz(k, j)u, (i,j)u&(k, I)dv [2/r, 2/t r, & 2/rz;+2/r;1]—~ ~ ~ ~
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The result is just as if we considered the interaction energy only of the pair
of electrons in resonant interaction, concentrating the other electron of
each atom at its nucleus.

In carrying out the integrations, we may now integrate over the ith and
kth electrons as before. The first term gives 2 I2/r, b, The. second and third
unite to give 4fu—,ubl'(n. ui/r, i) where f(u.iei/r. i) is an abbreviation for

.6048 e ' ("«+'") r, Irqg r, ~ 1+.0707 r~~ 1+.0707 rq~" de~.

The latter integral we evaluate much as we did fu. l, q Th. e result is approxi-
mately

J{ (N,Ne/r. ,) =.67658' "(2/R)(2e '/p) [1.15+.22/p].

The last term of II~ is, after carrying out the integration over the ith and
kth electrons,

2(.604&&i' f ( ' "'&" " "'+""&/,)(~, , „) '"(&+ t .id d, .

If it were not for the term raised to the power —.255, this would be es-
sentially the same integral as that evaluated by Sugiura. ' The presence of
this term can be allowed for as with the other integrals, by letting k = 1 —.255,
integrating for integral values of k, and interpolating. On account of the
difficulty of this integration, even for integral k's, we content ourselves with
a linear interpolation between k=0 and k=1. For k=1, the result is es-

sentially the same as Sugiura's; we have the term

=(16/5)(.6765)'Re. p e[—e &'( —25/8+23p/4+3p'+p/3)

+(6/p) {~(C+ log p)+~'E;( 4p) (25'5) "—'
E(
—2p) })—

where

5= (1+p+p'/3)'e ~& 5'= (1—p+p'/3)'e'~ C = . 5772.

For k =0, by methods essentially similar to Sugiura's, we find

(16/5)(. 6775)'R' "p '[(5/2)p'{e "/2(C+log p)

E;( 2p)+e'~/2—E;( —4p) }]. —

We take as the result the linear interpolation between these two functions
(which, when worked out, are not very different, so that the interpolation
is not a doubtful one). By putting all these terms together properly, we
find II~.

9 Y. Sugiura, Zeits. f. Pkys. , 45, 484 (1927).
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Finally we must evaluate II&, the diagonal term. Since this is not a
particularly large term, and since its calculation involves no particular
difficulties, we merely state the result, which is

H& e2'——[2.10R—.ego(1+ 1/2~. . . ) 1 458R( 81+2 13/&. . . ) ]

The second term preponderates, giving a negative energy. This term,
however, is never of a size at all comparable numerically with II., which is
positive, and results in a repulsion.

When we compute the first order energy of interaction, from the com-
plicated formulas found above, it appears that it is a simple function of the
distance, always repulsive, increasing very rapidly as the distance decreases.
It is in fact possible to approximate very accurately to the complicated
result by a simple exponential expression, without theoretical significance,
but nevertheless very useful. This is the following: Potential of two
helium atoms at distance r =

7 70+]0—10~(—r(cm)/. »Sxio-~ ergs

where now we have expressed distances in centimeters, energy in ergs. This
formula expresses the results of our calculations, with errors no greater than
the other errors introduced in the method, for values of r between 1 A' and
large distances.

Now that we have derived the first order repulsive energy, we shall try
to make a rough estimate of the second order attractive energy. Wang finds
that, for two hydrogen atoms, this energy has a leading term of —(243/28)
(2/R') (where energy is in terms of Rh, distances in terms of ae). He further
interprets the constant as being of the nature of the polarizibility multiplied
by the square of an electric moment (this moment representing the variable
electric moment of the atom). We may then expect that very roughly the
corresponding term of helium will be to the hydrogen term as the ratio of
polarizibility, multiplied by the square of electric moment. Now the po-
larizibility of atomic hydrogen, as computed from the second order Stark
effect by WaIler, "is .66/10 "; for helium, as one can find it simply from
measured dielectric constants and refractive indices, it is about .213)&10 24.

For the ratio of moments, we may roughly take the ratio of the linear dimen-
sions of the atoms. Since the square of the linear dimensions of a shell is
inversely proportional to the ionization potential, this means that the
square of the moment for helium can be taken roughly 1/1.8 times as great
as for hydrogen. Thus our rough estimate for this term is

—(243/28)(2/R') )&( 213/. 66) g(1/1. 8) = —3.11/R

Expressing energy in ergs, distances in centimeters, this is —.67&&10 'e/

(R/ae) . This figure is to be regarded as highly uncertain. One could with
right say that, since helium has two electrons, hydrogen but one, it should

" I. WalIer, Zeits. f. Phys. , 38) 635 (1926).
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be doubled. On the other hand, one could argue that the square of the
moment, which appears in the formula, should be proportional to the
polarizibility, so that instead of 1/1.8 as a ratio we should have had another
factor .213/. 66, resulting in a term about half as great T. hus a factor of 2

either way is not impossible.
We have found the forces between two neutral helium atoms to consist

of two terms, one repulsive, the other attractive:

Energy = 7 ~ 7 X 10—toe— .4 ~&+~a, ~ . 67 X 10 /(R/go)

This function has a minimum at R/a0=5. 6, R=3.0X10 ' cm. Its value at
that point is —1.21)&10 " ergs. These figures may be brought into rough
connection with the properties of liquid helium. This has a density of about
.14, so that each atom of the liquid occupies a volume of (3.62 X10 ')'
cubic centimeters. The distance apart in the liquid is then obviously of the
order of the distance of equilibrium found above. The critical tempera-
ture is 5.2' Abs; the mean kinetic energy of a molecule at this temperature
is 1.07)&10 "" ergs, a quantity of the same order of magnitude as the energy
of separation found above. Thus the equilibrium position which we have
found seems to correspond with fair accuracy to that which must actually
occur in the liquid. It must not be forgotten, however, that our results are
subject to great error, particularly in the attractive term.

It is also possible to draw parallels between the potential which we have
found and the "radius" of helium atoms as determined from kinetic theory.
Various estimates of this quantity, given in Jeans' "Dynamical Theory of
Gases, " range from .99 &(10 ' cm, to 1.10X 10 ' cm. The corresponding
values of our energy function are 6.35&&10 ' ergs and 1.84&(10 " ergs.
These are the average kinetic energies of atoms at 309' Abs (or 36'C) and
90' Abs respectively. Thus the various distances represent the distances of
closest approach of average atoms in the temperature range usually used;
this is surely the only thing one could mean by a diameter of such a struc-
ture. This agreement is then satisfactory; it is also more sure than those
for the liquid, for at the smaller distances used here, the attractive term in

the energy is relatively less important.
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