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ABSTRA.CT

The method proposed by Hartree for the solution of problems in atomic struc-
ture is examined as to its accuracy as a method of solving Schrodinger's equation.
A wave function is set up at once from his method, and the matrix of the energy
computed with respect to it. The non-diagonal terms are shown to be small, indicating
that the function is a good approximation to a real solution. The energy levels are
found by perturbation theory from this matrix, and are compared with the term values
as found by Hartree. His values should be corrected for three reasons: he has
neglected the fact that electron distributions are not really spherical; he has not
considered the resonant interactionsbetween electrons; and he hasmade anapproxima-
tion which amounts to neglecting the polarization energy. The sizes of thesecorrections
are estimated, and they are found to be of the order of the errors actually present in
the numerical cases he has worked out.

"ARTREE' has recently proposed a method of approximate solution of
- .. problems in atomic structure by using central fields defined in a certain

way, which he calls "self-consistent" fields. He has justified his method only
by qualitative arguments and by the agreement of his calculations with
experiment (particularly in the case of Rh, the atom which he has in-
vestigated in greatest detail) It is t. he purpose of the present paper to show
to what extent his method is really a solution of the problem by wave
mechanics, and to estimate the errors which should be present in it. It
appears that Hartree's procedure has in fact a good theoretical foundation,
and that the estimated errors are in general of the order of magnitude of the
discrepancy between his calculations and experiment.

Hartree's method is the following: he sets up a separate wave function
for each electron of the atom; he assumes the individual electrons to have
charge density corresponding to their PP*'s, averaged over dilferent direc-
tions to give a spherical distribution of density; he adds these distributions
for all the electrons but one, and finds the electric potential of the resulting
charge; then he subjects the wave function of the remaining electron to the
condition that it be a solution, with proper quantum numbers, of the wave
equation connected with the central field so defined. By applying t»s
condition to each electron of the atom, the problem becomes determinate.
Finally, he takes the sum of the density distributions of all the electrons
to be the real density distribution in the atom; and he assumes the character-
istic numbers of his various central field problems to be the energy values
of the corresponding terms of the spectrum. The latter agree well with the
observed terms, except in the optical case, in which there is a discrepancy

~ D. R. Hartree, Proc. Camb. Phil. Soc., 24, 89 (1928).
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which he assumes due to the polarization of the core by the valence electron.
Hartree considers this agreement to be only empirically justified, since it is
not obvious that the method takes into account the rearrangement of the
electrons in the ion when one electron is removed.

One can set up a wave function for the problem by taking the product
of Hartree's functions for the individual electrons. The resulting function
proves to be in fact a good approximation to a solution of Schrodinger's
equation, which we verify by computing the non-diagonal terms of the
matrix of the energy referred to these wave functions, and by showing that
they are remarkably small. To a lower order of accuracy, we can set up a
wave function for the ion found by removing an electron, merely by leaving
the wave function of that electron out of the product. Then by perturbation
theory we can calculate the various ionization potentials. These prove to
differ from the term values of the one-electron problem (which Hartree takes
as representing them) on three distinct accounts: 6rst, there is a term arising
because the process of averaging densities over different directions to produce
a central field is not strictly justified; second, there is a term on account
of resonance between the electrons. These two corrections are in close
relation to each other; they are more important for x-ray electrons, except
s electrons, than for optical electrons; and they can be estimated, and prove
not to be much larger than the divergences between Hartree's calculation
and experiment. Finally there is a term which arises because the wave
function of the ion is of a lower order of accuracy than that of the atom, and
appreciable second-order terms in the energy arise from it. For the x-ray
spectra, this is of opposite sign to the errors mentioned above, and may
reasonably cancel part of them. For the optical terms, it proves to be a
polarization term, of just the sort demanded to bring Hartree's calculations
into better agreement with experiment.

2. The first step in discussing Hartree's method is to formulate his process
mathematically. Let the separate wave function of the ith electron be u;,
a function of the coordinates x; of this electron. The density of charge con-
nected with this electron is uP (neglecting for simplicity the possibility that
u; may be complex). Let this density averaged over all orientations, viz. ,

(f/4&r)fuP(r, 8,$)sin ed8dg be uP. The density of all the electrons but the
ith is Z&&, &&;&u&,

' (where here, and always unless otherwise stated, all summa-
tions are assumed to be over all the electrons of the atom). The potential
energy of the ith electron in this field, and in the field of the nucleus of charge
Z units, is then Z/r;+ 2~k, &, „;&f—(u&'/r;L)dt&&„where r; is the distance of the
ith electron from the nucleus, r;I, the distance between ith and kth. Thus
the wave equation for this electron becomes'

2 Here and elsewhere we shall measure distances in terms of ao, the radius of the first
hydrogen orbit, and energies in terms of Rh. This accounts for the factor 2 in all potential
energy terms.
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Hartree finds u, 's and e s so that these equations are satisfied for each i.
Each equation is obviously that of an electron in a central field; and in each
case he chooses the particular solution of the central field problem given by
the quantum numbers he wishes to assign to the corresponding electron.

Next we inquire what differential equation is satisfied by the product
of all the u s, which we shall call P: P=u~ . u„. We have at once, multi-
plying Eq. (1) by all the other u's, recalling that each u& is a function only
of xh„and then adding the equations so obtained,

7'~P+; &;— (, I, ,&I,&
2N I,

~ r;pe I,+2;2 r; $ =0 (2)

This is an equation which, as we shall show, is not very different from the
true equation for P, which is HP =EP, where

V +2 Q((, k;ip'. ))2/r(Ic Z Q( 2/r( (3)

(where the factor —', is inserted because we wish each pair of electrons to be
counted once, instead of twice, as the sum Z(; );~ )w)ould give).

Having found the differential Eq. (2) satisfied by Hartree's function )//,

we can compute the matrix of H with respect to it by integrating the operator
(3) over the function. That is, the component connected with a transition
P' —)P" is, using (2),

We shall show the non-diagonal components of this matrix, at least those
connected with one-electron transitions, to be very small, For to an approxi-
mation, in a one-electron transition, say of the jth electron, only u; changes,
the other u's remaining unchanged; I,' and I;", on the other hand, are
approximately orthogonal to each other, so that P' and P" are orthogonal.
We readily see that the only terms of Eq. (4) which survive are

H' "=-,' p, , ;,(f4/d;", '"f ;4, ;,—;","'/; 1;,) (5)

Plainly this differs from zero only to the small extent to which Z«, ),„;)fu), '"/
r;)ds), differs from Z(~, )„;)fu),'"/r;), d())„a difference which we shall show
later to be very small, appreciable in first order terms, but negligible in
second order terms. Thus the second order energy, which involves squares
of these non-diagonal components, is quite negligible. It is instructive to
compare this result with what we should have if in the unperturbed wave
function the mutual shielding effect of the electrons were not taken into
account by Hartree's method. Then the last term of Eq. (5) would be absent,
and the almost exact cancellation which we have here would not occur. From
the nature of the cancellation in Eq. (5), it seems highly probable that
Hartree's method is the best method using central fields that can be found,
from the standpoint of making the non-diagonal terms of H small.



For comparison with Hartree's results, we wish, not the energy of the
stationary state, but the ionization potentials, the differences between the
energy of the atom and that of the ion with a particular electron removed.
To do this, me must solve also for the energy of such an ionic state, and
subtract. Following Hartree, we shall not assume the problem of the ion
to be separately solved (except in the case of optical spectra, for which the
procedure is somewhat different, and will be explained later). Rather we
take as an approximate solution of the ionic problem the product of the
atomic wave functions of all the electrons except that which is removed.
This neglects the rearrangement of the orbits when one electron is removed,
on account of the lost shielding of that electron. We may therefore expect
this wave function to be a much less accurate solution of the ionic problem
than the complete function is of the atomic problem; an expectation which
is verified when we compute the energy, for now the non-diagonal terms
of the matrix, and the second order term of B computed from them, are of
an altogether larger order of magnitude than before.

The energy operator for the ion with the ith electron removed is

&'= —~'+l Z(, . &2/r —~ Z(, *&2/r (6)

where this 'P does not include derivatives with respect to the coordinates
of the ith electron. That is,

iV H'= —V'P+ Q—(&, , &,„;&2/r, &, 2Z/r;—
This operator, averaged over the wave function in the proper fashion, will
give the negative of the ionization potential which we desire. We should
properly average B over the wave function of the atom, II' over that of
the ion; but as H' does not involve the coordinates x; in any may, the terms
in I; merely integrate to unity. Thus we may find the matrix of the ion by
integrating H' over the atomic wave function. Then

(e-e) = f 0 ( v+ Q',—. ..;, 2/', ; —2Z/, ;&g"d.

This may be put in dilferent form by using Eq. (1); for from it

(—7"+ Z(~.~~'&2/r'~ —2~/r')0"

Thus

(9)

From Eq. (9), one can see to what extent Hartree's assumption is justi-
fied, that —e; measures the ionization potential of the ith electron. The
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true ionization potential is determined from (9) as the sum of, first, the
diagonal term; second, a combination of terms involving resonant inter-
changes between two electrons; third, second and higher order terms coming
from products of non-diagonal terms. Now if the P's corresponding to
different states, and to states with interchange of electrons, were orthogonal
(as they nearly are), the first term of (9) would give just —s; for the ionization
potential. Thus the error in Hartree's assumption comes principally from
the second term. This term leads to contributions of the types mentioned
earlier in the paper: (1) its diagonal terms are not zero, because u&,

'" and
u~'" are not the same; (2) its terms corresponding to resonant interchange
of electrons are not zero, on account of the non-vanishing of fP'P"2/r;kdv;
(3) its non-diagonal terms are not zero, resulting in a second-order term in

the ionization potential. We see, however, that there is no large first order
error coming from the use of an incorrect wave function for the ion; the
process of averaging H' over the wave function has made correction for this
to the first order, only the second order error remaining. This is an in-

structive example of the value of the perturbation method of averaging H
over an unperturbed orbit. The average, say, of the potential energy over
the incorrect wave function would show considerable errors, on account of the
excessive size of the outer shells as described by the incorrect wave function;
but the average of the kinetic energy compensates this, to the first order,
leaving an error of smaller order in the whole energy.

3. In .investigating Hartree's method more closely, we next try to
estimate the size of the various errors discussed above. In the present section
we shall compute the first-order terms in the ionization potential. First is

the diagonal term. This, from (9), is

(II II')'' =e;+—Q(&, , &,~, & )t I,"&dvf; jt 2(ug' s&,')/r—;&,dv&,

The second term of (10), arising from the fact that n&,
' is not spherically

symmetrical, contains many terms which cancel each other, and in some
cases it is strictly zero. For, as Unsold has shown, and as Hartree mentions,
in any closed shell, the total distribution is spherically symmetrical; Thus
if we write this term as fujdv;Z&qk&;&f2(u&, '

, Nt2)/r—;&dvq, and take the sum

over all the electrons of a closed shell not including the ith electron, we shall
have zero. The only contribution, then, comes from the other electrons in

the same shell with the ith electron. Now the charge of these electrons,
increased by that of the ith, must add to make a spherical shell, by what
we have just said; thus they by themselves have charge in excess of the
average where the ith electron is deficient, and have a deficiency where the
ith has excess charge. Thus the density represented by Z~&„&~;&(u~' —gt, ')
is negative where the ith electron has large density, and positive where the
ith has small density. In computing the integral, then, the regions where

r;I, is small, and the integrand is large, will make negative contributions to

' A. Unsold, Ann. d. Phys. , 85, 355 (1927).
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the integral, while those with small integrands will make positive contribu-
tions; as a result, the integral is negative. It then results in a decrease in e;
or an increase in ionization potential.

In two important cases, the second term vanishes exactly. These are
first the case of a valence electron outside closed shells (so that this error
is not met in Hartree's calculation of optical terms); and second the case
of an s electron, where the other electron in the same shell has exactly a
spherically symmetrical distribution. Thus this term is not met in the K
shell, or the I.~ or 3f~. On the other hand, in the I.2 shell, and other similar
ones, such a term would be present. To estimate its importance, it has been
calculated for the 22 shell of Rb, using Hartree's values of the field. The
actual wave functions are the function of r given by Hartree, multiplied by
certain spherical harmonics of the angles. Taking account of them, we find
that the second term of (10) is respectively —1/25 and —4/25 times 5.46
(in terms of Rh) for the transitions in which a 2p electron with np = 1 or m = 0
is removed from the 1. shell. The first term (1/25 or 4/25) comes from
integration of the spherical harmonics, and is of course different in the two
cases because the states with m =1 and 0 have different distributions of
charge; the second term (5.46) comes from an integration over the functions
of r, an integration which should give a result resembling the interaction
energy of one 2p electron on itself (which, as Hartree states, is about 12 units),
but should be decidedly smaller.

In addition to the diagonal terms of the matrix (9), there are other terms
entering the first order energy, arising from resonant interchanges of pairs
of electrons. Suppose one denote the matrix component of H, connected
with an interchange of the neth and nth electron, as H . Then one can show,
by the group theory developed by Wigner, Hund, Heitler' and others, that
for an atom consisting of closed shells of electrons, except for a possible
excess or deficiency of one electron (the only kind we need consider), the first
order energy is the diagonal term of the matrix, decreased by the sum of
the H „'s for all pairs of electrons which have spins in the same direction.
In the difference between the energy of atom and ion, then, will appear,
with a negative sign, the sum of all terms H „connected with interchange
of the electron which is removed, and other electrons with spins in the same
direction. Thus we have for the first order ionization energy the diagonal
term (10), already found, with additional correction for the resonance terms:

8 E =(H H') pip p'~s. spin ppsr. to spin s&Ht'p.

The last term in (11), arising from resonant interchange of electrons, can
be shown to be small, though not strictly zero, in several important cases.
One has

B;I,—— 2N n;"NI, 'uI, " r;pe;y (12)

4 E. Wigner, Zeits. f. Phys. , 40, 883; 43, 624 (1927).
F. Hund, Zeits, f. Phys, , 43, 788 (1927).
W. Heitler, Zeits. f. Phys. , 46, 47 (1927).
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where u and NJ,
"mean the same function, but of different arguments, and

similarly u;" and u~' mean the same function, although diff'erent from the
previous one. Obviously this term, then, can be large only for interaction
between electrons whose wave functions overlap considerably. Now the X
electrons on the one hand, and the valence electron on the other, do not
spend any large fraction of their time in a region where there are other elec-
trons; thus the interaction terms for them are small. There is no term for
interaction of one E electron with the other, because their spins are anti-
parallel. For electrons between the two extremes, however —the L, M, X
shells, etc.—the resonance terms can be of considerable importance.
Naturally the largest terms of this kind will come from the interchange of
two electrons in the same shell, for their wave functions differ only in the
spherical harmonic part; for two electrons in different shells, the wave
functions diff'er also in the function of r, so that these terms are less im-
portant. As an estimate, the resonance terms for a 2~ electron of Rb, corning
from interaction with other 2~'s, have been calculated. These prove to be
the product of—9/25 or—6/25 (the first for the removal of an electron with
m=1, the second with m=0) with the same quantity 5.46 found above.

The sum of the two first order correction terms, for the L shell of Rb,
is thus ( —1/25 —9/25) X5.46 for an electron with m =1, or ( —4/25 —6/25)
X5 46 for an electron with m =0; that is, in either case, 2/5 X 5.46 =2.2 units.
We shouM expect the correct ionization potential of a 2& electron to be, then,
what Hartree finds (about 137 units), increased by 2.2 units. As a matter
of fact, Hartree's value itself is in almost perfect agreement with experiment;
but this seems to be a coincidence, to judge from his other figures, and the
errors seem to be of the order of one or two units, so that the value we have
found appears to be of the actual order of the errors of Hartree's method.
For AIBA electrons, and others, we should naturally suppose the errors from
these terms to be less than for I. orbits (on account of the smaller interaction
of an M electron on itself); thus it seems likely that the errors introduced
by the extra terms in the first order energy are in any case of the order of
magnitude of the discrepancy between Hartree's calculations and experi-
ment. It does not seem to be true, however, that one improves the agree-
ment with experiment by making these corrections.

One fact of great theoretical interest was met in the last paragraph: the
fact that, when both sorts of first order corrections are taken into account,
the ionization potential for either an electron of nz =1 or m =0 is the same.
This means that the ion has the same energy, whatever kind of 2& electron
is missing from the completed shell. The ionized shell is degenerate, and
degenerate in just the same way that a single 2& electron would be. It is this
fact that leads to the result that the interaction of a shell lacking one electron
with the spins is just like the interaction of a single electron with its spin,
so that the L terms of x-rays are doublet terms. The degeneracy in this
case, however, does not seem to be obvious, as it is with a single electron;
one can see this by noting that the remaining electrons of the shell provide
an axis in a definite direction, or by remembering the way in which the
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interaction energy is built up, of terms which separately are different for
the different values of m.

4. In the last section, we discussed the first order ionization potentials,
and showed the extent of the error which Hartree makes in his assumption
as to the value of these quantities. Now we must consider the remaining
error, arising from the second order energy. In finding this, which is a
quadratic term, it is not at once allowable to use the matrix components of
H II', fro—m (9); we should rather find separately the non-diagonal com-
ponents of the separate matrices for II and H', work out their individual
second-order terms, and subtract. But as we saw earlier, the non-diagonal
terms of H are small compared with those of II', so that the non-diagonal
terms derived from (9) are essentially those of II' itself. Since this appears
with negative sign, we are justified in computing the second order energy
in the usual way from the matrix of (9), except that we must use the opposite
sign to the usual one. Thus we have, from ordinary perturbation theory,

(13)

In one other respect, this problem differs from the ordinary one of per-
turbation theory: the matrix of II—H' is not the integral of one given func-
tion over the wave functions; the function is different (on account of the
term f28&"'/r;ids&) for each stationary state. Closer examination shows
that this is to be taken care of by using uI," in each of the components oc-
curring in (13).

In finding the matrix components (H II')' " from —(9), one notes first
that the essential contributions come from the second term of (9), since
f' and P" are practically orthogonal; next, only those transitions for which
some other electron than the ith changes its quantum number, have large
components. For if the ith alone changes, P' and P" differ essentially only
in having different factors u and n;" The sum. mation in (9) then is
fu ii, ,"dv;Zi;i, ;~iif2(u, i,

' z7i')/r;idvi, . —On account of the small difference
between the actual distribution of charge and a spherical distribution
(a difference of zero if the ith electron is the valence electron) this is small.
We then consider only transitions of the electrons other than the ith. If,
say, the pth has a transition, we have

We shall be able to interpret this term better after considering the optical
case, in which it has a simple meaning.

For the valence electron, Hartree proceeds somewhat differently from
what he does in other cases. He does not carry through a calculation of
his problem for each energy level; instead, he solves the problem of the ion,
and uses the central field determined from it for the atomic computation,
neglecting therefore the reaction of the valence electron on the ion. The
second-order error in the problem then comes in the energy E of the atom,
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rather than in the E' of the ion. I" or this electron, then, we need make no
change in (13) except to change the sign. With this change, we shall show
that the term represents, in a somewhat unsatisfactory way, the energy
change on account of polarization of the ion by the valence electron. To
demonstrate this, we may most conveniently consider a non-penetrating
orbit, in which u; is not appreciable except for large values of r;. Then,
since N„represents a distribution which is spherical, and is practically all
inside the radius r;, we have very closely

We can next expand 2/r;, in series in 1/r;:

2/r;„= 2/r, +2r„cos (r;, r„)/rP

Since the first of these terms cancels, we have essentially the second left,
giving

Thus the second order energy is

The second term is recognized as the polarizibility of the ion; the first is,
not the average of 1/r, as we should expect, but the square of the average
of 1/r (the numerical factor 2 in 2/rp arises from our units). With this
difference, the term is just the sort of polarization term that Hartree wished,
to explain the discrepancy between observation and experiment. It results,
one notices, in a decrease of Z —Z' (on account of the negative sign of all
terms E' —2") or an increase of ionization potential.

The fact that this introduces a polarization term depending on the square
of the average of 1/rp, instead of on the average of 1/r, is to be interpreted
as an error inherent in the method. The effect depends on the distortion of
the inner orbits by the valence electron; and since the wave function we use
is one obtained by separation of variables, so that the function for the inner
electrons must not depend on the instantaneous position of the valence
electron, the distortion effect must be the average of that produced by the
valence electron at the different points of its orbit, giving the average of
1/rp. Thus when we average the change of energy on account of this dis-
tortion, over the orbit of the valence electron, we find the other factor 1/rp.
When one calculates, it is found that for the important optical orbits (1/r )'



and 1/r differ by about a factor of 2, so that this difference makes a con-
siderable error in the method, even when carried to the second order. That
the correct polarization energy involves 1/r 4 is shown by the success of
Wailer's' calculations for helium.

Having seen that the second order term for the valence electron refers
to polarization, we can return to the case of the other electrons. There evi-
dently the same physical situation exists, the term representing the polariza-
tion of the atom, now not by an outer electron, but by one inside it. Since
the electron is so much closer the atom, it might seem that the 1/r' term
would make the effect very large; but it is easy to see, directly from (14),
that after a variable electron penetrates a shell, the polarization energy of
this shell does not increase much more when the electron approaches the
nucleus. It is possible to estimate the size of the energy actually present in
such a case, by approximating to the polarizibility of the various shells; and
it is found that the total correction for this effect, for the inner electrons,
is of the same order of magnitude as the corrections found in section 3; not
only that, but they are of the opposite sign, making a decrease in ionization
potential (on account of the fact that the summation in (13), which is itself
negative, has a negative sign). Thus it seems actually possible that the two
effects, the first order and second order corrections, partly cancel, and that
Hartree's excellent agreement in the x-ray terms arises in this way. Whether
this is true or not, we see that none of the corrections to Hartree's terms are
really much larger than the order of magnitude of his discrepancies from
experiment, so that his good agreement with observations is justified.

JEFFERSON PHYSICAL LABORATORY&

HARVARD UNIVERSITY,

May 31, 1928.

' L Wailer, Zeits. f. Phys. , 38, 635 (1926).


